1
|
Seynaeve M, Mantini D, de Beukelaar TT. Electrophysiological Approaches to Understanding Brain-Muscle Interactions During Gait: A Systematic Review. Bioengineering (Basel) 2025; 12:471. [PMID: 40428090 PMCID: PMC12108685 DOI: 10.3390/bioengineering12050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/29/2025] Open
Abstract
This study systematically reviews the role of the cortex in gait control by analyzing connectivity between electroencephalography (EEG) and electromyography (EMG) signals, i.e., neuromuscular connectivity (NMC) during walking. We aim to answer the following questions: (i) Is there significant NMC during gait in a healthy population? (ii) Is NMC modulated by gait task specifications (e.g., speed, surface, and additional task demands)? (iii) Is NMC altered in the elderly or a population affected by a neuromuscular or neurologic disorder? Following PRISMA guidelines, a systematic search of seven scientific databases was conducted up to September 2023. Out of 1308 identified papers, 27 studies met the eligibility criteria. Despite large variability in methodology, significant NMC was detected in most of the studies. NMC was able to discriminate between a healthy population and a population affected by a neuromuscular or neurologic disorder. Tasks requiring higher sensorimotor control resulted in an elevated level of NMC. While NMC holds promise as a metric for advancing our comprehension of brain-muscle interactions during gait, aligning methodologies across studies is imperative. Analysis of NMC provides valuable insights for the understanding of neural control of movement and development of gait retraining programs and contributes to advancements in neurotechnology.
Collapse
Affiliation(s)
- Maura Seynaeve
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
- KU Leuven Institute of Sports Science, 3001 Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
| | - Toon T. de Beukelaar
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
- KU Leuven Institute of Sports Science, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Dutta A. 'Hyperbinding' in functional movement disorders: role of supplementary motor area efferent signalling. Brain Commun 2025; 7:fcae464. [PMID: 39995655 PMCID: PMC11848267 DOI: 10.1093/braincomms/fcae464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 10/23/2024] [Accepted: 12/20/2024] [Indexed: 02/26/2025] Open
Affiliation(s)
- Anirban Dutta
- Centre for Systems Modelling and Quantitative Biomedicine, Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Fló E, Fraiman D, Sitt JD. Assessing brain-muscle networks during motor imagery to detect covert command-following. BMC Med 2025; 23:68. [PMID: 39915775 PMCID: PMC11803995 DOI: 10.1186/s12916-025-03846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND In this study, we evaluated the potential of a network approach to electromyography and electroencephalography recordings to detect covert command-following in healthy participants. The motivation underlying this study was the development of a diagnostic tool that can be applied in common clinical settings to detect awareness in patients that are unable to convey explicit motor or verbal responses, such as patients that suffer from disorders of consciousness (DoC). METHODS We examined the brain and muscle response during movement and imagined movement of simple motor tasks, as well as during resting state. Brain-muscle networks were obtained using non-negative matrix factorization (NMF) of the coherence spectra for all the channel pairs. For the 15/38 participants who showed motor imagery, as indexed by common spatial filters and linear discriminant analysis, we contrasted the configuration of the networks during imagined movement and resting state at the group level, and subject-level classifiers were implemented using as features the weights of the NMF together with trial-wise power modulations and heart response to classify resting state from motor imagery. RESULTS Kinesthetic motor imagery produced decreases in the mu-beta band compared to resting state, and a small correlation was found between mu-beta power and the kinesthetic imagery scores of the Movement Imagery Questionnaire-Revised Second version. The full-feature classifiers successfully distinguished between motor imagery and resting state for all participants, and brain-muscle functional networks did not contribute to the overall classification. Nevertheless, heart activity and cortical power were crucial to detect when a participant was mentally rehearsing a movement. CONCLUSIONS Our work highlights the importance of combining EEG and peripheral measurements to detect command-following, which could be important for improving the detection of covert responses consistent with volition in unresponsive patients.
Collapse
Affiliation(s)
- Emilia Fló
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Paris, France.
| | - Daniel Fraiman
- Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Jacobo Diego Sitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Paris, France.
| |
Collapse
|
4
|
Chen J, Han J, Su P, Wang M, Shi W, Tang D. Effects of perceived groove in music on cycling performance and intermuscular coherence between trunk and lower limb muscles. J Sci Med Sport 2025:S1440-2440(25)00033-7. [PMID: 40011097 DOI: 10.1016/j.jsams.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/04/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVES This study investigated the effects of perceived groove on cycling performance and explored underlying neuromuscular control mechanisms. DESIGN Repeated-measures design. METHODS Twenty-four university students completed the cycling task under three conditions: metronome, low-groove music, and high-groove music. Each task included 3 min of low-torque and 3 min of high-torque cycling. Measurements included pedal cadence, pedal cadence variability, work output, and intermuscular coherence between the trunk and lower limbs. RESULTS In low-torque cycling, pedal cadence variability was significantly lower in metronome than in low-groove music and high-groove music; coherence areas (AZ) in the γ band for the erector spinae and soleus were significantly higher in high-groove music than in low-groove music (ps < 0.05). In high-torque cycling, pedal cadence was significantly higher in high-groove music than in low-groove music and metronome, and higher in low-groove music than in metronome, pedal cadence variability was significantly lower in high-groove music and metronome than in low-groove music, and work output was significantly higher in high-groove music than in low-groove music and metronome (ps < 0.05). The AZ values in the α and γ bands for the rectus abdominis and gastrocnemius lateralis and the erector spinae and gastrocnemius medialis and in the γ band for the erector spinae and gastrocnemius lateralis were significantly higher in high-groove music than in low-groove music (ps < 0.05). CONCLUSIONS Perceived groove during high-torque cycling increased pedal cadence and work output, potentially due to increased cortical and subcortical drive shared between trunk and lower limb muscles.
Collapse
Affiliation(s)
- Jiangang Chen
- Beijing Normal University, College of Physical Education and Sport, China
| | - Junbo Han
- Beijing Normal University, College of Physical Education and Sport, China
| | - Pei Su
- Beijing Normal University, College of Physical Education and Sport, China
| | - Mengyue Wang
- Beijing Normal University, College of Physical Education and Sport, China
| | - Wenxia Shi
- Beijing Normal University, College of Physical Education and Sport, China
| | - Donghui Tang
- Beijing Normal University, College of Physical Education and Sport, China.
| |
Collapse
|
5
|
Omejc N, Stankovski T, Peskar M, Kalc M, Manganotti P, Gramann K, Dzeroski S, Marusic U. Cortico-Muscular Phase Connectivity During an Isometric Knee Extension Task in People with Early Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2025; PP:488-501. [PMID: 40030955 DOI: 10.1109/tnsre.2025.3527578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Parkinson's disease (PD) is characterized by enhanced beta-band activity (13-30 Hz) in the motor control regions. Simultaneously, cortico-muscular (CM) connectivity in the beta-band during iso-metric contractions tends to decline with age, in various diseases, and under dual-task conditions. OBJECTIVE This study aimed to characterize electroencephalograph (EEG) and electromyograph (EMG) power spectra during a motor task, assess CM phase connectivity, and explore how these measures are modulated by an additional cognitive task. Specifically, we focused on the beta-band to explore the relationship between heightened beta amplitude and reduced beta CM connectivity. METHODOLOGY Early-stage people with PD and age-matched controls performed an isometric knee extension task, a cognitive task, and a combined dual task, while EEG (128ch) and EMG (2x32ch) were recorded. CM phase connectivity was assessed through phase coherence and a phase dynamics model. RESULTS The EEG power spectrum revealed no cohort differences in the beta-band. EMG also showed no differences up to 80 Hz. However, the combined EEG-EMG analysis uncovered reduced beta phase coherence in people with early PD during the motor task. CM phase coherence exhibited distinct scalp topography and frequency ranges compared to the EEG power spectrum, suggesting different mechanisms for pathological beta increase and CM connectivity. Additionally, phase dynamics modelling indicated stronger directional coupling from the cortex to the active muscle and less prominent phase coupling across people with PD. Despite high inter-individual variability, these metrics may prove useful for personalized assessments, particularly in people with heightened CM connectivity.
