1
|
Yang MT, Fan HC, Lee HJ, Woudsma KJ, Lin KS, Liang JS, Lin FH. Inter-subject gamma oscillation synchronization as a biomarker of abnormal processing of social interaction in ADHD. Sci Rep 2024; 14:17924. [PMID: 39095651 PMCID: PMC11297305 DOI: 10.1038/s41598-024-68905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Children with attention-deficit hyperactivity disorder (ADHD) have difficulties in social interactions. Studying brain activity during social interactions is difficult with conventional artificial stimuli. This pioneering study examined the neural correlates of social perception in children with ADHD and matched controls using naturalistic stimuli. We presented 20 children with ADHD and 20 age-and-sex-matched controls with tailored movies featuring high- or low-level social interactions while recording electroencephalographic signals. Both groups exhibited synchronized gamma-band oscillations, but controls demonstrated greater inter-subject correlations. Additionally, the difference in inter-subject correlations between high- and low-interaction movies was significantly larger in controls compared to ADHD patients. Between 55 and 75 Hz comparing viewing high interaction movies with low interaction moves, controls had a significantly larger weighting in the right parietal lobe, while ADHD patients had a significantly smaller weighting in the left occipital lobe. These findings reveal distinct spatiotemporal neural signatures in social interaction processing among children with ADHD and controls using naturalistic stimuli. These neural markers offer potential for group differentiation and assessing intervention efficacy, advancing our understanding ADHD-related social interaction mechanisms.
Collapse
Affiliation(s)
- Ming-Tao Yang
- Department of Pediatrics, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, 220, Taiwan.
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, Taichung, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Ju Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - K J Woudsma
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Jao-Shwann Liang
- Department of Pediatrics, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, 220, Taiwan
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Karakaş S. A Review of Childhood Developmental Changes in Attention as Indexed in the Electrical Activity of the Brain. Brain Sci 2024; 14:458. [PMID: 38790437 PMCID: PMC11117988 DOI: 10.3390/brainsci14050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
This review aims to present age-related changes in the neuroelectric responses of typically developing children (TDC) who are presumed to meet developmental stages appropriately. The review is based on findings from the frequently used neuropsychological tasks of active attention, where attention is deliberately focused versus passive attention where attention is drawn to a stimulus, facilitatory attention, which enhances the processing of a stimulus versus inhibitory attention, which suppresses the processing of a stimulus. The review discusses the early and late stages of attentional selectivity that correspond to early and late information processing. Age-related changes in early attentional selectivity were quantitatively represented in latencies of the event-related potential (ERP) components. Age-related changes in late attentional selectivity are also qualitatively represented by structural and functional reorganization of attentional processing and the brain areas involved. The purely bottom-up or top-down processing is challenged with age-related findings on difficult tasks that ensure a high cognitive load. TDC findings on brain oscillatory activity are enriched by findings from attention deficit hyperactivity disorder (ADHD). The transition from the low to fast oscillations in TDC and ADHD confirmed the maturational lag hypothesis. The deviant topographical localization of the oscillations confirmed the maturational deviance model. The gamma-based match and utilization model integrates all levels of attentional processing. According to these findings and theoretical formulations, brain oscillations can potentially display the human brain's wholistic-integrative functions.
Collapse
Affiliation(s)
- Sirel Karakaş
- Psychology Department, Doğuş University, İstanbul 34775, Turkey
| |
Collapse
|
3
|
Ganiti-Roumeliotou E, Ziogas I, Lamprou C, Alhussein G, Alfalahi H, Shehhi AA, Dias S, Jelinek HF, Stouraitis T, Hadjileontiadis LJ. Classification of children with ADHD through task-related EEG recordings via Swarm-Decomposition-based Phase Locking Value . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082916 DOI: 10.1109/embc40787.2023.10340329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Attention Deficit/Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder mainly affecting children. ADHD children brain activity is reported to present alterations from neurotypically developed children, yet establishment of an EEG biomarker, which is of high importance in clinical practice and research, has not been achieved. In this work, task-related EEG recordings from 61 ADHD and 60 age-matched non-ADHD children are analyzed to examine the underlying Cross-Frequency Coupling phenomena. The proposed framework introduces personalized brain rhythm extraction in the form of oscillatory modes via Swarm Decomposition, allowing for the transition from sensor-level connectivity to source-level connectivity. Oscillatory modes are then subjected to a phase locking value-based feature extraction and the efficiency of the extracted features in separating ADHD from non-ADHD individuals is evaluated by means of a nested 5-fold cross validation scheme. The experimental results of the proposed framework (Area Under the Receiver Operating Characteristics Curve-AUROC: 0.9166) when benchmarked against the commonly used filter-based brain rhythm extraction (AUROC: 0.8361) underscore its efficiency and demonstrate its overall superiority over other state-of-the-art functional connectivity approaches in this classification task for this dataset.Clinical relevance-This framework provides novel insights about brain regions of interest that are involved in ADHD task-related function and holds promise in providing objective ADHD biomarkers by extending classic sensor-level connectivity to source-level.
Collapse
|
4
|
Power Spectrum and Connectivity Analysis in EEG Recording during Attention and Creativity Performance in Children. NEUROSCI 2022. [DOI: 10.3390/neurosci3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The present research aims at examining the power spectrum and exploring functional brain connectivity/disconnectivity during concentration performance, as measured by the d2 test of attention and creativity as measured by the CREA test in typically developing children. To this end, we examined brain connectivity by using phase synchrony (i.e., phase locking index (PLI) over the EEG signals acquired by the Emotiv EPOC neuroheadset in 15 children aged 9- to 12-years. Besides, as a complement, a power spectrum analysis of the acquired signals was performed. Our results indicated that, during d2 Test performance there was an increase in global gamma phase synchronization and there was a global alpha and theta band desynchronization. Conversely, during CREA task, power spectrum analysis showed a significant increase in the delta, beta, theta, and gamma bands. Connectivity analysis revealed marked synchronization in theta, alpha, and gamma. These findings are consistent with other neuroscience research indicating that multiple brain mechanisms are indeed involved in creativity. In addition, these results have important implications for the assessment of attention functions and creativity in clinical and research settings, as well as for neurofeedback interventions in children with typical and atypical development.
Collapse
|
5
|
Michelini G, Salmastyan G, Vera JD, Lenartowicz A. Event-related brain oscillations in attention-deficit/hyperactivity disorder (ADHD): A systematic review and meta-analysis. Int J Psychophysiol 2022; 174:29-42. [PMID: 35124111 DOI: 10.1016/j.ijpsycho.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/11/2022] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
Previous studies have associated attention-deficit/hyperactivity disorder (ADHD) with several alterations in electroencephalographic (EEG) activity. Time-frequency analyses capturing event-related power modulations are becoming an increasingly popular approach, but a systematic synthesis of the time-frequency literature in ADHD is currently lacking. We conducted the first systematic review and meta-analysis of time-frequency studies of children and adults with ADHD in comparison to neurotypical controls. Searches via Medline, Embase, and Web of Science, as well as reference lists, identified 28 eligible articles published until March 2021. Of these, 13 articles with relevant data were included in a multi-level meta-analysis. Most studies examined power modulations of alpha, theta and/or beta frequencies (N = 21/28), and focused on children (N = 17/28). Meta-analyses showed significantly weaker theta increases (Cohen's d = -0.25, p = 0.039; NADHD = 346, NCONTROL = 327), alpha decreases (d = 0.44, p < 0.001; NADHD = 564, NCONTROL = 450), and beta increases (Cohen's d = -0.33, p < 0.001; NADHD = 222, NCONTROL = 263) in individuals with ADHD relative to controls. These patterns indicate broad brain-oscillatory alterations in individuals with ADHD with small (theta) and small-to-moderate (alpha and beta) effect sizes. These group differences were partly consistent when repeating analyses by age group (<18 and 18+ years) and task type (cognitive control, working memory, and simple attention tasks). Overall, our findings identify widespread event-related brain-oscillatory alterations in individuals with ADHD during a range of neurocognitive functions. Future research requires larger samples, a broader range of frequency bands (including delta and gamma) during a wider type of cognitive-affective processes, and should clarify whether atypical event-related power profiles are ADHD-specific or shared with other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Giorgia Michelini
- Semel Institute for Neuroscience & Human Behavior, Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, USA; Department of Biological and Experimental Psychology, Queen Mary University of London, UK.
| | - Gevork Salmastyan
- Semel Institute for Neuroscience & Human Behavior, Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, USA
| | - Juan Diego Vera
- Department of Psychology, University of California Los Angeles, USA
| | - Agatha Lenartowicz
- Semel Institute for Neuroscience & Human Behavior, Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, USA.
