1
|
Litunenko DN, Moskalensky AE. Wireless monitoring of cell cultures based on light scattering: A novel optical scheme and portable prototype. JOURNAL OF BIOPHOTONICS 2024; 17:e202300234. [PMID: 37795552 DOI: 10.1002/jbio.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Cell cultures are widely used in scientific research, biomedicine, and industry. When culturing, it is important to maintain certain conditions, including the concentration of cells. Monitoring of the culture growth and cell counting is an urgent task for the optimization of technological processes. Most existing methods require sampling from a culture flask. This procedure is time-consuming and associated with the risks of contamination. We present a device able to monitor the growth of cells number in a suspension noninvasively. The device uses a laser beam that pass through the culture flask and measures the intensity of scattered light as a function of coordinate along the beam. This optical scheme allows one to obtain accurate results for both high- and low-scattering samples. We constructed the wireless portable prototype for monitoring of cell culture growth directly in the incubator and demonstrated the applicability of the device for Jurkat cells and Escherichia coli bacteria.
Collapse
|
2
|
Van Elst D, Nuyens S, van Wyk B, Verstraete B, Dessein S, Prinsen E. Distribution of the cardiotoxin pavettamine in the coffee family (Rubiaceae) and its significance for gousiekte, a fatal poisoning of ruminants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:15-9. [PMID: 23535187 DOI: 10.1016/j.plaphy.2013.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/26/2013] [Indexed: 05/02/2023]
Abstract
Gousiekte, a cardiac syndrome of ruminants in southern Africa, is caused by the ingestion of plants containing the polyamine pavettamine. All the six known gousiekte-causing plants are members of the Rubiaceae or coffee family and house endosymbiotic Burkholderia bacteria in their leaves. It was therefore hypothesized that these bacteria could be involved in the production of the toxin. The pavettamine level in the leaves of 82 taxa from 14 genera was determined. Included in the analyses were various nodulated and non-nodulated members of the Rubiaceae. This led to the discovery of other pavettamine producing Rubiaceae, namely Psychotria kirkii and Psychotria viridiflora. Our analysis showed that many plant species containing bacterial nodules in their leaves do not produce pavettamine. It is consequently unlikely that the endosymbiont alone can be accredited for the synthesis of the toxin. Until now the inconsistent toxicity of the gousiekte-causing plants have hindered studies that aimed at a better understanding of the disease. In vitro dedifferentiated plant cell cultures are a useful tool for the study of molecular processes. Plant callus cultures were obtained from pavettamine-positive species. Mass spectrometric analysis shows that these calli do not produce pavettamine but can produce common plant polyamines.
Collapse
Affiliation(s)
- Daan Van Elst
- Plant Growth and Development, University of Antwerp, Antwerp, Belgium.
| | - Sarah Nuyens
- Plant Growth and Development, University of Antwerp, Antwerp, Belgium.
| | - Braam van Wyk
- H.G.W.J. Schweickerdt Herbarium, University of Pretoria, Pretoria 0002, South Africa.
| | - Brecht Verstraete
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium.
| | | | - Els Prinsen
- Plant Growth and Development, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Monks NR, Li B, Gunjan S, Rogers DT, Kulshrestha M, Falcone DL, Littleton JM. Natural Products Genomics: A novel approach for the discovery of anti-cancer therapeutics. J Pharmacol Toxicol Methods 2011; 64:217-25. [PMID: 21539926 DOI: 10.1016/j.vascn.2011.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/10/2011] [Accepted: 04/08/2011] [Indexed: 11/25/2022]
Abstract
Plants continue to retain some advantages over combinatorial chemistry as sources of novel compounds, for example, they can generate metabolites with a complexity beyond synthetic chemistry. However, this comes with its own problems in production and synthetic modification of these compounds. Natural Products Genomics (NPG) aims to access the plants own genomic capacity to increase yields, and modify complex bioactive metabolites, to alleviate these limitations. NPG uses a combination of gain of function mutagenesis and selection to a) mimic the evolution of novel compounds in plants, and b) to increase yields of known bioactive metabolites. This process is performed rapidly at the cell culture level in large populations of mutants. Two examples demonstrating proof of concept in Nicotiana tabacum (tobacco) and proof of application in the medicinal plant species Catharanthus roseus, are included to illustrate the feasibility of this approach. This biotechnology platform may alter the way in which plant drug discovery is perceived by the pharmaceutical industry, and provides an alternative to combinatorial chemistry for the discovery, modification and production of highly complex bioactive molecules.