Collapse
|
6
|
Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG: 2004-2024. J Appl Physiol (1985) 2025; 138:121-135. [PMID: 39576281 DOI: 10.1152/japplphysiol.00453.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025] Open
Abstract
This review follows two previous papers [Farina et al. Appl Physiol (1985) 96: 1486-1495, 2004; Farina et al. J Appl Physiol (1985) 117: 1215-1230, 2014] in which we reflected on the use of surface electromyography (EMG) in the study of the neural control of movement. This series of papers began with an analysis of the indirect approaches of EMG processing to infer the neural control strategies and then closely followed the progress in EMG technology. In this third paper, we focus on three main areas: surface EMG modeling; surface EMG processing, with an emphasis on decomposition; and interfacing applications of surface EMG recordings. We highlight the latest advances in EMG models that allow fast generation of simulated signals from realistic volume conductors, with applications ranging from validation of algorithms to identification of nonmeasurable parameters by inverse modeling. Surface EMG decomposition is currently an established state-of-the-art tool for physiological investigations of motor units. It is now possible to identify large samples of motor units, to track motor units over multiple sessions, to partially compensate for the nonstationarities in dynamic contractions, and to decompose signals in real time. The latter achievement has facilitated advances in myocontrol, by using the online decoded neural drive as a control signal, such as in the interfacing of prostheses. Looking back over the 20 yr since our first review, we conclude that the recording and analysis of surface EMG signals have seen breakthrough advances in this period. Although challenges in its application and interpretation remain, surface EMG is now a solid and unique tool for the study of the neural control of movement.
Collapse
Affiliation(s)
- Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Roberto Merletti
- LISiN, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
7
|
Wang L, Tao H, Chen Q, Qiao M, Song X, Niu W. Effect of fatigue on intermuscular EMG-EMG coupling during bench press exercise at 60% 1RM workload in males. Front Hum Neurosci 2024; 18:1472075. [PMID: 39502787 PMCID: PMC11534801 DOI: 10.3389/fnhum.2024.1472075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective To explore the neuromuscular control mechanism and quantifying the fatigue response during bench press exercise is important references to prescribe an appropriate exercise program. However, current literature struggles to provide a concrete conclusion on the changes of intermuscular EMG-EMG coupling between synergistic and antagonist muscles during the exercise. Thus, the current study was designed to reveal fatigue-related changes of intermuscular EMG-EMG coupling during bench press exercise. Methods Thirty-one healthy male participants performed a bench press exercise on the Smith machine at 60% One Repetition Maximum (1RM) workload to exhaustion, while surface electromyographic signals (sEMG) were collected from triceps brachii (TB), biceps brachii (BB), anterior deltoid (AD), posterior deltoid (PD), and pectoralis major (PM). Surface EMG signals were divided into the first half and second half of the bench press exercise. Phase synchronization index (PSI) was calculated between sEMG of synergistic muscle pairs AD-TB, AD-PM and antagonist muscle pairs BB-TB, AD-PD. Results EMG power of TB, AD, PD, PM muscles in alpha (8-12 Hz) frequency band and EMG power of each muscle in beta (15-35 Hz), and gamma (35-60 Hz) frequency bands were all increased during the second half of contraction compared with the first half of contraction. PSI of gamma frequency band was significantly decreased in BB-TB muscle pair while EMG-EMG coupling of AD-TB in gamma frequency band was significantly increased during the second half of contraction compared to the first half of contraction. Conclusions The results indicated a decrease of interconnection between synchronized cortical neurons and the motoneuron pool of BB and TB, and an increase of interconnection between AD-TB muscles during fatiguing bench press exercise at 60% 1RM workload. The changes of intermuscular coupling may be related to the supraspinal modulations to compensate for the decrease of muscle force as well as a result of unbalanced changes of agonist and antagonist muscle contractility.
Collapse
Affiliation(s)
- Lejun Wang
- Sport and Health Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Physical Education Department, Tongji University, Shanghai, China
| | - Haifeng Tao
- Sport and Health Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Physical Education Department, Tongji University, Shanghai, China
| | - Qing Chen
- Sport and Health Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Physical Education Department, Tongji University, Shanghai, China
| | - Minjie Qiao
- Sport and Health Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Physical Education Department, Tongji University, Shanghai, China
| | - Xiaoqian Song
- Sport and Health Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Physical Education Department, Tongji University, Shanghai, China
| | - Wenxin Niu
- School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
da Silva Costa AA, Moraes R, den Otter R, Gennaro F, Bakker L, Rocha Dos Santos PC, Hortobágyi T. Corticomuscular and intermuscular coherence as a function of age and walking balance difficulty. Neurobiol Aging 2024; 141:85-101. [PMID: 38850592 DOI: 10.1016/j.neurobiolaging.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
We determined beta-band intermuscular (IMC) and corticomuscular coherence (CMC) as a function of age and walking balance difficulty. Younger (n=14, 23y) and older individuals (n=19, 71y) walked 13 m overground, on a 6-cm-wide ribbon overground, and on a 6-cm-wide (5-cm-high) beam. Walking distance as a proxy for walking balance and speed were computed. CMC was estimated between electroencephalographic signal at Cz electrode and surface electromyographic signals of seven leg muscles, while IMC was calculated in four pairs of leg muscles, during stance and swing gait phases. With increasing difficulty, walking balance decreased in old individuals and speed decreased gradually independent of age. Beam walking increased IMC, while age increased IMC in proximal muscle pairs, and decreased IMC in distal muscle pairs. Age and difficulty increased CMC independent of gait phases. Concluding, CMC and IMC increased with walking balance difficulty and age, except for distal muscle pairs, which had lower IMC with age. These findings suggest an age-related increase in corticospinal involvement in the neural control of walking balance. DATA AVAILABILITY: The datasets used in this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Andréia Abud da Silva Costa
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil; Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands.
| | - Renato Moraes
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| | - Rob den Otter
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lisanne Bakker
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Paulo Cezar Rocha Dos Santos
- Department of Computer Science & Applied Mathematics, Weizmann Institute of Science, Israel; The Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Israel; IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ, Brazil
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands; Department of Kinesiology, Hungarian University of Sports Science, Budapest 1123, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| |
Collapse
|
9
|
Pfeffer MA, Ling SSH, Wong JKW. Exploring the frontier: Transformer-based models in EEG signal analysis for brain-computer interfaces. Comput Biol Med 2024; 178:108705. [PMID: 38865781 DOI: 10.1016/j.compbiomed.2024.108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/01/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
This review systematically explores the application of transformer-based models in EEG signal processing and brain-computer interface (BCI) development, with a distinct focus on ensuring methodological rigour and adhering to empirical validations within the existing literature. By examining various transformer architectures, such as the Temporal Spatial Transformer Network (TSTN) and EEG Conformer, this review delineates their capabilities in mitigating challenges intrinsic to EEG data, such as noise and artifacts, and their subsequent implications on decoding and classification accuracies across disparate mental tasks. The analytical scope extends to a meticulous examination of attention mechanisms within transformer models, delineating their role in illuminating critical temporal and spatial EEG features and facilitating interpretability in model decision-making processes. The discourse additionally encapsulates emerging works that substantiate the efficacy of transformer models in noise reduction of EEG signals and diversifying applications beyond the conventional motor imagery paradigm. Furthermore, this review elucidates evident gaps and propounds exploratory avenues in the applications of pre-trained transformers in EEG analysis and the potential expansion into real-time and multi-task BCI applications. Collectively, this review distils extant knowledge, navigates through the empirical findings, and puts forward a structured synthesis, thereby serving as a conduit for informed future research endeavours in transformer-enhanced, EEG-based BCI systems.