| |
Collapse
|
6
|
Karakaş S. A comparative review of the psychophysiology of attention in typically developing children and children with attention deficit hyperactivity disorder. Int J Psychophysiol 2022; 177:43-60. [DOI: 10.1016/j.ijpsycho.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
|
7
|
Ng HYH, Wu CW, Huang FY, Cheng YT, Guu SF, Huang CM, Hsu CF, Chao YP, Jung TP, Chuang CH. Mindfulness Training Associated With Resting-State Electroencephalograms Dynamics in Novice Practitioners via Mindful Breathing and Body-Scan. Front Psychol 2021; 12:748584. [PMID: 34777144 PMCID: PMC8581621 DOI: 10.3389/fpsyg.2021.748584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives: Mindfulness-based stress reduction has been proven to improve mental health and quality of life. This study examined how mindfulness training and various types of mindfulness practices altered brain activity. Methods: Specifically, the spectral powers of scalp electroencephalography of the mindfulness-based stress reduction (MBSR) group (n=17) who underwent an 8-week MBSR training-including mindful breathing and body-scan-were evaluated and compared with those of the waitlist controls (n=14). Results: Empirical results indicated that the post-intervention effect of MBSR significantly elevated the resting-state beta powers and reduced resting-state delta powers in both practices; such changes were not observed in the waitlist control. Compared with mindful breathing, body-scanning resulted in an overall decline in electroencephalograms (EEG) spectral powers at both delta and low-gamma bands among trained participants. Conclusion: Together with our preliminary data of expert mediators, the aforementioned spectral changes were salient after intervention, but mitigated along with expertise. Additionally, after receiving training, the MBSR group's mindfulness and emotion regulation levels improved significantly, which were correlated with the EEG spectral changes in the theta, alpha, and low-beta bands. The results supported that MBSR might function as a unique internal processing tool that involves increased vigilant capability and induces alterations similar to other cognitive training.
Collapse
Affiliation(s)
- Hei-Yin Hydra Ng
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan
- Department of Educational Psychology and Counseling, College of Education, National Tsing Hua University, Hsinchu, Taiwan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Changwei W. Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Shuang Ho Hospital-Taipei Medical University, Taipei, Taiwan
| | - Feng-Ying Huang
- Department of Education, National Taipei University of Education, Taipei, Taiwan
| | - Yu-Ting Cheng
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Shiao-Fei Guu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Fen Hsu
- Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Child Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tzyy-Ping Jung
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan
- Institute for Neural Computation and Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Chun-Hsiang Chuang
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Dursun P, Fidan U, Karayagiz S. Probable role of listening therapy in the management of ADHD symptoms: Three case studies. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01419-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Momtaz S, Moncrieff D, Bidelman GM. Dichotic listening deficits in amblyaudia are characterized by aberrant neural oscillations in auditory cortex. Clin Neurophysiol 2021; 132:2152-2162. [PMID: 34284251 DOI: 10.1016/j.clinph.2021.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Children diagnosed with auditory processing disorder (APD) show deficits in processing complex sounds that are associated with difficulties in higher-order language, learning, cognitive, and communicative functions. Amblyaudia (AMB) is a subcategory of APD characterized by abnormally large ear asymmetries in dichotic listening tasks. METHODS Here, we examined frequency-specific neural oscillations and functional connectivity via high-density electroencephalography (EEG) in children with and without AMB during passive listening of nonspeech stimuli. RESULTS Time-frequency maps of these "brain rhythms" revealed stronger phase-locked beta-gamma (~35 Hz) oscillations in AMB participants within bilateral auditory cortex for sounds presented to the right ear, suggesting a hypersynchronization and imbalance of auditory neural activity. Brain-behavior correlations revealed neural asymmetries in cortical responses predicted the larger than normal right-ear advantage seen in participants with AMB. Additionally, we found weaker functional connectivity in the AMB group from right to left auditory cortex, despite their stronger neural responses overall. CONCLUSION Our results reveal abnormally large auditory sensory encoding and an imbalance in communication between cerebral hemispheres (ipsi- to -contralateral signaling) in AMB. SIGNIFICANCE These neurophysiological changes might lead to the functionally poorer behavioral capacity to integrate information between the two ears in children with AMB.
Collapse
Affiliation(s)
- Sara Momtaz
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA.
| | - Deborah Moncrieff
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA
| |
Collapse
|
10
|
Ahmadi A, Kashefi M, Shahrokhi H, Nazari MA. Computer aided diagnosis system using deep convolutional neural networks for ADHD subtypes. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102227] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Güntekin B, Uzunlar H, Çalışoğlu P, Eroğlu-Ada F, Yıldırım E, Aktürk T, Atay E, Ceran Ö. Theta and alpha oscillatory responses differentiate between six-to seven-year-old children and adults during successful visual and auditory memory encoding. Brain Res 2020; 1747:147042. [PMID: 32758480 DOI: 10.1016/j.brainres.2020.147042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
The healthy maturation of the brain is one of the intriguing topics that need to be investigated to understand human brain and child development. The present study aimed to investigate the development of memory processes both for auditory and visual memory using electroencephalography (EEG)-Brain Dynamics methodologies. Sixteen healthy children between the ages of 6 and 7 years and eighteen healthy young adults (age: 21.32 ± 3.28 years) were included in the study. EEG was recorded from 18 channels during the visual and auditory memory paradigms. Two different subtests of the WISC-IV IQ test were applied to all children. Event-related theta (4-7 Hz), alpha (8-13 Hz) power and phase-locking were analyzed. The young adults had higher memory performance than the children for both auditory and visual paradigms. The children had increased theta phase-locking and left alpha power in response to the remembered objects in comparison to the forgotten objects. The young adults had higher theta and alpha phase-locking than the children over the frontal and central locations (p < 0.05), and the children had higher parietal-occipital alpha phase-locking than the young adults. There was an increase in alpha power in children, whereas young adults had decreased post-stimulus alpha power in response to memory paradigms. The present study showed that frontocentral theta and alpha phase-locking had an essential role in brain maturation and successful memory performance. Event-related theta and alpha responses could be one of the important indicators of the mature and healthy brain, and these responses could change depending on the maturation state and age.
Collapse
Affiliation(s)
- Bahar Güntekin
- Istanbul Medipol University, School of Medicine, Department of Biophysics, Istanbul, Turkey; Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey.
| | - Hakan Uzunlar
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey
| | - Pervin Çalışoğlu
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey
| | - Figen Eroğlu-Ada
- Istanbul Medipol University, Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey
| | - Ebru Yıldırım
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey; Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey
| | - Tuba Aktürk
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey; Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey
| | - Enver Atay
- Istanbul Medipol University, School of Medicine, Department of Pediatrics, Istanbul, Turkey
| | - Ömer Ceran
- Istanbul Medipol University, School of Medicine, Department of Pediatrics, Istanbul, Turkey
| |
Collapse
|
12
|
Modulation of gamma oscillations as a possible therapeutic tool for neuropsychiatric diseases: A review and perspective. Int J Psychophysiol 2020; 152:15-25. [DOI: 10.1016/j.ijpsycho.2020.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022]
|
13
|
Nakamura T, Dinh TH, Asai M, Nishimaru H, Matsumoto J, Takamura Y, Hori E, Honda S, Yamada H, Mihara T, Matsumoto M, Nishijo H. Non-invasive electroencephalographical (EEG) recording system in awake monkeys. Heliyon 2020; 6:e04043. [PMID: 32490247 PMCID: PMC7260294 DOI: 10.1016/j.heliyon.2020.e04043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 05/19/2020] [Indexed: 12/03/2022] Open
Abstract
Background Human clinical studies reported that several electroencephalographical (EEG) parameters can be used as biomarkers of psychiatric disorders. EEGs recorded from non-human primates (monkeys) is useful for understanding of human pathologies of psychiatric disorders and development of new therapeutic agents. New methods In this study, we expand a previous non-invasive head holding system with face masks for awake monkeys to be applied to scalp EEG recording. The new design of a head holding system allows to attach scalp EEG electrodes on the positions comparable to human electrode placement and to present auditory stimuli. Results With this system, we could record auditory evoked potentials (AEPs) in auditory sensory gating and oddball paradigms, which are often used as biomarkers of psychiatric disorders in animal models and human patients. The recorded AEPs were comparable to previous human clinical data. Comparison with existing methods Compared with previous non-invasive head holding systems, top, side (cheek and ears), and rear of the head can be open for attachment of EEG electrodes and auditory stimulation in the present system. Conclusions The results suggest that the present system is useful in EEG recording from awake monkeys. Furthermore, this system can be applied to eye-tracking and chronic intra-cerebral recording experiments.