Collapse
Affiliation(s)
- N R Monks
- Naprogenix, Inc, AgTeCC Laboratories, 1401 University Drive, Lexington, KY 40546, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Caretto S, Quarta A, Durante M, Nisi R, De Paolis A, Blando F, Mita G. Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:51-8. [PMID: 21143725 DOI: 10.1111/j.1438-8677.2009.00306.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Artemisia annua L. is a herb traditionally used for treatment of fevers. The glandular trichomes of this plant accumulate, although at low levels, artemisinin, which is highly effective against malaria. Due to the great importance of this compound, many efforts have been made to improve knowledge on artemisinin production both in plants and in cell cultures. In this study, A. annua suspension cultures were established in order to investigate the effects of methyl jasmonate (MeJA) and miconazole on artemisinin biosynthesis. Twenty-two micro molar MeJA induced a three-fold increase of artemisinin production in around 30 min; while 200 μm miconazole induced a 2.5-fold increase of artemisinin production after 24 h, but had severe effects on cell viability. The influence of these treatments on expression of biosynthetic genes was also investigated. MeJA induced up-regulation of CYP71AV1, while miconazole induced up-regulation of CPR and DBR2.
Collapse
Affiliation(s)
- S Caretto
- Istituto di Scienze delle Produzioni Alimentari, CNR, Lecce, Italy.
| | | | | | | | | | | | | |
Collapse
|
5
|
Ruffoni B, Pistelli L, Bertoli A, Pistelli L. Plant cell cultures: bioreactors for industrial production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:203-21. [PMID: 21520713 DOI: 10.1007/978-1-4419-7347-4_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The recent biotechnology boom has triggered increased interest in plant cell cultures, since a number of firms and academic institutions investigated intensively to rise the production of very promising bioactive compounds. In alternative to wild collection or plant cultivation, the production of useful and valuable secondary metabolites in large bioreactors is an attractive proposal; it should contribute significantly to future attempts to preserve global biodiversity and alleviate associated ecological problems. The advantages of such processes include the controlled production according to demand and a reduced man work requirement. Plant cells have been grown in different shape bioreactors, however, there are a variety of problems to be solved before this technology can be adopted on a wide scale for the production of useful plant secondary metabolites. There are different factors affecting the culture growth and secondary metabolite production in bioreactors: the gaseous atmosphere, oxygen supply and CO2 exchange, pH, minerals, carbohydrates, growth regulators, the liquid medium rheology and cell density. Moreover agitation systems and sterilization conditions may negatively influence the whole process. Many types ofbioreactors have been successfully used for cultivating transformed root cultures, depending on both different aeration system and nutrient supply. Several examples of medicinal and aromatic plant cultures were here summarized for the scale up cultivation in bioreactors.
Collapse
Affiliation(s)
- Barbara Ruffoni
- Research Unit for Floriculture and Ornamental Species, CRA-Agricultural Research Council, Sanremo, Italy.
| | | | | | | |
Collapse
|
6
|
Georgiev M, Pavlov A. Physiological Peculiarities of Lavandula VeraMM Cell Suspension Culture in Stirred Tank Reactor. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10818552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
7
|
Mohammadi M, Chalavi V, Novakova-Sura M, Laliberté JF, Sylvestre M. Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 2007; 97:496-505. [PMID: 17006888 DOI: 10.1002/bit.21188] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Optimized plant-microbe bioremediation processes in which the plant initiates the metabolism of xenobiotics and releases the metabolites in the rhizosphere to be further degraded by the rhizobacteria is a promising alternative to restore contaminated sites in situ. However, such processes require that plants produce the metabolites that bacteria can readily oxidize. The biphenyl dioxygenase is the first enzyme of the bacterial catabolic pathway involved in the degradation of polychlorinated biphenyls. This enzyme consists of three components: the two sub-unit oxygenase (BphAE) containing a Rieske-type iron-sulfur cluster and a mononuclear iron center, the Rieske-type ferredoxin (BphF), and the FAD-containing ferredoxin reductase (BphG). In this work, based on analyses with Nicotiana benthamiana plants transiently expressing the biphenyl dioxygenase genes from Burkholderia xenovorans LB400 and transgenic Nicotiana tabacum plants transformed with each of these four genes, we have shown that each of the three biphenyl dioxygenase components can be produced individually as active protein in tobacco plants. Therefore, when BphAE, BphF, and BphG purified from plant were used to catalyze the oxygenation of 4-chlorobiphenyl, detectable amounts of 2,3-dihydro-2, 3-dihydroxy-4'-chlorobiphenyl were produced. This suggests that creating transgenic plants expressing simultaneously all four genes required to produce active biphenyl dioxygenase is feasible.