Collapse
Affiliation(s)
- Maximilian Achim Pfeffer
- Faculty of Engineering and Information Technology, University of Technology Sydney, CB11 81-113, Broadway, Ultimo, 2007, New South Wales, Australia.
| | - Steve Sai Ho Ling
- Faculty of Engineering and Information Technology, University of Technology Sydney, CB11 81-113, Broadway, Ultimo, 2007, New South Wales, Australia.
| | - Johnny Kwok Wai Wong
- Faculty of Design, Architecture and Building, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia.
| |
Collapse
|
10
|
Borhanazad M, van Wijk BC, Buizer AI, Kerkman JN, Bekius A, Dominici N, Daffertshofer A. Lateralized modulation of cortical beta power during human gait is related to arm swing. iScience 2024; 27:110301. [PMID: 39055930 PMCID: PMC11269954 DOI: 10.1016/j.isci.2024.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Human gait is a complex behavior requiring dynamic control of upper and lower extremities that is accompanied by cortical activity in multiple brain areas. We investigated the contribution of beta (15-30 Hz) and gamma (30-50 Hz) band electroencephalography (EEG) activity during specific phases of the gait cycle, comparing treadmill walking with and without arm swing. Modulations of spectral power in the beta band during early double support and swing phases source-localized to the sensorimotor cortex ipsilateral, but not contralateral, to the leading leg. The lateralization disappeared in the condition with constrained arms, together with an increase of activity in bilateral supplementary motor areas. By contrast, gamma band modulations that localized to the presumed leg area of sensorimotor cortex around the heel-strike events were unaffected by arm movement. Our findings demonstrate that arm swing is accompanied by considerable cortical activation that should not be neglected in gait-related neuroimaging studies.
Collapse
Affiliation(s)
- Marzieh Borhanazad
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, the Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bernadette C.M. van Wijk
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, the Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC Location University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Annemieke I. Buizer
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Department of Rehabilitation Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, the Netherlands
| | - Jennifer N. Kerkman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, the Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Annike Bekius
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, the Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Centre, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Nadia Dominici
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, the Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, the Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Chung RS, Martin del Campo Vera R, Sundaram S, Cavaleri J, Gilbert ZD, Leonor A, Shao X, Zhang S, Kammen A, Mason X, Heck C, Liu CY, Kellis SS, Lee B. Beta-band power modulation in the human amygdala differentiates between go/no-go responses in an arm-reaching task. J Neural Eng 2024; 21:046019. [PMID: 38959877 PMCID: PMC11369913 DOI: 10.1088/1741-2552/ad5ebe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/22/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Objective. Traditionally known for its involvement in emotional processing, the amygdala's involvement in motor control remains relatively unexplored, with sparse investigations into the neural mechanisms governing amygdaloid motor movement and inhibition. This study aimed to characterize the amygdaloid beta-band (13-30 Hz) power between 'Go' and 'No-go' trials of an arm-reaching task.Approach. Ten participants with drug-resistant epilepsy implanted with stereoelectroencephalographic (SEEG) electrodes in the amygdala were enrolled in this study. SEEG data was recorded throughout discrete phases of a direct reach Go/No-go task, during which participants reached a touchscreen monitor or withheld movement based on a colored cue. Multitaper power analysis along with Wilcoxon signed-rank and Yates-correctedZtests were used to assess significant modulations of beta power between the Response and fixation (baseline) phases in the 'Go' and 'No-go' conditions.Main results. In the 'Go' condition, nine out of the ten participants showed a significant decrease in relative beta-band power during the Response phase (p⩽ 0.0499). In the 'No-go' condition, eight out of the ten participants presented a statistically significant increase in relative beta-band power during the response phase (p⩽ 0.0494). Four out of the eight participants with electrodes in the contralateral hemisphere and seven out of the eight participants with electrodes in the ipsilateral hemisphere presented significant modulation in beta-band power in both the 'Go' and 'No-go' conditions. At the group level, no significant differences were found between the contralateral and ipsilateral sides or between genders.Significance.This study reports beta-band power modulation in the human amygdala during voluntary movement in the setting of motor execution and inhibition. This finding supplements prior research in various brain regions associating beta-band power with motor control. The distinct beta-power modulation observed between these response conditions suggests involvement of amygdaloid oscillations in differentiating between motor inhibition and execution.
Collapse
Affiliation(s)
- Ryan S Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Roberto Martin del Campo Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Xiecheng Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Selena Zhang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Christi Heck
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
12
|
Issa NP, Aydin S, Polley E, Carberry N, Garret MA, Smith S, Habib AA, Baumgartner NW, Soliven B, Rezania K. Intermuscular coherence as an early biomarker for amyotrophic lateral sclerosis: The protocol for a prospective, multicenter study. PLoS One 2024; 19:e0303053. [PMID: 38776297 PMCID: PMC11111088 DOI: 10.1371/journal.pone.0303053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
OBJECTIVE To describe the protocol of a prospective study to test the validity of intermuscular coherence (IMC) as a diagnostic tool and biomarker of upper motor neuron degeneration in amyotrophic lateral sclerosis (ALS). METHODS This is a multicenter, prospective study. IMC of muscle pairs in the upper and lower limbs is gathered in ∼650 subjects across three groups using surface electrodes and conventional electromyography (EMG) machines. The following subjects will be tested: 1) neurotypical controls; 2) patients with symptomatology suggestive for early ALS but not meeting probable or definite ALS by Awaji Criteria; 3) patients with a known ALS mimic. The recruitment period is between 3/31/2021 and 12/31/2025. Written consent will be sought from the subject or the subject's legally authorized representative during enrollment. RESULTS The endpoints of this study include: 1) whether adding IMC to the Awaji ALS criteria improve its sensitivity in early ALS and can allow for diagnosis earlier; 2) constructing a database of IMC across different ages, genders, and ethnicities. SIGNIFICANCE This study may validate a new inexpensive, painless, and widely available tool for the diagnosis of ALS.
Collapse
Affiliation(s)
- Naoum P. Issa
- University of Chicago Medical Center, Chicago, IL, United States of America
| | - Serdar Aydin
- University of Chicago Medical Center, Chicago, IL, United States of America
| | - Eric Polley
- University of Chicago Medical Center, Chicago, IL, United States of America
| | - Nathan Carberry
- University of Miami, Coral Gables, FL, United States of America
| | - Mark A. Garret
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Sean Smith
- Washington University, St. Louis, MO, United States of America
| | - Ali A. Habib
- University of California, Irvine, Irvine, CA, United States of America
| | | | - Betty Soliven
- University of Chicago Medical Center, Chicago, IL, United States of America
| | - Kourosh Rezania
- University of Chicago Medical Center, Chicago, IL, United States of America
| |
Collapse
|
13
|
Wang T, Xia M, Wang J, Zhilenkov A, Wang J, Xi X, Li L. Delay estimation for cortical-muscular interaction with wavelet coherence time lag. J Neurosci Methods 2024; 405:110098. [PMID: 38423364 DOI: 10.1016/j.jneumeth.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Cortico-muscular coherence (CMC) between the cerebral cortex and muscle activity is an effective tool for studying neural communication in the motor control system. To accurately evaluate the coherence between electroencephalogram (EEG) and electromyogram (EMG) signals, it is necessary to accurately calculate the time delay between physiological signals to ensure signal synchronization. NEW METHOD We proposed a new delay estimation method, named wavelet coherence time lag (WCTL) and the significant increase areas (SIA) index as a measure of the specific region enhancement effect of the magnitude squared coherence (MSC) image. RESULTS The grip strength level had a small effect on the information transmission time from the cortex to the muscles, while the transmission time from the cortex to different muscle channels was different for the same task. A positive correlation was found between the grip strength level and the SIA index on the β band of C3-B and the α and β bands of C3-FDS. COMPARISON WITH EXISTING METHOD The WCTL method was found to accurately calculate the delay time even when the number of repeated segments was low in a simple motor control model, and the results were more accurate than the rate of voxels change (RVC) and CMC with time lag (CMCTL) methods. CONCLUSIONS The WCTL is an effective method for detecting the transmission time of information between the cortex and muscles, laying the foundation for future rehabilitation treatment for stroke patients.