Collapse
Affiliation(s)
- Tomoya Nakamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan.,Department of Anatomy, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Trong Ha Dinh
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Makoto Asai
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yusaku Takamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Etsuro Hori
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Sokichi Honda
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Hiroshi Yamada
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Takuma Mihara
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Mitsuyuki Matsumoto
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
14
|
Powanwe AS, Longtin A. Determinants of Brain Rhythm Burst Statistics. Sci Rep 2019; 9:18335. [PMID: 31797877 PMCID: PMC6892937 DOI: 10.1038/s41598-019-54444-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022] Open
Abstract
Brain rhythms recorded in vivo, such as gamma oscillations, are notoriously variable both in amplitude and frequency. They are characterized by transient epochs of higher amplitude known as bursts. It has been suggested that, despite their short-life and random occurrence, bursts in gamma and other rhythms can efficiently contribute to working memory or communication tasks. Abnormalities in bursts have also been associated with e.g. motor and psychiatric disorders. It is thus crucial to understand how single cell and connectivity parameters influence burst statistics and the corresponding brain states. To address this problem, we consider a generic stochastic recurrent network of Pyramidal Interneuron Network Gamma (PING) type. Using the stochastic averaging method, we derive dynamics for the phase and envelope of the amplitude process, and find that they depend on only two meta-parameters that combine all the model parameters. This allows us to identify an optimal parameter regime of healthy variability with similar statistics to those seen in vivo; in this regime, oscillations and bursts are supported by synaptic noise. The probability density for the rhythm’s envelope as well as the mean burst duration are then derived using first passage time analysis. Our analysis enables us to link burst attributes, such as duration and frequency content, to system parameters. Our general approach can be extended to different frequency bands, network topologies and extra populations. It provides the much needed insight into the biophysical determinants of rhythm burst statistics, and into what needs to be changed to correct rhythms with pathological statistics.
Collapse
Affiliation(s)
- Arthur S Powanwe
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N6N5, Canada. .,Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada.
| | - André Longtin
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N6N5, Canada. .,Department of Cellular and Molecular Medicine, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada. .,Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Murphy O, Hoy K, Wong D, Bailey N, Fitzgerald P, Segrave R. Individuals with depression display abnormal modulation of neural oscillatory activity during working memory encoding and maintenance. Biol Psychol 2019; 148:107766. [DOI: 10.1016/j.biopsycho.2019.107766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
|
16
|
Kaur S, Singh S, Arun P, Kaur D, Bajaj M. Event-Related Potential Analysis of ADHD and Control Adults During a Sustained Attention Task. Clin EEG Neurosci 2019; 50:389-403. [PMID: 30997836 DOI: 10.1177/1550059419842707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Event-related potentials (ERPs) of attention deficit hyperactivity disorder (ADHD) population have been extensively studied using the time-domain representation of signals but time-frequency domain techniques are less explored. Although, adult ADHD is a proven disorder, most of the electrophysiological studies have focused only on children with ADHD. Methods. ERP data of 35 university students with ADHD and 35 control adults were recorded during visual continuous performance task (CPT). Gray level co-occurrence matrix-based texture features were extracted from time-frequency (t-f) images of event-related EEG epochs. Different ERP components measures, that is, amplitudes and latencies corresponding to N1, N2, and P3 components were also computed relative to standard and target stimuli. Results. Texture analysis has shown that the mean value of contrast, dissimilarity, and difference entropy is significantly reduced in adults with ADHD than in control adults. The mean correlation and homogeneity in adults with ADHD were significantly increased as compared with control adults. ERP components analysis has reported that adults with ADHD have reduced N1 amplitude to target stimuli, reduced N2 and P3 amplitude to both standard and target stimuli than controls. Conclusions. The differences in texture features obtained from t-f images of ERPs point toward altered information processing in adults with ADHD during a cognitive task. Findings of reduction in N1, N2, and P3 components highlight deficits of early sensory processing, stimulus categorization, and attentional resources, respectively, in adults with ADHD.
Collapse
Affiliation(s)
- Simranjit Kaur
- 1 Department of Computer Science and Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sukhwinder Singh
- 1 Department of Computer Science and Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Priti Arun
- 2 Department of Psychiatry, Government Medical College and Hospital, Chandigarh, India
| | - Damanjeet Kaur
- 3 Department of Electrical and Electronics Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Manoj Bajaj
- 2 Department of Psychiatry, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
17
|
Tombor L, Kakuszi B, Papp S, Réthelyi J, Bitter I, Czobor P. Decreased resting gamma activity in adult attention deficit/hyperactivity disorder. World J Biol Psychiatry 2019; 20:691-702. [PMID: 29457912 DOI: 10.1080/15622975.2018.1441547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: To delineate task-free gamma activity in adult ADHD and healthy control subjects based on high-density EEG recordings. Relationship of gamma activity with symptom severity was also examined, since gamma activity is considered to be an index of network functions in the brain that underlie higher-order cognitive processes.Methods: Spontaneous EEG was recorded in adult ADHD subjects (N = 42; 25 methylphenidate-naïve and 17 on methylphenidate treatment) and controls (N = 59) with eyes open. EEG absolute power gamma was investigated in the gamma1 (30.25-39 Hz) and gamma2 (39.25-48 Hz) frequency bands.Results: Gamma1 and gamma2 activity was diminished in ADHD compared with healthy control subjects. The difference between ADHD and controls was the most pronounced in the right centroparietal region for both gamma1 and gamma2. Inverse associations were found between gamma1 and gamma2 activity and ADHD symptoms in centroparietal scalp regions.Conclusions: Gamma activity is reduced in adult ADHD, and the reduction has a predominantly right centroparietal distribution. Our findings are consistent with childhood ADHD literature with respect to diminished posterior gamma activity in patients, which may reflect altered dorsal attention network functions. Gamma abnormalities might provide a link between neurophysiological functioning and neuropsychological deficiencies, thereby offering an opportunity to investigate the neurobiological mechanisms that underlie the clinical symptoms of ADHD.
Collapse
Affiliation(s)
- László Tombor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Brigitta Kakuszi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Szilvia Papp
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - István Bitter
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Pál Czobor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Early glioma is associated with abnormal electrical events in cortical cultures. Med Biol Eng Comput 2019; 57:1645-1656. [PMID: 31079355 DOI: 10.1007/s11517-019-01980-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/04/2019] [Indexed: 10/26/2022]
Abstract
The prodromal stages of some neurological diseases have a distinct electrical profile which can potentially be leveraged for early diagnosis, predicting disease recurrence, monitoring of disease progression, and better understanding of the disease pathology. Gliomas are tumors that originate from glial cells present in the brain and spinal cord. Healthy glial cells support normal neuronal function and play an important role in modulating the regular electrical activity of neurons. However, gliomas can disrupt the normal electrical dynamics of the brain. Though experimental and clinical studies suggest that glioma and injury to glial cells disrupt electrical dynamics of the brain, whether these disruptions are present during the earliest stages of glioma and glial injury are unclear. The primary aim of this study is to investigate the effect of early in vitro glial pathology (glioma and glial injury in specific) on neuronal electrical activity. In particular, we investigated the effect of glial pathology on neural synchronization: an important phenomenon that underlies several central neurophysiological processes (ScienceDirect, 2018 ). We used two in vitro disease samples: (a) a sample in which cortical cultures were treated with anti-mitotic agents that deplete glial cells and (b) a glioma sample in which healthy cortical cells were cultured with CRL-2303 (an aggressive glioma cell line). Healthy cortical culture samples were used as controls. Cultures were established over a glass dish embedded with microelectrodes that permits simultaneous measurement of extracellular electrical activity from multiple sites of the culture. We observed that healthy cortical cultures produce spontaneous and synchronized oscillations which were attenuated in the absence of glial cells. The presence of glioma was associated with the emergence of two types of "abnormal electrical activity" each with distinct amplitude and frequency profile. Our results indicate that even early stages of glioma and glial injury are associated with distinct changes in neuronal electrical activity. Graphical abstract.
Collapse
|
19
|
La Barbera L, Vedele F, Nobili A, D'Amelio M, Krashia P. Neurodevelopmental Disorders: Functional Role of Ambra1 in Autism and Schizophrenia. Mol Neurobiol 2019; 56:6716-6724. [PMID: 30915711 DOI: 10.1007/s12035-019-1557-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
The activating molecule in Beclin-1-regulated autophagy (Ambra1) is a highly intrinsically disordered protein best known for its role as a mediator in autophagy, by favoring the formation of autophagosomes. Additional studies have revealed that Ambra1 is able to coordinate cell responses to stress conditions such as starvation, and it actively participates in cell proliferation, cytoskeletal modification, apoptosis, mitochondria removal, and cell cycle downregulation. All these functions highlight the importance of Ambra1 in crucial physiological events, including metabolism, cell death, and cell division. Importantly, Ambra1 is also crucial for proper embryonic development, and its complete absence in knock-out animal models leads to severe brain morphology defects. In line with this, it has recently been implicated in neurodevelopmental disorders affecting humans, particularly autism spectrum disorders and schizophrenia. Here, we discuss the recent links between Ambra1 and neurodevelopment, particularly focusing on its role during the maturation of hippocampal parvalbumin interneurons and its importance for maintaining a proper excitation/inhibition balance in the brain.