Collapse
Affiliation(s)
- Mahmood Mohammadi
- Institut National de la Recherche Scientifique, INRS-Institut-Armand-Frappier, 531 Boul des Prairies, Laval, Quebec, Canada
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Georgiev MI, Pavlov AI, Bley T. Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 2007; 74:1175-85. [PMID: 17294182 DOI: 10.1007/s00253-007-0856-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/15/2007] [Accepted: 01/21/2007] [Indexed: 10/23/2022]
Abstract
"Hairy root" systems, obtained by transforming plant tissues with the "natural genetic engineer" Agrobacterium rhizogenes, have been known for more than three decades. To date, hairy root cultures have been obtained from more than 100 plant species, including several endangered medicinal plants, affording opportunities to produce important phytochemicals and proteins in eco-friendly conditions. Diverse strategies can be applied to improve the yields of desired metabolites and to produce recombinant proteins. Furthermore, recent advances in bioreactor design and construction allow hairy root-based technologies to be scaled up while maintaining their biosynthetic potential. This review highlights recent progress in the field and outlines future prospects for exploiting the potential utility of hairy root cultures as "chemical factories" for producing bioactive substances.
Collapse
Affiliation(s)
- Milen I Georgiev
- Institute of Food Technology and Bioprocess Engineering, Dresden University of Technology, 01069 Dresden, Germany.
| | | | | |
Collapse
|
10
|
Yoshihara T, Tsunokawa K, Miyano Y, Arashima Y, Hodoshima H, Shoji K, Shimada H, Goto F. Induction of callus from a metal hypertolerant fern, Athyrium yokoscense, and evaluation of its cadmium tolerance and accumulation capacity. PLANT CELL REPORTS 2005; 23:579-585. [PMID: 15503034 DOI: 10.1007/s00299-004-0877-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 08/16/2004] [Accepted: 08/17/2004] [Indexed: 05/24/2023]
Abstract
The callus of a metal hypertolerant fern, Athyrium yokoscense, was induced from the spores generated on a small sectioned frond in vitro. The callus grew vigorously with the periodical medium change, especially in a liquid culture. When the callus and regenerated tissues were exposed to Cd, every tissue tolerated at least 1 mM Cd for >1 month. These tissues accumulated high levels of Cd (maximum 3.3 mg g(-1) dry weight in roots) in accordance with the Cd concentration of the medium, and the Cd concentrations of all parts, except roots, were at a similar level. The data suggest that the Cd tolerance of this fern is basically independent of the plant parts and the developmental stages, although the accumulation ability is higher in roots than in the other plant parts.
Collapse
Affiliation(s)
- Toshihiro Yoshihara
- Plant Molecular Biology, Laboratory of Environmental Science, Central Research Institute Electric Power Industry, 1646 Abiko, Abiko, Chiba, 270-1194, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Acker JP. Biopreservation of cells and engineered tissues. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 103:157-87. [PMID: 17195463 DOI: 10.1007/b137204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The development of effective preservation and long-term storage techniques is a critical requirement for the successful clinical and commercial application of emerging cell-based technologies. Biopreservation is the process of preserving the integrity and functionality of cells, tissues and organs held outside the native environment for extended storage times. Biopreservation can be categorized into four different areas on the basis of the techniques used to achieve biological stability and to ensure a viable state following long-term storage. These include in vitro culture, hypothermic storage, cryopreservation and desiccation. In this chapter, an overview of these four techniques is presented with an emphasis on the recent developments that have been made using these technologies for the biopreservation of cells and engineered tissues.
Collapse
Affiliation(s)
- Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, 8249-114 Street, Edmonton, AB T6G 2R8, Canada.
| |
Collapse
|