Collapse
Affiliation(s)
- Ting Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Mingze Xia
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junhong Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Anton Zhilenkov
- Department of Cyber-Physical Systems, St. Petersburg State Marine Technical University, Saint-Petersburg 190121, Russia
| | - Jian Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xugang Xi
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lihua Li
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
14
|
Correia JP, Domingos C, Witvrouw E, Luís P, Rosa A, Vaz JR, Freitas SR. Brain and muscle activity during fatiguing maximum-speed knee movement. J Appl Physiol (1985) 2024; 136:200-212. [PMID: 38059285 DOI: 10.1152/japplphysiol.00145.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Although the underlying mechanisms behind upper limb (e.g., finger) motor slowing during movements performed at the maximum voluntary rate have been explored, the same cannot be said for the lower limb. This is especially relevant considering the lower limb's larger joints and different functional patterns. Despite the similar motor control base, previously found differences in movement patterns and segment inertia may lead to distinct central and peripheral manifestations of fatigue in larger joint movement. Therefore, we aimed to explore these manifestations in a fatiguing knee maximum movement rate task by measuring brain and muscle activity, as well as brain-muscle coupling using corticomuscular coherence, during this task. A significant decrease in knee movement rate up to half the task duration was observed. After an early peak, brain activity showed a generalized decrease during the first half of the task, followed by a plateau, whereas knee flexor muscle activity showed a continuous decline. A similar decline was also seen in corticomuscular coherence but for both flexor and extensor muscles. The electrophysiological manifestations associated with knee motor slowing therefore showed some common and some distinct aspects compared with smaller joint tasks. Both central and peripheral manifestations of fatigue were observed; the changes seen in both EEG and electromyographic (EMG) variables suggest that multiple mechanisms were involved in exercise regulation and fatigue development.NEW & NOTEWORTHY The loss of knee movement rate with acute fatigue induced by high-speed movement is associated with both central and peripheral electrophysiological changes, such as a decrease in EEG power, increased agonist-antagonist cocontraction, and impaired brain-muscle coupling. These findings had not previously been reported for the knee joint, which shows functional and physiological differences compared with the existing findings for smaller upper limb joints.
Collapse
Affiliation(s)
- José Pedro Correia
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Christophe Domingos
- Department of Clinical Psychology, Institute of Psychology, Jagiellonian University, Krakow, Poland
- Centro de Investigação em Qualidade de Vida (CIEQV), Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Rio Maior, Portugal
| | - Erik Witvrouw
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Pedro Luís
- Evolutionary Systems and Biomedical Engineering Lab (LaSEEB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Agostinho Rosa
- Evolutionary Systems and Biomedical Engineering Lab (LaSEEB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João R Vaz
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, Monte da Caparica, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| |
Collapse
|
15
|
Cheng S, Chen X, Zhang Y, Wang Y, Li X, Li X, Xie P. Multiscale information interaction at local frequency band in functional corticomuscular coupling. Cogn Neurodyn 2023; 17:1575-1589. [PMID: 37974587 PMCID: PMC10640559 DOI: 10.1007/s11571-022-09895-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/17/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022] Open
Abstract
The multiscale information interaction between the cortex and the corresponding muscles is of great significance for understanding the functional corticomuscular coupling (FCMC) in the sensory-motor systems. Though the multiscale transfer entropy (MSTE) method can effectively detect the multiscale characteristics between two signals, it lacks in describing the local frequency-band characteristics. Therefore, to quantify the multiscale interaction at local-frequency bands between the cortex and the muscles, we proposed a novel method, named bivariate empirical mode decomposition-MSTE (BMSTE), by combining the bivariate empirical mode decomposition (BEMD) with MSTE. To verify this, we introduced two simulation models and then applied it to explore the FCMC by analyzing the EEG over brain scalp and surface EMG signals from the effector muscles during steady-state force output. The simulation results showed that the BMSTE method could describe the multiscale time-frequency characteristics compared with the MSTE method, and was sensitive to the coupling strength but not to the data length. The experiment results showed that the coupling at beta1 (15-25 Hz), beta2 (25-35 Hz) and gamma (35-60 Hz) bands in the descending direction was higher than that in the opposition, and at beta2 band was higher than that at beta1 band. Furthermore, there were significant differences at the low scales in beta1 band, almost all scales in beta2 band, and high scales in gamma band. These results suggest the effectiveness of the BMSTE method in describing the interaction between two signals at different time-frequency scales, and further provide a novel approach to understand the motor control. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09895-y.
Collapse
Affiliation(s)
- Shengcui Cheng
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei China
| | - Xiaoling Chen
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei China
| | - Yuanyuan Zhang
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei China
| | - Ying Wang
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei China
| | - Xin Li
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei China
| | - Xiaoli Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ping Xie
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei China
| |
Collapse
|
16
|
Du Y, Fan Q, Chang C, Bai X, Cao T, Zhang Y, Wang X, Xie P. Characteristics of multi-channel intermuscular directional coupling based on time-varying partial directional coherence analysis. Sci Rep 2023; 13:17088. [PMID: 37816900 PMCID: PMC10564716 DOI: 10.1038/s41598-023-43976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
The human body transmits directional information between muscles during upper limb movements, and this will be particularly evident when the dominant muscle changes during movement transitions. By capturing the electromyography (EMG) signals of wrist flexion and extension continuous transition movements, we investigated the characteristics of multichannel intermuscular directional coupling and directional information transmission, and consequently explored the control mechanism of Central nervous system (CNS) and the coordination mechanism of motor muscles. Multi-channel EMG was collected from 12 healthy subjects under continuous translational movements of wrist flexion and extension, and the time-varying biased directional coherence analysis (TVPDC) model was constructed using partial directional coherence analysis (PDC) frequency domain directionality to study the directional information transfer characteristics in the time-frequency domain, screen closely related muscle pairs and perform directional coupling significance analysis. Palmaris longus (PL) played a dominant role under wrist flexion movements(WF), Extensor Carpi Radialis (ECR) played a dominant role under wrist extension movements(WE), and the remaining muscles responded to them with information and Biceps Brachii (BB) played a responsive role throughout the movement; flexor pairs had the highest positive coupling values in the beta band during Conversion action1 (MC1) and WF phases, and extensor pairs had the highest positive coupling values in the gamma band during Conversion action2(MC2) phase and the highest coupling values in the beta band during WE phase. TVPDC can effectively analyze the multichannel intermuscular directional coupling and information transmission relationship of surface electromyography under wrist flexion and extension transition movements, providing a reference for exploring the control mechanism of CNS and abnormal control mechanism in patients with motor dysfunction in a new perspective.
Collapse
Affiliation(s)
- Yihao Du
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Qiang Fan
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Chaoqun Chang
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Xiaolin Bai
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Tianfu Cao
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Yanfu Zhang
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Xiaoran Wang
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Ping Xie
- Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China.
| |
Collapse
|
17
|
Xie P, Wang Y, Chen X, Hao Y, Yang H, Yang Y, Xu M. A Multidimensional Visible Evaluation Model for Stroke Rehabilitation: A Pilot Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1721-1731. [PMID: 37027526 DOI: 10.1109/tnsre.2023.3245627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Efficient rehabilitation state evaluation is important to the design of rehabilitation strategies after stroke. However, most traditional evaluations have depended on subjective clinical scales, which do not entail quantitative evaluation of the motor function. Functional corticomuscular coupling (FCMC) can be used to quantitatively describe the rehabilitation state. However, how to apply FCMC to clinical evaluation still needs to be studied. In this study, we propose a visible evaluation model which can combine the FCMC indicators with a Ueda score to comprehensively evaluate the motor function. In this model, we first calculated the FCMC indicators based on our previous study, including transfer spectral entropy (TSE), wavelet package transfer entropy (WPTE) and multiscale transfer entropy (MSTE). We then apply Pearson correlation analysis to determine which FCMC indicators are significantly correlated with the Ueda score. Then, we simultaneously introduced a radar map to present the selected FCMC indicators and the Ueda score, and described the relation between them. Finally, we calculated the comprehensive evaluation function (CEF) of the radar map and applied it as a comprehensive score of the rehabilitation state. To verify the model's effectiveness, we synchronously collected the electroencephalogram (EEG) and electrocardiogram (EMG) data from stroke patients under the steady-state force task and evaluated the state by the model. This model visualized the evaluation results by constructing a radar map and presented the physiological electrical signal features and the clinical scales at the same time. The CEF indicator calculated from this model was significantly correlated with the Ueda score (P= $0.001< 0.01$ ). This research provides a new approach to evaluation and rehabilitation training after stroke, and explicates possible pathomechanisms.