Collapse
Affiliation(s)
- Livia La Barbera
- Laboratory of Molecular Neurosciences, Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Francescangelo Vedele
- Laboratory of Molecular Neurosciences, Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Annalisa Nobili
- Laboratory of Molecular Neurosciences, Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Marcello D'Amelio
- Laboratory of Molecular Neurosciences, Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy. .,Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, Rome, Italy.
| | - Paraskevi Krashia
- Laboratory of Molecular Neurosciences, Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy. .,Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| |
Collapse
|
20
|
Acute and chronic escitalopram alter EEG gamma oscillations differently: relevance to therapeutic effects. Eur J Pharm Sci 2018; 121:347-355. [DOI: 10.1016/j.ejps.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/24/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
|
21
|
Mesrobian SK, Villa AEP, Bader M, Götte L, Lintas A. Event-Related Potentials during a Gambling Task in Young Adults with Attention-Deficit/Hyperactivity Disorder. Front Hum Neurosci 2018; 12:79. [PMID: 29535621 PMCID: PMC5835343 DOI: 10.3389/fnhum.2018.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/12/2018] [Indexed: 01/20/2023] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is characterized by deficits in executive functions and decision making during childhood and adolescence. Contradictory results exist whether altered event-related potentials (ERPs) in adults are associated with the tendency of ADHD patients toward risky behavior. Clinically diagnosed ADHD patients (n = 18) and healthy controls (n = 18), aged between 18 and 29 (median 22 Yo), were screened with the Conners' Adult ADHD Rating Scales and assessed by the Mini-International Neuropsychiatric Interview, adult ADHD Self-Report Scale, and by the 60-item HEXACO Personality Inventory. The characteristic personality traits of ADHD patients were the high level of impulsiveness associated with lower values of agreeableness. All participants performed a probability gambling task (PGT) with two frequencies of the feedback information of the outcome. For each trial, ERPs were triggered by the self-paced trial onset and by the gamble selection. After trial onset, N2-P3a ERP component associated with the attentional load peaked earlier in the ADHD group than in controls. An N500 component related to the feedback frequency condition after trial onset and an N400-like component after gamble selection suggest a large affective stake of the decision making and an emphasized post-decisional evaluation of the choice made by the ADHD participants. By combining ERPs, related to the emotions associated with the feedback frequency condition, and behavioral analyses during completion of PGT, this study provides new findings on the neural dynamics that differentiate controls and young ADHD adults. In the patients' group, we raise the hypothesis that the activity of frontocentral and centroparietal neural circuits drive the decision-making processes dictated by an impaired cognitive workload followed by the build-up of large emotional feelings generated by the conflict toward the outcome of the gambling choice. Our results can be used for new investigations aimed at studying the fine spatiotemporal distribution of cortical activity, and the neural circuits that underly the generation of that activity, associated with the behavioral deficits characteristic of ADHD.
Collapse
Affiliation(s)
- Sarah K. Mesrobian
- Neuroheuristic Research Group, University of Lausanne, Lausanne, Switzerland
| | - Alessandro E. P. Villa
- Neuroheuristic Research Group, University of Lausanne, Lausanne, Switzerland
- LABEX, Faculty of Business and Economics, University of Lausanne, Lausanne, Switzerland
| | - Michel Bader
- Research Unit of the University Department of Child and Adolescent Psychiatry (SUPEA), CHUV University Hospital and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lorenz Götte
- Institute for Applied Microeconomics and Bonn Graduate School of Economics of the University Bonn, Bonn, Germany
| | - Alessandra Lintas
- Neuroheuristic Research Group, University of Lausanne, Lausanne, Switzerland
- LABEX, Faculty of Business and Economics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Selten M, van Bokhoven H, Nadif Kasri N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Res 2018; 7:23. [PMID: 29375819 PMCID: PMC5760969 DOI: 10.12688/f1000research.12155.1] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Neuronal networks consist of different types of neurons that all play their own role in order to maintain proper network function. The two main types of neurons segregate in excitatory and inhibitory neurons, which together regulate the flow of information through the network. It has been proposed that changes in the relative strength in these two opposing forces underlie the symptoms observed in psychiatric disorders, including autism and schizophrenia. Here, we review the role of alterations to the function of the inhibitory system as a cause of psychiatric disorders. First, we explore both patient and post-mortem evidence of inhibitory deficiency. We then discuss the function of different interneuron subtypes in the network and focus on the central role of a specific class of inhibitory neurons, parvalbumin-positive interneurons. Finally, we discuss genes known to be affected in different disorders and the effects that mutations in these genes have on the inhibitory system in cortex and hippocampus. We conclude that alterations to the inhibitory system are consistently identified in animal models of psychiatric disorders and, more specifically, that mutations affecting the function of parvalbumin-positive interneurons seem to play a central role in the symptoms observed in these disorders.
Collapse
Affiliation(s)
- Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
23
|
Baijot S, Cevallos C, Zarka D, Leroy A, Slama H, Colin C, Deconinck N, Dan B, Cheron G. EEG Dynamics of a Go/Nogo Task in Children with ADHD. Brain Sci 2017; 7:brainsci7120167. [PMID: 29261133 PMCID: PMC5742770 DOI: 10.3390/brainsci7120167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Studies investigating event-related potential (ERP) evoked in a Cue-Go/NoGo paradigm have shown lower frontal N1, N2 and central P3 in children with attention-deficit/hyperactivity disorder (ADHD) compared to typically developing children (TDC). However, the electroencephalographic (EEG) dynamics underlying these ERPs remain largely unexplored in ADHD. Methods: We investigate the event-related spectral perturbation and inter-trial coherence linked to the ERP triggered by visual Cue-Go/NoGo stimuli, in 14 children (7 ADHD and 7 TDC) aged 8 to 12 years. Results: Compared to TDC, the EEG dynamics of children with ADHD showed a lower theta-alpha ITC concomitant to lower occipito-parietal P1-N2 and frontal N1-P2 potentials in response to Cue, Go and Nogo stimuli; an upper alpha power preceding lower central Go-P3; a lower theta-alpha power and ITC were coupled to a lower frontal Nogo-N3; a lower low-gamma power overall scalp at 300 ms after Go and Nogo stimuli. Conclusion: These findings suggest impaired ability in children with ADHD to conserve the brain oscillations phase associated with stimulus processing. This physiological trait might serve as a target for therapeutic intervention or be used as monitoring of their effects.
Collapse
Affiliation(s)
- Simon Baijot
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium; (S.B.); (N.D.); (B.D.)
- Neuropsychology and Functional Neuroimaging Research Unit, Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- Cognitive Neurosciences Research Unit, Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Carlos Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, CP640, 808 route de Lennik, 1070 Brussels, Belgium; (C.C.); (D.Z.); (A.L.)
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, CP640, 808 route de Lennik, 1070 Brussels, Belgium; (C.C.); (D.Z.); (A.L.)
- Research Unit in Osteopathy, Faculty of Motor Sciences, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Axelle Leroy
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, CP640, 808 route de Lennik, 1070 Brussels, Belgium; (C.C.); (D.Z.); (A.L.)
| | - Hichem Slama
- Neuropsychology and Functional Neuroimaging Research Unit, Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- Cognitive Neurosciences Research Unit, Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- Department of Clinical and Cognitive Neuropsychology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Cecile Colin
- Cognitive Neurosciences Research Unit, Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- Laboratory of Cognitive and Sensory Neurophysiology, CHU Brugmann, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Nicolas Deconinck
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium; (S.B.); (N.D.); (B.D.)
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, CP640, 808 route de Lennik, 1070 Brussels, Belgium; (C.C.); (D.Z.); (A.L.)
| | - Bernard Dan
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium; (S.B.); (N.D.); (B.D.)
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, CP640, 808 route de Lennik, 1070 Brussels, Belgium; (C.C.); (D.Z.); (A.L.)
- Medical and Rehabilitation Departments, Inkendaal Rehabilitation Hospital, 1602 Vlezenbeek, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, CP640, 808 route de Lennik, 1070 Brussels, Belgium; (C.C.); (D.Z.); (A.L.)
- Laboratory of Electrophysiology, Université de Mons, 7000 Mons, Belgium
- Correspondence: ; Tel.: +32-25-553-403
| |
Collapse
|
24
|
Li Y, Yu C, Zhou ZC, Stitt I, Sellers KK, Gilmore JH, Frohlich F. Early Development of Network Oscillations in the Ferret Visual Cortex. Sci Rep 2017; 7:17766. [PMID: 29259184 PMCID: PMC5736753 DOI: 10.1038/s41598-017-17502-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 01/25/2023] Open
Abstract
Although oscillations during development have been characterized in a wide range of neural systems, little is known about the interaction between these network oscillations and neuronal spiking, and the interactions among different oscillation frequencies. Here we recorded the spontaneous and visual-elicited local field potential (LFP) and multi-unit activity (MUA) in the visual cortex of freely-moving juvenile ferrets before and after eye-opening. We found that both the spontaneous and visually-elicited LFP power was increased after eye-opening, especially in higher frequency bands (>30 Hz). Spike LFP phase coupling was decreased for lower frequency bands (theta and alpha) but slightly increased for higher frequencies (high-gamma band). A similar shift towards faster frequencies also occurred for phase-amplitude coupling; with maturation, the coupling of the theta/alpha/beta band amplitude to the delta phase was decreased and the high-gamma amplitude coupling to theta/alpha phase was increased. This shift towards higher frequencies was also reflected in the visual responses; the LFP oscillation became more entrained by visual stimulation with higher frequencies (>10 Hz). Taken together, these results suggest gamma oscillation as a signature of the maturation of cortical circuitry.