Collapse
|
18
|
Cruz-Montecinos C, García-Massó X, Maas H, Cerda M, Ruiz-Del-Solar J, Tapia C. Detection of intermuscular coordination based on the causality of empirical mode decomposition. Med Biol Eng Comput 2023; 61:497-509. [PMID: 36527531 DOI: 10.1007/s11517-022-02736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Considering the stochastic nature of electromyographic (EMG) signals, nonlinear methods may be a more accurate approach to study intermuscular coordination than the linear approach. The aims of this study were to assess the coordination between two ankle plantar flexors using EMG by applying the causal decomposition approach and assessing whether the intermuscular coordination is affected by the slope of the treadmill. The medial gastrocnemius (MG) and soleus muscles (SOL) were analyzed during the treadmill walking at inclinations of 0°, 5°, and 10°. The coordination was evaluated using ensemble empirical mode decomposition, and the causal interaction was encoded by the instantaneous phase dependence of time series bi-directional causality. To estimate the mutual predictability between MG and SOL, the cross-approximate entropy (XApEn) was assessed. The maximal causal interaction was observed between 40 and 75 Hz independent of inclination. XApEn showed a significant decrease between 0° and 5° (p = 0.028), between 5° and 10° (p = 0.038), and between 0° and 10° (p = 0.014), indicating an increase in coordination. Thus, causal decomposition is an appropriate methodology to study intermuscular coordination. These results indicate that the variation of loading through the change in treadmill inclination increases the interaction of the shared input between MG and SOL, suggesting increased intermuscular coordination.
Collapse
Affiliation(s)
- Carlos Cruz-Montecinos
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Laboratory of Clinical Biomechanics, Department of Kinesiology, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago, Chile
| | - Xavier García-Massó
- Department of Teaching of Musical, Visual and Corporal Expression, University of Valencia, Valencia, Spain.,Human Movement Analysis Group, University of Valencia, Valencia, Spain
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Mauricio Cerda
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | | | - Claudio Tapia
- Laboratory of Clinical Biomechanics, Department of Kinesiology, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago, Chile. .,Departamento de Kinesiología, Facultad de Artes Y Educación Física, Universidad Metropolitana de Ciencias de La Educación, Santiago, Chile.
| |
Collapse
|
19
|
Wang L, Qiao M, Tao H, Song X, Shao Q, Wang C, Yang H, Niu W, Chen Y. A comparison of muscle activation and concomitant intermuscular coupling of antagonist muscles among bench presses with different instability degrees in untrained men. Front Physiol 2022; 13:940719. [PMID: 36148298 PMCID: PMC9486837 DOI: 10.3389/fphys.2022.940719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to analyze and compare the muscle activation and concomitant intermuscular coupling of antagonist muscles among bench presses with different instability degrees. Twenty-nine untrained male college students performed bench press exercises at an intensity of 60% 1 RM on three conditions: small unstable bench press with Smith machine (SBP), medium unstable bench press of free weight (FWBP), and large unstable bench press with increased instability by suspending the load with elastic bands (IIBP). One-way repeated measures analysis of variance was used to compare integrated EMG activity values of the biceps brachii (BB), posterior deltoid (PD), long head of the triceps brachii (TB), anterior deltoid (AD), upper portion of the pectoralis major (PM) muscles, and phase synchronization index (PSI) of BB-TB and PD-AD antagonist muscle pairs. A higher integrated EMG of BB muscle was found during bench press with a more unstable condition. IIBP showed a higher integrated EMG of prime movers (TB, AD, and PM) and stabilizing of BB than SBP and FWBP. PSI between muscle pairs of BB-TB in the gamma frequency band was higher in SBP than the other bench presses with unstable conditions, which may be related to the optimal “internal model” for antagonist muscles during bench press exercise. Therefore, IIBP training may be an effective accessory exercise to maintain a higher level of muscle activation across primary and stabilizing muscles with a lighter load for untrained men, while SBP may be a suitable bench press exercise for untrained participants who have not developed the neuromuscular adaptations necessary for correct stabilization of the elbow joint.
Collapse
Affiliation(s)
- Lejun Wang
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
- *Correspondence: Lejun Wang, ; Yiqing Chen,
| | - Minjie Qiao
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Haifeng Tao
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Xiaoqian Song
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Qineng Shao
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
- Engineering Research Center of Clinical Translational Digital Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ce Wang
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Hua Yang
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Wenxin Niu
- School of Medicine, Tongji University, Shanghai, China
| | - Yiqing Chen
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
- *Correspondence: Lejun Wang, ; Yiqing Chen,
| |
Collapse
|
20
|
Bräcklein M, Barsakcioglu DY, Del Vecchio A, Ibáñez J, Farina D. Reading and Modulating Cortical β Bursts from Motor Unit Spiking Activity. J Neurosci 2022; 42:3611-3621. [PMID: 35351832 PMCID: PMC9053843 DOI: 10.1523/jneurosci.1885-21.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/01/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022] Open
Abstract
β Oscillations (13-30 Hz) are ubiquitous in the human motor nervous system. Yet, their origins and roles are unknown. Traditionally, β activity has been treated as a stationary signal. However, recent studies observed that cortical β occurs in "bursting events," which are transmitted to muscles. This short-lived nature of β events makes it possible to study the main mechanism of β activity found in the muscles in relation to cortical β. Here, we assessed whether muscle β activity mainly results from cortical projections. We ran two experiments in healthy humans of both sexes (N = 15 and N = 13, respectively) to characterize β activity at the cortical and motor unit (MU) levels during isometric contractions of the tibialis anterior muscle. We found that β rhythms observed at the cortical and MU levels are indeed in bursts. These bursts appeared to be time-locked and had comparable average durations (40-80 ms) and rates (approximately three to four bursts per second). To further confirm that cortical and MU β have the same source, we used a novel operant conditioning framework to allow subjects to volitionally modulate MU β. We showed that volitional modulation of β activity at the MU level was possible with minimal subject learning and was paralleled by similar changes in cortical β activity. These results support the hypothesis that MU β mainly results from cortical projections. Moreover, they demonstrate the possibility to decode cortical β activity from MU recordings, with a potential translation to future neural interfaces that use peripheral information to identify and modulate activity in the central nervous system.SIGNIFICANCE STATEMENT We show for the first time that β activity in motor unit (MU) populations occurs in bursting events. These bursts observed in the output of the spinal cord appear to be time-locked and share similar characteristics of β activity at the cortical level, such as the duration and rate at which they occur. Moreover, when subjects were exposed to a novel operant conditioning paradigm and modulated MU β activity, cortical β activity changed in a similar way as peripheral β. These results provide evidence for a strong correspondence between cortical and peripheral β activity, demonstrating the cortical origin of peripheral β and opening the pathway for a new generation of neural interfaces.
Collapse
Affiliation(s)
- Mario Bräcklein
- Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College London, London W12 0BZ, United Kingdom
| | - Deren Y Barsakcioglu
- Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College London, London W12 0BZ, United Kingdom
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen 91052, Germany
| | - Jaime Ibáñez
- Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College London, London W12 0BZ, United Kingdom
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza 50018, Spain
- Department of Clinical and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Dario Farina
- Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College London, London W12 0BZ, United Kingdom
| |
Collapse
|
21
|
Simoneau M, Pialasse JP, Mercier P, Blouin JS. Adolescents with idiopathic scoliosis show decreased intermuscular coherence in lumbar paraspinal muscles: a new pathophysiological perspective. Clin Neurophysiol 2022; 138:38-51. [DOI: 10.1016/j.clinph.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
|
22
|
Guo Z, Zhou S, Ji K, Zhuang Y, Song J, Nam C, Hu X, Zheng Y. Corticomuscular integrated representation of voluntary motor effort in robotic control for wrist-hand rehabilitation after stroke. J Neural Eng 2022; 19. [PMID: 35193124 DOI: 10.1088/1741-2552/ac5757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The central-to-peripheral voluntary motor effort (VME) in physical practice of the paretic limb is a dominant force for driving functional neuroplasticity on motor restoration post-stroke. However, current rehabilitation robots isolated the central and peripheral involvements in the control design, resulting in limited rehabilitation effectiveness. The purpose of this study was to design a corticomuscular coherence (CMC) and electromyography (EMG)-driven (CMC-EMG-driven) system with central-and-peripheral integrated representation of VME for wrist-hand rehabilitation after stroke. APPROACH The CMC-EMG-driven control was developed in a neuromuscular electrical stimulation (NMES)-robot system, i.e., CMC-EMG-driven NMES-robot system, to instruct and assist the wrist-hand extension and flexion in persons after stroke. A pilot single-group trial of 20 training sessions was conducted with the developed system to assess the feasibility for wrist-hand practice on the chronic strokes (n=16). The rehabilitation effectiveness was evaluated through clinical assessments, CMC, and EMG activation levels. MAIN RESULTS The trigger success rate and laterality index (LI) of CMC were significantly increased in wrist-hand extension across training sessions (p<0.05). After the training, significant improvements in the target wrist-hand joints and suppressed compensation from the proximal shoulder-elbow joints were observed through the clinical scores and EMG activation levels (p<0.05). The central-to-peripheral VME distribution across upper extremity (UE) muscles was also significantly improved, as revealed by the CMC values (p<0.05). SIGNIFICANCE Precise wrist-hand rehabilitation was achieved by the developed system, presenting suppressed cortical and muscular compensation from the contralesional hemisphere and the proximal UE, and improved distribution of the central-and-peripheral VME on UE muscles.
Collapse
Affiliation(s)
- Ziqi Guo
- The Hong Kong Polytechnic University, Rm S107a, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Kowloon, Nil, HONG KONG
| | - Sa Zhou
- The Hong Kong Polytechnic University, Rm S107a, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Hong Kong, Kowloon, HONG KONG
| | - Kailai Ji
- The Hong Kong Polytechnic University, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Kowloon, Hong Kong, HONG KONG
| | - Yongqi Zhuang
- Biomedical Engineering, Hong Kong Polytechnic University, BME PolyU, Kowloon, HONG KONG
| | - Jie Song
- The Hong Kong Polytechnic University, Rm S107a, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Hong Kong, Kowloon, Nil, HONG KONG
| | - Chingyi Nam
- The Hong Kong Polytechnic University, Rm S107a, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Hong Kong, Kowloon, Nil, HONG KONG
| | - Xiaoling Hu
- Biomedical Engineering, Hong Kong Polytechnic University, Rm ST420, Dept. of BME, PolyU, Hung H, Hung Hom, Kowloon, Hong Kong, Kowloon, HONG KONG
| | - Yongping Zheng
- Biomedical Engineering, The Hong Kong Polytechnic University, BME PolyU, Hong Kong, Nil, CHINA
| |
Collapse
|
23
|
Ulloa JL. The Control of Movements via Motor Gamma Oscillations. Front Hum Neurosci 2022; 15:787157. [PMID: 35111006 PMCID: PMC8802912 DOI: 10.3389/fnhum.2021.787157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
The ability to perform movements is vital for our daily life. Our actions are embedded in a complex environment where we need to deal efficiently in the face of unforeseen events. Neural oscillations play an important role in basic sensorimotor processes related to the execution and preparation of movements. In this review, I will describe the state of the art regarding the role of motor gamma oscillations in the control of movements. Experimental evidence from electrophysiological studies has shown that motor gamma oscillations accomplish a range of functions in motor control beyond merely signaling the execution of movements. However, these additional aspects associated with motor gamma oscillation remain to be fully clarified. Future work on different spatial, temporal and spectral scales is required to further understand the implications of gamma oscillations in motor control.
Collapse
Affiliation(s)
- José Luis Ulloa
- Programa de Investigación Asociativa (PIA) en Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas (CICC), Facultad de Psicología, Universidad de Talca, Talca, Chile
| |
Collapse
|
24
|
Weersink JB, de Jong BM, Maurits NM. Neural coupling between upper and lower limb muscles in Parkinsonian gait. Clin Neurophysiol 2021; 134:65-72. [PMID: 34979292 DOI: 10.1016/j.clinph.2021.11.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To explore to what extent neuronal coupling between upper and lower limb muscles during gait is preserved or affected in patients with Parkinson's Disease (PD). METHODS Electromyography recordings were obtained from the bilateral deltoideus anterior and bilateral rectus femoris and biceps femoris muscles during overground gait in 20 healthy participants (median age 69 years) and 20 PD patients (median age 68.5 years). PD patients were able to walk independently (Hoehn and Yahr scale: Stage 2-3), had an equally distributed symptom laterality (6 left side, 7 both sides and 7 right side) and no cognitive problems or tremor dominant PD. Time-dependent directional intermuscular coherence analysis was employed to compare the neural coupling between upper and lower limb muscles between healthy participants and PD patients in three different directions: zero-lag (i.e. common driver), forward (i.e. shoulders driving the legs) and reverse component (i.e. legs driving the shoulders). RESULTS Compared to healthy participants, PD patients exhibited (i) reduced intermuscular zero-lag coherence in the beta/gamma frequency band during end-of-stance and (ii) enhanced forward as well as reverse directed coherence in the alpha and beta/gamma frequency bands around toe-off. CONCLUSIONS PD patients had a reduced common cortical drive to upper and lower limb muscles during gait, possibly contributing to disturbed interlimb coordination. Enhanced bidirectional coupling between upper and lower limb muscles on subcortical and transcortical levels in PD patients suggests a mechanism of compensation. SIGNIFICANCE These findings provide support for the facilitating effect of arm swing instructions in PD gait.
Collapse
Affiliation(s)
- Joyce B Weersink
- University of Groningen, University Medical Center Groningen, Department of Neurology, Hanzeplein 1, POB 30.001, Groningen, the Netherlands
| | - Bauke M de Jong
- University of Groningen, University Medical Center Groningen, Department of Neurology, Hanzeplein 1, POB 30.001, Groningen, the Netherlands
| | - Natasha M Maurits
- University of Groningen, University Medical Center Groningen, Department of Neurology, Hanzeplein 1, POB 30.001, Groningen, the Netherlands.
| |
Collapse
|
25
|
Gao L, Wu H, Cheng W, Lan B, Ren H, Zhang L, Wang L. Enhanced Descending Corticomuscular Coupling During Hand Grip With Static Force Compared With Enhancing Force. Clin EEG Neurosci 2021; 52:436-443. [PMID: 32611201 DOI: 10.1177/1550059420933149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction between cortex and muscles under hand motor with different force states has not been quantitatively investigated yet, which to some extent places the optimized movement tasks design for brain-computer interface (BCI) applications in hand motor rehabilitation under uncertainty. Converging evidence has suggested that both the descending corticospinal pathway and ascending sensory feedback pathway are involved in the generation of corticomuscular coupling. The present study aimed to explore the corticomuscular coupling during hand motor task with enhancing force and steady-state force. Twenty healthy subjects performed precision grip with enhancing and static force using the right hand with visual feedback of exerted force. Mutual information and Granger causal connectivity were assessed between electroencephalography (EEG) over primary motor cortex and electromyography (EMG) recordings, and statistically analyzed. The results showed that the mutual information value was significantly larger for static force in the beta and alpha frequency band than enhancing force state. Furthermore, compared with enhancing force, the Granger causal connectivity of descending pathways from cortex to muscle was significantly larger for static force in the beta and high alpha frequency band (10-20 Hz), indicating the connection between the primary motor cortex and muscle was strengthened for static force. In summary, the hand grip with static force resulted in an increasing corticomuscular coupling from EEG over the primary motor cortex to EMG compared with enhancing force, implying more attention was required in the static force state. These results have important implications toward motor rehabilitation therapy design for the recovery of impaired hand motor functions.