Collapse
Affiliation(s)
- Yuhui Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunxiu Yu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Iain Stitt
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Sarraf Razavi M, Tehranidoost M, Ghassemi F, Purabassi P, Taymourtash A. Emotional Face Recognition in Children With Attention Deficit/Hyperactivity Disorder: Evidence From Event Related Gamma Oscillation. Basic Clin Neurosci 2017; 8:419-426. [PMID: 29167729 PMCID: PMC5691174 DOI: 10.18869/nirp.bcn.8.5.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction Children with attention-deficit/hyperactivity disorder (ADHD) have some impairment in emotional relationship which can be due to problems in emotional processing. The present study investigated neural correlates of early stages of emotional face processing in this group compared with typically developing children using the Gamma Band Activity (GBA). Methods A total of 19 children diagnosed with ADHD (Combined type) based on DSM-IV classification were compared with 19 typically developing children matched on age, gender, and IQ. The participants performed an emotional face recognition while their brain activities were recorded using an event-related oscillation procedure. Results The results indicated that ADHD children compared to normal group showed a significant reduction in the gamma band activity, which is thought to reflect early perceptual emotion discrimination for happy and angry emotions (P<0.05). Conclusion The present study supports the notion that individuals with ADHD have some impairments in early stage of emotion processing which can cause their misinterpretation of emotional faces.
Collapse
Affiliation(s)
- Mahdiyeh Sarraf Razavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Tehranidoost
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Ghassemi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Parivash Purabassi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Athena Taymourtash
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
26
|
Padma Shri TK, Sriraam N. Pattern recognition of spectral entropy features for detection of alcoholic and control visual ERP's in multichannel EEGs. Brain Inform 2017; 4:147-158. [PMID: 28110475 PMCID: PMC5413593 DOI: 10.1007/s40708-017-0061-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/09/2017] [Indexed: 11/11/2022] Open
Abstract
This paper presents a novel ranking method to select spectral entropy (SE) features that discriminate alcoholic and control visual event-related potentials (ERP'S) in gamma sub-band (30-55 Hz) derived from a 64-channel electroencephalogram (EEG) recording. The ranking is based on a t test statistic that rejects the null hypothesis that the group means of SE values in alcoholics and controls are identical. The SE features with high ranks are indicative of maximal separation between their group means. Various sizes of top ranked feature subsets are evaluated by applying principal component analysis (PCA) and k-nearest neighbor (k-NN) classification. Even though ranking does not influence the performance of classifier significantly with the selection of all 61 active channels, the classification efficiency is directly proportional to the number of principal components (pc). The effect of ranking and PCA on classification is predominantly observed with reduced feature subsets of (N = 25, 15) top ranked features. Results indicate that for N = 25, proposed ranking method improves the k-NN classification accuracy from 91 to 93.87% as the number of pcs increases from 5 to 25. With same number of pcs, the k-NN classifier responds with accuracies of 84.42-91.54% with non-ranked features. Similarly for N = 15 and number of pcs varying from 5 to 15, ranking enhances k-NN detection accuracies from 88.9 to 93.08% as compared to 86.75-91.96% without ranking. This shows that the detection accuracy is increased by 6.5 and 2.8%, respectively, for N = 25, whereas it enhances by 2.2 and 1%, respectively, for N = 15 in comparison with non-ranked features. In the proposed t test ranking method for feature selection, the pcs of only top ranked feature candidates take part in classification process and hence provide better generalization.
Collapse
Affiliation(s)
- T. K. Padma Shri
- Department of Electronics and Communication, Manipal Institute of Technology, Manipal University, Manipal, Karnataka 576104 India
| | - N. Sriraam
- Department of Medical Electronics, M.S. Ramaiah Institute of Technology (An Autonomous Institute, Affiliated to Visvesvaraya Technological University), Bangalore, Karnataka 560054 India
| |
Collapse
|
27
|
Garcia-Garcia M, Via M, Zarnowiec K, SanMiguel I, Escera C, Clemente IC. COMT and DRD2/ANKK-1 gene-gene interaction account for resetting of gamma neural oscillations to auditory stimulus-driven attention. PLoS One 2017; 12:e0172362. [PMID: 28222164 PMCID: PMC5319755 DOI: 10.1371/journal.pone.0172362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/04/2017] [Indexed: 11/18/2022] Open
Abstract
Attention capture by potentially relevant environmental stimuli is critical for human survival, yet it varies considerably among individuals. A large series of studies has suggested that attention capture may depend on the cognitive balance between maintenance and manipulation of mental representations and the flexible switch between goal-directed representations and potentially relevant stimuli outside the focus of attention; a balance that seems modulated by a prefrontostriatal dopamine pathway. Here, we examined inter-individual differences in the cognitive control of attention through studying the effects of two single nucleotide polymorphisms regulating dopamine at the prefrontal cortex and the striatum (i.e., COMTMet108/158Val and ANKK1/DRD2TaqIA) on stimulus-driven attention capture. Healthy adult participants (N = 40) were assigned to different groups according to the combination of the polymorphisms COMTMet108/158Val and ANKK1/DRD2TaqIA, and were instructed to perform on a well-established distraction protocol. Performance in individuals with a balance between prefrontal dopamine display and striatal receptor density was slowed down by the occurrence of unexpected distracting events, while those with a rather unbalanced dopamine activity were able maintain task performance with no time delay, yet at the expense of a slightly lower accuracy. This advantage, associated to their distinct genetic profiles, was paralleled by an electrophysiological mechanism of phase-resetting of gamma neural oscillation to the novel, distracting events. Taken together, the current results suggest that the epistatic interaction between COMTVal108/158Met and ANKK1/DRD2 TaqIa genetic polymorphisms lies at the basis of stimulus-driven attention capture.
Collapse
Affiliation(s)
- Manuel Garcia-Garcia
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Marc Via
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Katarzyna Zarnowiec
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Iria SanMiguel
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Carles Escera
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- * E-mail:
| | - Immaculada C. Clemente
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| |
Collapse
|
28
|
Karch S, Loy F, Krause D, Schwarz S, Kiesewetter J, Segmiller F, Chrobok AI, Keeser D, Pogarell O. Increased Event-Related Potentials and Alpha-, Beta-, and Gamma-Activity Associated with Intentional Actions. Front Psychol 2016; 7:7. [PMID: 26834680 PMCID: PMC4722116 DOI: 10.3389/fpsyg.2016.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/04/2016] [Indexed: 12/02/2022] Open
Abstract
Objective: Internally guided actions are defined as being purposeful, self-generated and offering choices between alternatives. Intentional actions are essential to reach individual goals. In previous empirical studies, internally guided actions were predominantly related to functional responses in frontal and parietal areas. The aim of the present study was to distinguish event-related potentials and oscillatory responses of intentional actions and externally guided actions. In addition, we compared neurobiological findings of the decision which action to perform with those referring to the decision whether or not to perform an action. Methods: Twenty-eight subjects participated in adapted go/nogo paradigms, including a voluntary selection condition allowing participants to (1) freely decide whether to press the response button or (2) to decide whether they wanted to press the response button with the right index finger or the left index finger. Results: The reaction times were increased when participants freely decided whether and how they wanted to respond compared to the go condition. Intentional processes were associated with a fronto-centrally located N2 and P3 potential. N2 and P3 amplitudes were increased during intentional actions compared to instructed responses (go). In addition, increased activity in the alpha-, beta- and gamma-frequency range was shown during voluntary behavior rather than during externally guided responses. Conclusion: These results may indicate that an additional cognitive process is needed for intentional actions compared to instructed behavior. However, the neural responses were comparatively independent of the kind of decision that was made (1) decision which action to perform; (2) decision whether or not to perform an action). Significance: The study demonstrates the importance of fronto-central alpha-, beta-, and gamma oscillations for voluntary behavior.
Collapse
Affiliation(s)
- Susanne Karch
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany
| | - Fabian Loy
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-UniversityMunich, Germany; Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatic Medicine, Ludwig-Maximilians-UniversityMunich, Germany
| | - Daniela Krause
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany
| | - Sandra Schwarz
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany
| | - Jan Kiesewetter
- Institute for Medical Education, Ludwig-Maximilians-University Munich, Germany
| | - Felix Segmiller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany
| | - Agnieszka I Chrobok
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
29
|
Prehn-Kristensen A, Wiesner CD, Baving L. Early Gamma-Band Activity During Interference Predicts Working Memory Distractibility in ADHD. J Atten Disord 2015; 19:971-6. [PMID: 23012697 DOI: 10.1177/1087054712459887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Patients with attention-deficit/hyperactivity disorder (ADHD) display deficits in working memory (WM) and enhanced distractibility. METHODS Evoked gamma-band response (GBR) occurs already 50 ms after stimulus onset and is modulated by attention. 16 boys with ADHD and 20 healthy controls (10-14 years) completed a WM task with distraction. RESULTS Occipitally evoked 40 Hz-GBR was higher during distraction in ADHD than controls. GBR correlated negatively with interference control. CONCLUSION These data suggest that ADHD patients are disturbed by interference on an early level of perception.
Collapse
Affiliation(s)
| | | | - Lioba Baving
- Center for Integrative Psychiatry, Kiel, Germany Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
30
|
Behavioral and neurophysiological effects of Ro 10-5824, a dopamine D4 receptor partial agonist, in common marmosets. Psychopharmacology (Berl) 2015; 232:3287-95. [PMID: 26041337 DOI: 10.1007/s00213-015-3978-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/24/2015] [Indexed: 12/31/2022]
Abstract
RATIONALE Growing evidence suggests that dopamine D4 receptors (D4Rs) are involved in controlling executive functions. We have previously demonstrated that Ro 10-5824, a D4R partial agonist, improves the performance of common marmosets in the object retrieval detour (ORD) task. However, the neural mechanisms underlying this improvement are unknown. OBJECTIVES We investigated the behavioral and neurophysiological effects of Ro 10-5824 in common marmosets. METHODS The effects of Ro 10-5824 on cognitive function were evaluated using the ORD task. The neurophysiological effects of Ro 10-5824 were investigated by quantitative electroencephalography, especially on baseline gamma band activity in the frontal cortex. The effects of Ro 10-5824 on spontaneous locomotion were also assessed. RESULTS Systemic administration of Ro 10-5824 at 3 mg/kg significantly increased the success rate in the ORD task. At doses of 1 and 3 mg/kg, Ro 10-5824 increased baseline gamma band activity in the frontal cortex. Ro 10-5824 had no effect on spontaneous locomotion. CONCLUSIONS Activation of D4R by Ro 10-5824 improves the success rate in the ORD task and increases baseline gamma band activity in the frontal cortex without affecting locomotion in common marmosets. These findings highlight the role of D4R in gamma oscillations of non-human primates. As gamma oscillations are thought to be involved in attention and behavioral inhibition, our results suggest D4R agonists may improve these cognitive functions by modulating baseline gamma band activity in the frontal cortex.
Collapse
|
31
|
Kern JK, Geier DA, Sykes LK, Geier MR, Deth RC. Are ASD and ADHD a Continuum? A Comparison of Pathophysiological Similarities Between the Disorders. J Atten Disord 2015; 19:805-27. [PMID: 23074304 DOI: 10.1177/1087054712459886] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The objective of this study was to review and compare the similarities between autism spectrum disorder (ASD) and ADHD with regard to symptomatology, neurological deficits, metabolic and endocrine-related conditions, and brain pathology. METHOD A comprehensive review of the relevant research literature was carried out. RESULTS A number of important similarities between ASD and ADHD were identified, including recent increases in prevalence, male-biased incidence, shared involvement of sensory processing, motor and impulse control, abnormal patterns of neural connectivity, and sleep disturbances. Studies suggest involvement of androgen metabolism, impaired methylation, and heavy metal toxicity as possible contributing factors for both disorders. CONCLUSION ASD and ADHD share a number of features and pathophysiological conditions, which suggests that the two disorders may be a continuum and have a common origin.
Collapse
Affiliation(s)
- Janet K Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - David A Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA
| | | | | | | |
Collapse
|
32
|
Roh SC, Park EJ, Park YC, Yoon SK, Kang JG, Kim DW, Lee SH. Quantitative Electroencephalography Reflects Inattention, Visual Error Responses, and Reaction Times in Male Patients with Attention Deficit Hyperactivity Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:180-7. [PMID: 26243846 PMCID: PMC4540038 DOI: 10.9758/cpn.2015.13.2.180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/28/2015] [Accepted: 03/02/2015] [Indexed: 12/04/2022]
Abstract
Objective Quantitative electroencephalography (qEEG) has been increasingly used to evaluate patients with attention deficit hyperactivity disorder (ADHD). The aim of this study was to assess the correlation between qEEG data and symptom severity in patients with ADHD. Methods Fifteen patients with ADHD and 20 healthy controls (HCs) were recruited. Electroencephalography was assessed in the resting-state, and qEEG data were obtained in the eyes-closed state. The Korean version of the ADHD Rating Scale (K-ARS) and continuous performance tests (CPTs) were used to assess all participants. Results Theta-band (4–7 Hz) power across the brain was significantly positively correlated with inattention scores on the K-ARS, reaction times and commission errors on the CPTs in ADHD patients. Gamma-band (31–50 Hz) power was significantly positively correlated with the results of the auditory CPTs in ADHD patients. The theta/alpha (8–12 Hz) and theta/beta (13–30 Hz) ratios were significantly negatively correlated with commission and omission errors on auditory CPTs in ADHD patients. No significant correlations between qEEG relative power and K-ARS and CPT scores were observed in HCs. Conclusion Our results suggest that qEEG may be a useful adjunctive tool in patients with ADHD.
Collapse
Affiliation(s)
- Sang-Choong Roh
- Clinical Emotion and Cognition Research Laboratory, Inje University, Seoul, Korea
| | - Eun-Jin Park
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Young-Chun Park
- Clinical Emotion and Cognition Research Laboratory, Inje University, Seoul, Korea.,Department of Psychiatry, Korea University, Seoul, Korea
| | - Sun-Kyung Yoon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Seoul, Korea.,Department of Psychiatry, Sogang University, Korea
| | - Joong-Gu Kang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Seoul, Korea
| | - Do-Won Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Seoul, Korea.,Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Seoul, Korea.,Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| |
Collapse
|
33
|
Relationship between theta-phase gamma-amplitude coupling and attention-deficit/hyperactivity behavior in children. Neurosci Lett 2015; 590:12-7. [DOI: 10.1016/j.neulet.2015.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/17/2014] [Accepted: 01/27/2015] [Indexed: 11/23/2022]
|
34
|
Lowet E, Roberts M, Hadjipapas A, Peter A, van der Eerden J, De Weerd P. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding. PLoS Comput Biol 2015; 11:e1004072. [PMID: 25679780 PMCID: PMC4334551 DOI: 10.1371/journal.pcbi.1004072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity.
Collapse
Affiliation(s)
- Eric Lowet
- Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mark Roberts
- Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Avgis Hadjipapas
- University of Nicosia Medical School, University of Nicosia, Cyprus
- St George’s University of London, London, United Kingdom
| | - Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
- International Max Planck Research School for Neural Circuits, Frankfurt, Germany
| | - Jan van der Eerden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Peter De Weerd
- Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Horschig JM, Zumer JM, Bahramisharif A. Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations. Front Syst Neurosci 2014; 8:119. [PMID: 25018706 PMCID: PMC4072086 DOI: 10.3389/fnsys.2014.00119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023] Open
Abstract
Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works.
Collapse
Affiliation(s)
- Jörn M. Horschig
- Radboud University Nijmegen, Donders Institute for Brain, Behaviour and CognitionNijmegen, Netherlands
| | - Johanna M. Zumer
- Radboud University Nijmegen, Donders Institute for Brain, Behaviour and CognitionNijmegen, Netherlands
- School of Psychology, University of BirminghamBirmingham, UK
| | - Ali Bahramisharif
- Radboud University Nijmegen, Donders Institute for Brain, Behaviour and CognitionNijmegen, Netherlands
| |
Collapse
|
36
|
Herzog L, Salehi K, Bohon KS, Wiest MC. Prestimulus frontal-parietal coherence predicts auditory detection performance in rats. J Neurophysiol 2014; 111:1986-2000. [PMID: 24572093 DOI: 10.1152/jn.00781.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (<15 Hz) preceding the target beep when the animal failed to respond to the signal (misses), in both frontal and parietal cortex. In terms of long-range coherence, we observed significantly more frontal-parietal coherence in the beta band (15-30 Hz) before the signal on misses compared with hits. This effect persisted after regressing away linear trends in the coherence values during a session, showing that the excess frontal-parietal beta coherence prior to misses cannot be explained by slow motivational changes during a session. In addition, a trend toward higher low-frequency (<15 Hz) coherence prior to miss trials compared with hits became highly significant when we rereferenced the LFPs to the mean voltage on each recording array, suggesting that the results are specific to our frontal and parietal areas. These results do not support a role for long-range frontal-parietal coherence or local synchronization in facilitating the detection of external stimuli. Rather, they extend to long-range frontal-parietal coherence previous findings that correlate local synchronization of low-frequency (<15 Hz) oscillations with inattention to external stimuli and synchronization of beta rhythms (15-30 Hz) with voluntary or involuntary prolongation of the current cognitive or motor state.