Collapse
Affiliation(s)
- Lin Gao
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi'an University of Technology, Xi'an, Shaanxi, People's Republic of China
| | - Hongjian Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,National Engineering Research Center of Health Care and Medical Devices Xi'an Jiaotong University Branch, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Wei Cheng
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Beidi Lan
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Haipeng Ren
- Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi'an University of Technology, Xi'an, Shaanxi, People's Republic of China
| | - Lu Zhang
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Wang
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
26
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
27
|
Liu J, Tan G, Sheng Y, Wei Y, Liu H. A novel delay estimation method for improving corticomuscular coherence in continuous synchronization events. IEEE Trans Biomed Eng 2021; 69:1328-1339. [PMID: 34559633 DOI: 10.1109/tbme.2021.3115386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE While the corticomuscular coupling between motor cortex and muscle tissue has received considerable attention, which is typically quantitative measure to evaluate neural signals synchronization in the motor control system, little work has been published regarding the effect of underlying delay of two coupled physiological signals on coherence. METHODS In this study, we developed a novel delay estimation method, named rate of voxels change (RVC), detecting time delay in two coupled physiological signals. Based on RVC framework, delay compensation was used to adjust magnitude squared coherence (MSC) image. To illustrate the effectiveness of the RVC method, we compared the estimated delays and the adjusted MSC results based on RVC method and corticomuscular coherence with time lag (CMCTL) method. RESULTS The simulation results suggested that RVC method was not only superior to the CMCTL method in estimating different time delays, but also has better optimization effect on MSC image. The experimental results further confirmed that delay estimated by the proposed RVC method was more in line with the underlying physiology (controls: 22.8 ms vs patients: 34.5 ms). Meanwhile, RVC-based delay compensation could significantly optimize the MSC of specific regions. SIGNIFICANCE This study proved that RVC has remarkably higher reliability in detecting time delay between coupled neurophysiological signals, and the application of RVC was an improvement on the previous studies that mainly focused on biased MSC estimation.
Collapse
|
28
|
Zhou S, Guo Z, Wong K, Zhu H, Huang Y, Hu X, Zheng YP. Pathway-specific cortico-muscular coherence in proximal-to-distal compensation during fine motor control of finger extension after stroke. J Neural Eng 2021; 18. [PMID: 34428752 DOI: 10.1088/1741-2552/ac20bc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/24/2021] [Indexed: 11/12/2022]
Abstract
Objective.Proximal-to-distal compensation is commonly observed in the upper extremity (UE) after a stroke, mainly due to the impaired fine motor control in hand joints. However, little is known about its related neural reorganization. This study investigated the pathway-specific corticomuscular interaction in proximal-to-distal UE compensation during fine motor control of finger extension post-stroke by directed corticomuscular coherence (dCMC).Approach.We recruited 14 chronic stroke participants and 11 unimpaired controls. Electroencephalogram (EEG) from the sensorimotor area was concurrently recorded with electromyography (EMG) from extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI) and biceps brachii (BIC) muscles in both sides of the stroke participants and in the dominant (right) side of the controls during the unilateral isometric finger extension at 20% maximal voluntary contractions. The dCMC was analyzed in descending (EEG → EMG) and ascending pathways (EMG → EEG) via the directed coherence. It was also analyzed in stable (segments with higher EMG stability) and less-stable periods (segments with lower EMG stability) subdivided from the whole movement period to investigate the fine motor control. Finally, the corticomuscular conduction time was estimated by dCMC phase delay.Main results.The affected limb had significantly lower descending dCMC in distal UE (ED and FD) than BIC (P< 0.05). It showed the descending dominance (significantly higher descending dCMC than the ascending,P< 0.05) in proximal UE (BIC and TRI) rather than the distal UE as in the controls. In the less-stable period, the affected limb had significantly lower EMG stability but higher ascending dCMC (P< 0.05) in distal UE than the controls. Furthermore, significantly prolonged descending conduction time (∼38.8 ms) was found in ED in the affected limb than the unaffected (∼26.94 ms) and control limbs (∼25.74 ms) (P< 0.05).Significance.The proximal-to-distal UE compensation in fine motor control post-stroke exhibited altered descending dominance from the distal to proximal UE, increased ascending feedbacks from the distal UE for fine motor control, and prolonged descending conduction time in the agonist muscle.
Collapse
Affiliation(s)
- Sa Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Ziqi Guo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Kiufung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Hanlin Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| |
Collapse
|
29
|
Quantifying Coordination between Agonist and Antagonist Elbow Muscles during Backhand Crosscourt Shots in Adult Female Squash Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189825. [PMID: 34574748 PMCID: PMC8467896 DOI: 10.3390/ijerph18189825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022]
Abstract
The purpose of this study was to quantify the coordination between agonist and antagonist elbow muscles during squash backhand crosscourt shots in adult female players. Ten right-handed, international-level, female squash players participated in the study. The electrical muscle activity of two right elbow agonist/antagonist muscles, the biceps brachii and triceps brachii, were recorded using a surface EMG system, and processed using the integrated EMG to calculate a co-activation index (CoI) for the preparation phase, the execution phase, and the follow-through phase. A significant effect of the phases on the CoI was observed. Co-activation was significantly different between the follow-through and the execution phase (45.93 ± 6.00% and 30.14 ± 4.11%, p < 0.001), and also between the preparation and the execution phase (44.74 ± 9.88% and 30.14 ± 4.11%, p < 0.01). No significant difference was found between the preparation and the follow-through phase (p = 0.953). In conclusion, the co-activation of the elbow muscles varies within the squash backhand crosscourt shots. The highest level of co-activation was observed in the preparation phase and the lowest level of co-activation was observed during the execution. The co-activation index could be a useful method for the interpretation of elbow muscle co-activity during a squash backhand crosscourt shot.
Collapse
|
30
|
Single Electrode Energy on Clinical Brain–Computer Interface Challenge. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Suzuki R, Ushiyama J. Context-Dependent Modulation of Corticomuscular Coherence in a Series of Motor Initiation and Maintenance of Voluntary Contractions. Cereb Cortex Commun 2021; 1:tgaa074. [PMID: 34296134 PMCID: PMC8152874 DOI: 10.1093/texcom/tgaa074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
For our precise motor control, we should consider "motor context," which involves the flow from feedforward to feedback control. The present study focused on corticomuscular coherence (CMC) to physiologically evaluate how the sensorimotor integration is modulated in a series of movements depending on the motor context. We evaluated CMC between electroencephalograms over the sensorimotor cortex and rectified electromyograms from the tibialis anterior muscle during intermittent contractions with 2 contraction intensities in 4 experiments. Although sustained contractions with weak-to-moderate intensities led to no difference in CMC between intensities, intermittent ballistic-and-hold contractions with 2 intensities (10% and 15% or 25% of the maximal voluntary contraction, MVC) presented in a randomized order resulted in greater magnitude of CMC for the weaker intensity. Moreover, the relative amount of initial error was larger for trials with 10% of MVC, which indicated that initial motor output was inaccurate during weaker contractions. However, this significant difference in CMC vanished in the absence of trial randomization or the application of intermittent ramp-and-hold contractions with slower torque developments. Overall, CMC appears to be modulated context-dependently and is especially enhanced when active sensorimotor integration is required in feedback control periods because of the complexity and inaccuracy of preceding motor control.