Collapse
Affiliation(s)
- Linnea Herzog
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
| | - Kia Salehi
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
| | - Kaitlin S Bohon
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
| | - Michael C Wiest
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
| |
Collapse
|
37
|
Heinrich H, Hoegl T, Moll GH, Kratz O. A bimodal neurophysiological study of motor control in attention-deficit hyperactivity disorder: a step towards core mechanisms? ACTA ACUST UNITED AC 2014; 137:1156-66. [PMID: 24574502 DOI: 10.1093/brain/awu029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Knowledge about the core neural mechanisms of attention-deficit hyperactivity disorder, a pathophysiologically heterogeneous psychiatric disorder starting in childhood, is still limited. Progress may be achieved by combining different methods and levels of investigation. In the present study, we investigated neural mechanisms of motor control in 19 children with attention-deficit hyperactivity disorder (aged 9-14 years) and 21 age-matched typically developing children by relating neural markers of attention and response control (using event-related potentials) and measures of motor excitability/inhibition (evoked by transcranial magnetic stimulation). Thus, an interplay of processes at a subsecond scale could be studied. Using a monetary incentives-based cued Go/No-Go task, parameters that are well-known to be reduced in attention-deficit hyperactivity disorder were analysed: event-related potential components P3 (following cue stimuli; in Go and No-Go trials) and contingent negative variation as well as the transcranial magnetic stimulation-based short-interval intracortical inhibition measured at different latencies in Go and No-Go trials. For patient and control groups, different associations were obtained between performance, event-related potential and transcranial magnetic stimulation measures. In children with attention-deficit hyperactivity disorder, the P3 amplitude in Go trials was not correlated with reaction time measures but with short-interval intracortical inhibition at rest (r=0.56, P=0.01). In No-Go trials, P3 and short-interval intracortical inhibition after inhibiting the response (at 500 ms post-stimulus) were correlated in these children only (r=0.62; P=0.008). A classification rate of 90% was achieved when using short-interval intracortical inhibition (measured shortly before the occurrence of a Go or No-Go stimulus) and the amplitude of the P3 in cue trials as input features in a linear discriminant analysis. Findings indicate deviant neural implementation of motor control in children with attention-deficit hyperactivity disorder reflecting compensatory cognitive mechanisms as a result of a basal motor cortical inhibitory deficit (reduced activation of inhibitory intracortical interneurons). Both deviant inhibitory and attentional processes, which are not related to each other, seem to be characteristic for attention-deficit hyperactivity disorder at the neural level in motor control tasks. The underlying neural mechanisms, which are probably not restricted to the motor cortex and the posterior attention network, may play a key role in the pathophysiology of this child psychiatric disorder. The high classification rate can further be interpreted as a step towards the development of neural markers. In summary, the bimodal neurophysiological concept may contribute to developing an integrative framework for attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Hartmut Heinrich
- 1 Department of Child and Adolescent Mental Health, University Hospital of Erlangen, Schwabachanlage 6+10, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
38
|
Pinault D. N-Methyl D-Aspartate Receptor Antagonists Amplify Network Baseline Gamma Frequency (30–80 Hz) Oscillations: Noise and Signal. AIMS Neurosci 2014. [DOI: 10.3934/neuroscience.2014.2.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
39
|
Rangaswamy M, Porjesz B. Understanding alcohol use disorders with neuroelectrophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:383-414. [PMID: 25307587 DOI: 10.1016/b978-0-444-62619-6.00023-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurocognitive deficits associated with impairments in various brain regions and neural circuitries, particularly involving frontal lobes, have been associated with chronic alcoholism, as well as with a predisposition to develop alcohol use and related disorders (AUDs). AUD is a multifactorial disorder caused by complex interactions between behavioral, genetic, and environmental liabilities. Neuroelectrophysiologic techniques are instrumental in understanding brain and behavior relationships and have also proved very useful in evaluating the genetic diathesis of alcoholism. This chapter describes findings from neuroelectrophysiologic measures (electroencephalogram, event-related potentials, and event-related oscillations) related to acute and chronic effects of alcohol on the brain and those that reflect underlying deficits related to a predisposition to develop AUDs and related disorders. The utility of these measures as effective endophenotypes to identify and understand genes associated with brain electrophysiology, cognitive networks, and AUDs has also been discussed.
Collapse
Affiliation(s)
- Madhavi Rangaswamy
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
40
|
Tomalski P, Moore DG, Ribeiro H, Axelsson EL, Murphy E, Karmiloff-Smith A, Johnson MH, Kushnerenko E. Socioeconomic status and functional brain development - associations in early infancy. Dev Sci 2013; 16:676-87. [PMID: 24033573 DOI: 10.1111/desc.12079] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Abstract
Socioeconomic status (SES) impacts on both structural and functional brain development in childhood, but how early its effects can be demonstrated is unknown. In this study we measured resting baseline EEG activity in the gamma frequency range in awake 6-9-month-olds from areas of East London with high socioeconomic deprivation. Between-subject comparisons of infants from low- and high-income families revealed significantly lower frontal gamma power in infants from low-income homes. Similar power differences were found when comparing infants according to maternal occupation, with lower occupational status groups yielding lower power. Infant sleep, maternal education, length of gestation, and birth weight, as well as smoke exposure and bilingualism, did not explain these differences. Our results show that the effects of socioeconomic disparities on brain activity can already be detected in early infancy, potentially pointing to very early risk for language and attention difficulties. This is the first study to reveal region-selective differences in functional brain development associated with early infancy in low-income families.
Collapse
Affiliation(s)
- Przemyslaw Tomalski
- Institute for Research in Child Development, School of Psychology, University of East London, UK; Faculty of Psychology, University of Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Buzsáki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23393413 PMCID: PMC3553572 DOI: 10.31887/dcns.2012.14.4/gbuzsaki] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or "chunk" neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms.
Collapse
Affiliation(s)
- György Buzsáki
- NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA.
| | | |
Collapse
|
42
|
Kocsis B, Lee P, Deth R. Enhancement of gamma activity after selective activation of dopamine D4 receptors in freely moving rats and in a neurodevelopmental model of schizophrenia. Brain Struct Funct 2013; 219:2173-80. [PMID: 23839116 DOI: 10.1007/s00429-013-0607-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/26/2013] [Indexed: 01/03/2023]
Abstract
Dopamine D4 receptor (D4R) mechanisms have been implicated in several psychiatric diseases, including schizophrenia, attention-deficit hyperactivity disorder (ADHD), and autism, which are characterized by cognitive deficits. The cellular mechanisms are poorly understood but impaired neuronal synchronization within cortical networks in the gamma frequency band has been proposed to contribute to these deficits. A D4R polymorphism was recently linked to variations in gamma power in both normal and ADHD subjects, and D4R activation was shown to enhance kainate-induced gamma oscillations in brain slices in vitro. The goal of this study was to investigate the effect of D4R activation on gamma oscillations in freely moving rats during natural behavior. Field potentials were recorded in the frontal, prefrontal, parietal, and occipital cortex and hippocampus. Gamma power was assessed before and after subcutaneous injection of a D4R agonist, A-412997, in several doses between 0.3 and 10.0 mg/kg. The experiments were also repeated in a neurodevelopmental model of schizophrenia, in which rats are prenatally treated with methylazoxymethanol (MAM). We found that the D4R agonist increased gamma power in all regions at short latency and lasted for ~2 h, both in normal and MAM-treated rats. The effect was dose dependent indicated by the significant difference between the effects after 3 and 10 mg/kg in pair-wise comparison, whereas 0.3 and 1.0 mg/kg injections were ineffective. This study demonstrates the involvement of D4R in cortical gamma oscillations in vivo and identifies this receptor as potential target for pharmacological treatment of cognitive deficits.
Collapse
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,
| | | | | |
Collapse
|
43
|
Bernardino I, Castelhano J, Farivar R, Silva ED, Castelo-Branco M. Neural correlates of visual integration in Williams syndrome: gamma oscillation patterns in a model of impaired coherence. Neuropsychologia 2013; 51:1287-95. [PMID: 23587664 DOI: 10.1016/j.neuropsychologia.2013.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/04/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
Williams syndrome (WS) is a clinical model of dorsal stream vulnerability and impaired visual integration. However, little is still known about the neurophysiological correlates of perceptual integration in this condition. We have used a 3D structure-from-motion (SFM) integrative task to characterize the neuronal underpinnings of 3D perception in WS and to probe whether gamma oscillatory patterns reflect changed holistic perception. Coherent faces were parametrically modulated in 3D depth (three different depth levels) to vary levels of stimulus ambiguity. We have found that the electrophysiological (EEG/ERP) correlates of such holistic percepts were distinct across groups. Independent component analysis demonstrated the presence of a novel component with a late positivity around 200 ms that was absent in controls. Source localization analysis of ERP signals showed a posterior occipital shift in WS and reduced parietal dorsal stream sources. Interestingly, low gamma-band oscillations (20-40 Hz) induced by this 3D perceptual integration task were significantly stronger and sustained during the stimulus presentation in WS whereas high gamma-band oscillations (60-90 Hz) were reduced in this clinical model of impaired visual coherence, as compared to controls. These observations suggest that dorsal stream processing of 3D SFM stimuli has distinct neural correlates in WS and different cognitive strategies are employed by these patients to reach visual coherence. Importantly, we found evidence for the presence of different sub-bands (20-40 Hz/60-90 Hz) within the gamma range which can be dissociated concerning the respective role on the coherent percept formation, both in typical and atypical development.
Collapse
Affiliation(s)
- Inês Bernardino
- Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
44
|
Yordanova J, Kolev V, Rothenberger A. Event-related oscillations reflect functional asymmetry in children with attention deficit/hyperactivity disorder. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:289-301. [PMID: 24053046 DOI: 10.1016/b978-0-7020-5307-8.00018-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have found that event-related theta and gamma oscillations elicited in an auditory selective attention task are deviant in children with attention deficit/hyperactivity disorder (ADHD). It has been suggested that these deviations are associated with deficient motor inhibition in ADHD, which may lead to increased excitability of not only the motor generation networks but also the networks involved in sensory and cognitive processing of the stimulus requiring motor response. Within this suggestion, the present study used the same experimental database to compare the motor cortical activation of healthy controls and children with ADHD during the performance of the auditory selective attention task. Electroencephalography mu (8-12 Hz) activity at C3 and C4 electrodes was used as a measure of motor cortical activation. Mu power was analyzed for four stimulus conditions of the task (attended target, unattended target, attended nontarget, and unattended nontarget). It was found that motor cortical activation as reflected by mu power suppression was not overall greater in ADHD than healthy children. However, stimuli that possessed only partial target features and did not require motor responding (unattended target and attended nontarget) produced a significant reduction of mu activity in ADHD patients. These results suggest that motor cortical excitability is not generally increased in ADHD children. Rather, the co-existence of conflict features in complex stimuli induces task-irrelevant motor activation in these children. The deficient inhibition of motor cortical networks contralateral to the response may therefore be responsible for the functional asymmetry in stimulus processing in ADHD.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., B1. 23, 1113 Sofia, Bulgaria.
| | | | | |
Collapse
|
45
|
Review of delta, theta, alpha, beta, and gamma response oscillations in neuropsychiatric disorders. APPLICATION OF BRAIN OSCILLATIONS IN NEUROPSYCHIATRIC DISEASES - SELECTED PAPERS FROM “BRAIN OSCILLATIONS IN COGNITIVE IMPAIRMENT AND NEUROTRANSMITTERS” CONFERENCE, ISTANBUL, TURKEY, 29 APRIL–1 MAY 2011 2013; 62:303-41. [DOI: 10.1016/b978-0-7020-5307-8.00019-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
46
|
Karch S, Segmiller F, Hantschk I, Cerovecki A, Opgen-Rhein M, Hock B, Dargel S, Leicht G, Hennig-Fast K, Riedel M, Pogarell O. Increased γ oscillations during voluntary selection processes in adult patients with attention deficit/hyperactivity disorder. J Psychiatr Res 2012; 46:1515-23. [PMID: 22921861 DOI: 10.1016/j.jpsychires.2012.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/01/2012] [Accepted: 07/25/2012] [Indexed: 01/06/2023]
Abstract
Executive dysfunctions (regarding behavioural inhibition, decision making, flexibility or voluntary selection) rank among the core symptoms of attention deficit/hyperactivity disorder. Several studies demonstrated functional variations in patients with ADHD especially during response inhibition and flexibility. However, information about functional correlates of other aspects of executive functions such as voluntary selection processes is limited. A group of thirty adult patients with attention deficit/hyperactivity disorder (ADHD) and 30 healthy controls, matched for age and education, participated in the present study. Electrophysiological responses (event-related potentials, gamma oscillations) and behavioural data were acquired during the voluntary selection between various response alternatives. ADHD patients demonstrated increased responses in the gamma frequency band especially in frontal and fronto-central brain areas during voluntary response selection processes compared to healthy subjects. In addition, the error rate was increased in patients. Given that gamma-band responses have been related to GABAergic and glutamatergic responses these results may indicate accordant dysfunction in patients with ADHD.
Collapse
Affiliation(s)
- Susanne Karch
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nussbaumstrasse 7, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abnormal centroparietal ERP response in predominantly medication-naive adolescent boys with ADHD during both response inhibition and execution. J Clin Neurophysiol 2012; 29:181-9. [PMID: 22469685 DOI: 10.1097/wnp.0b013e31824e1025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormal event-related potential (ERP) responses have been reported in children and adolescents with attention deficit hyperactivity disorder (ADHD) and a medication history compared with in healthy controls during tasks of response control and conflict inhibition. This study reports neurophysiologic correlates of a task dependent on these cognitive functions in a large, predominantly medication naive, group of adolescents with ADHD compared with that in healthy age- and intelligence quotient (IQ)-matched controls using area-under-the-curve (AUC) analysis. Fifty-four adolescents with ADHD and 55 healthy comparisons completed a hybrid conflict and response inhibition Go/NoGo ERP task. The performance data showed that children with ADHD compared with controls had deficits in both the inhibitory measures (higher commission errors) and the Go process of the task (slower reaction times and enhanced omission errors). The ERP data showed significant impairments in brain function in the ADHD relative to the control group for late, endogenous ERPs (N2, P3a, and P3b), whereas no group differences were found for the earlier P200. All findings remained when a minority of children with medication history was excluded. Furthermore, deficits were not specific to the inhibitory processes of the task but were equally observed during the execution functions. Group differences were particularly pronounced over central and centroparietal sites across all time points, presumably reflecting the midline attention system mediated by anterior and posterior cingulate that is important for generic, condition-independent visual-spatial attention and response selection processes. The findings demonstrate that adolescents with ADHD have abnormal ERP responses not only during inhibitory, but also execution-related processes and, furthermore, that these deficits are independent from medication history.
Collapse
|
48
|
Shahaf G, Reches A, Pinchuk N, Fisher T, Ben Bashat G, Kanter A, Tauber I, Kerem D, Laufer I, Aharon-Peretz J, Pratt H, Geva A. Introducing a novel approach of network oriented analysis of ERPs, demonstrated on adult attention deficit hyperactivity disorder. Clin Neurophysiol 2012; 123:1568-80. [DOI: 10.1016/j.clinph.2011.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
49
|
Martini N, Menicucci D, Sebastiani L, Bedini R, Pingitore A, Vanello N, Milanesi M, Landini L, Gemignani A. The dynamics of EEG gamma responses to unpleasant visual stimuli: from local activity to functional connectivity. Neuroimage 2012; 60:922-32. [PMID: 22270349 DOI: 10.1016/j.neuroimage.2012.01.060] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 10/14/2022] Open
Abstract
Many electroencephalographic (EEG) studies on the cortical dynamics induced by unpleasant picture viewing demonstrated the modulation of event-related potentials (ERPs) components as a function of valence and the increase of gamma band responses to emotional stimuli; while only a few studies investigated phase synchronization phenomena such as inter-trial or between regions phase locking of gamma responses to emotional stimulation. The aim of this study was to provide a complete description of the cortical dynamics induced by unpleasant and neutral pictures viewing, from the ERP averages to gamma rhythm modulation, and its phase synchronization. Gamma rhythm modulation was estimated by the event-related synchronization (ERS) approach, and phase synchrony between trials and between cortical regions was studied by extending the phase-locking statistics (PLS) approach. Consistent with previous literature, an increase in P300 and late positive potential and an increase in gamma activity during viewing of unpleasant pictures as compared to neutral ones were found. No inter-trial synchronization was evoked by the stimuli, whereas widespread phase locking between sites was identified. In particular, differences in gamma synchronization between unpleasant and neutral stimuli were found. Specifically, at early (0-250 ms) lags from stimulus onset, in the 38-45 Hz gamma interval, stronger inter-site synchronizations for the unpleasant stimuli, even though quite widespread across the scalp, mainly involved the interhemispheric synchronization between temporal and frontal regions. In contrast, in the 30-37 Hz gamma interval, stronger synchronizations for the responses to neutral trials were found in the 500-750 time interval, mainly involving the temporo-parietal regions. These findings suggest that the full elaboration of unpleasant stimuli requires a tight interhemispheric communication between temporal and frontal regions that is realized by means of phase synchronization at about 40 Hz. In addition, in contrast with the idea of a broadband modulation of high-frequency activity by cognitive/emotional stimuli, the present findings i.e. stronger BRS responses to either emotional or neutral trials at specific frequency and time range, indicate that specific intervals of gamma activity could be each primarily involved in a specific aspect of stimulus processing.
Collapse
Affiliation(s)
- Nicola Martini
- Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Domínguez-Borràs J, Garcia-Garcia M, Escera C. Phase re-setting of gamma neural oscillations during novelty processing in an appetitive context. Biol Psychol 2012; 89:545-52. [PMID: 22212281 DOI: 10.1016/j.biopsycho.2011.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/27/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Based on the previous study where phase-synchronization (PS) of gamma-band responses (GBRs) proved a reliable cerebral correlate of involuntary attention and its enhancement under threat, we measured gamma-PS elicited by novel sounds from human electroencephalogram (EEG) scalp-recordings when participants responded to visual stimuli displaying either highly motivational or neutral sceneries. We then tested the modulatory effect of the emotional conditions on auditory responses. Novel distractor sounds did not affect behavioural accuracy on subjects' visual task performance in neutral context but markedly decreased hit rate in the appetitive one. Similarly, gamma-PS to novel sounds remained intact in neutral context, whereas it showed an increase, within the 35-Hz sub-range, in the appetitive context. These results suggest that a context of processing positive emotional stimuli results into an enhanced processing of task-irrelevant novel auditory events, and, furthermore, that gamma-PS is tuned under conditions that could promote long-term survival.
Collapse
|