Collapse
Affiliation(s)
- Rina Suzuki
- Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Junichi Ushiyama
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
32
|
Tun NN, Sanuki F, Iramina K. Electroencephalogram-Electromyogram Functional Coupling and Delay Time Change Based on Motor Task Performance. SENSORS 2021; 21:s21134380. [PMID: 34206753 PMCID: PMC8271984 DOI: 10.3390/s21134380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022]
Abstract
Synchronous correlation brain and muscle oscillations during motor task execution is termed as functional coupling. Functional coupling between two signals appears with a delay time which can be used to infer the directionality of information flow. Functional coupling of brain and muscle depends on the type of muscle contraction and motor task performance. Although there have been many studies of functional coupling with types of muscle contraction and force level, there has been a lack of investigation with various motor task performances. Motor task types play an essential role that can reflect the amount of functional interaction. Thus, we examined functional coupling under four different motor tasks: real movement, intention, motor imagery and movement observation tasks. We explored interaction of two signals with linear and nonlinear information flow. The aim of this study is to investigate the synchronization between brain and muscle signals in terms of functional coupling and delay time. The results proved that brain–muscle functional coupling and delay time change according to motor tasks. Quick synchronization of localized cortical activity and motor unit firing causes good functional coupling and this can lead to short delay time to oscillate between signals. Signals can flow with bidirectionality between efferent and afferent pathways.
Collapse
Affiliation(s)
- Nyi Nyi Tun
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Correspondence: (N.N.T.); (K.I.); Tel.: +81-80-9392-9429 (N.N.T.); Fax: +81-92-802-3581 (N.N.T.)
| | - Fumiya Sanuki
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Keiji Iramina
- Faulty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Correspondence: (N.N.T.); (K.I.); Tel.: +81-80-9392-9429 (N.N.T.); Fax: +81-92-802-3581 (N.N.T.)
| |
Collapse
|
33
|
Zhang X, Li H, Lu Z, Yin G. Homology Characteristics of EEG and EMG for Lower Limb Voluntary Movement Intention. Front Neurorobot 2021; 15:642607. [PMID: 34220479 PMCID: PMC8249921 DOI: 10.3389/fnbot.2021.642607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
In the field of lower limb exoskeletons, besides its electromechanical system design and control, attention has been paid to realizing the linkage of exoskeleton robots to humans via electroencephalography (EEG) and electromyography (EMG). However, even the state of the art performance of lower limb voluntary movement intention decoding still faces many obstacles. In the following work, focusing on the perspective of the inner mechanism, a homology characteristic of EEG and EMG for lower limb voluntary movement intention was conducted. A mathematical model of EEG and EMG was built based on its mechanism, which consists of a neural mass model (NMM), neuromuscular junction model, EMG generation model, decoding model, and musculoskeletal biomechanical model. The mechanism analysis and simulation results demonstrated that EEG and EMG signals were both excited by the same movement intention with a response time difference. To assess the efficiency of the proposed model, a synchronous acquisition system for EEG and EMG was constructed to analyze the homology and response time difference from EEG and EMG signals in the limb movement intention. An effective method of wavelet coherence was used to analyze the internal correlation between EEG and EMG signals in the same limb movement intention. To further prove the effectiveness of the hypothesis in this paper, six subjects were involved in the experiments. The experimental results demonstrated that there was a strong EEG-EMG coherence at 1 Hz around movement onset, and the phase of EEG was leading the EMG. Both the simulation and experimental results revealed that EEG and EMG are homologous, and the response time of the EEG signals are earlier than EMG signals during the limb movement intention. This work can provide a theoretical basis for the feasibility of EEG-based pre-perception and fusion perception of EEG and EMG in human movement detection.
Collapse
Affiliation(s)
- Xiaodong Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, China
| | - Hanzhe Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhufeng Lu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Gui Yin
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Liu J, Tan G, Sheng Y, Liu H. Multiscale Transfer Spectral Entropy for Quantifying Corticomuscular Interaction. IEEE J Biomed Health Inform 2021; 25:2281-2292. [PMID: 33090963 DOI: 10.1109/jbhi.2020.3032979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Corticomuscular coupling reflects nonlinear interactions and multi-layer neural information transmission between the motor cortex and effector muscle in the sensorimotor system. Transfer spectral entropy (TSE) method has been used to describe corticomuscular coupling within single scale. As an extension of TSE, multiscale transfer spectral entropy (MSTSE) is proposed in this paper to depict multi-layer of neural information transfer between two coupling signals. The reliability and effectiveness of MSTSE were verified on data generated by nonlinear numerical models and those of a force tracking task. Compared with TSE, MSTSE is more robust to the embedding dimension and performs optimally in the detection of the coupling properties. Further analysis of the physiological signals showed that the MSTSE provided more detailed band characteristics than the single scale TSE measurement. MSTSE indicates significant coupling scattered in alpha, beta and low gamma bands during the force tracking task. Besides, the coupling strength in the descending direction of the beta band was significantly higher than that in the ascending direction. This study constructs multi-scale coupling information to provide a new perspective for exploring corticomuscular interaction.
Collapse
|
35
|
Ibáñez J, Del Vecchio A, Rothwell JC, Baker SN, Farina D. Only the Fastest Corticospinal Fibers Contribute to β Corticomuscular Coherence. J Neurosci 2021; 41:4867-4879. [PMID: 33893222 PMCID: PMC8260170 DOI: 10.1523/jneurosci.2908-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
Human corticospinal transmission is commonly studied using brain stimulation. However, this approach is biased to activity in the fastest conducting axons. It is unclear whether conclusions obtained in this context are representative of volitional activity in mild-to-moderate contractions. An alternative to overcome this limitation may be to study the corticospinal transmission of endogenously generated brain activity. Here, we investigate in humans (N = 19; of either sex), the transmission speeds of cortical β rhythms (∼20 Hz) traveling to arm (first dorsal interosseous) and leg (tibialis anterior; TA) muscles during tonic mild contractions. For this purpose, we propose two improvements for the estimation of corticomuscular β transmission delays. First, we show that the cumulant density (cross-covariance) is more accurate than the commonly-used directed coherence to estimate transmission delays in bidirectional systems transmitting band-limited signals. Second, we show that when spiking motor unit activity is used instead of interference electromyography, corticomuscular transmission delay estimates are unaffected by the shapes of the motor unit action potentials (MUAPs). Applying these improvements, we show that descending corticomuscular β transmission is only 1-2 ms slower than expected from the fastest corticospinal pathways. In the last part of our work, we show results from simulations using estimated distributions of the conduction velocities for descending axons projecting to lower motoneurons (from macaque histologic measurements) to suggest two scenarios that can explain fast corticomuscular transmission: either only the fastest corticospinal axons selectively transmit β activity, or else the entire pool does. The implications of these two scenarios for our understanding of corticomuscular interactions are discussed.SIGNIFICANCE STATEMENT We present and validate an improved methodology to measure the delay in the transmission of cortical β activity to tonically-active muscles. The estimated corticomuscular β transmission delays obtained with this approach are remarkably similar to those expected from transmission in the fastest corticospinal axons. A simulation of β transmission along a pool of corticospinal axons using an estimated distribution of fiber diameters suggests two possible mechanisms by which fast corticomuscular transmission is achieved: either a very small fraction of the fastest descending axons transmits β activity to the muscles or, alternatively, the entire population does and natural cancellation of slow channels occurs because of the distribution of axon diameters in the corticospinal tract.
Collapse
Affiliation(s)
- J Ibáñez
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Clinical and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - A Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Erlangen 91052, Germany
| | - J C Rothwell
- Department of Clinical and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - S N Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - D Farina
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
Antagonistic muscle prefatigue weakens the functional corticomuscular coupling during isometric elbow extension contraction. Neuroreport 2021; 31:372-380. [PMID: 31876688 DOI: 10.1097/wnr.0000000000001387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE During muscle fatigue, acute changes in the interaction between the sensorimotor cortex and peripheral neurons have been widely studied. However, it is still unclear about the effect of antagonist muscle prefatigue on corticomuscular coupling and central modulation. The purpose of this study was to investigate the changes in the magnitude of electroencephalogram-electromyography (EEG-EMG) coherence and phase synchronization index (PSI) induced by antagonistic muscle prefatigue. METHODS Twelve young male volunteers conducted a 30-s long, nonfatiguing isometric elbow extension with a target force level of 20% maximum voluntary contraction (MVC) before and after a fatiguing sustained elbow flexion contraction at 20% MVC until task failure. Coherence and PSI between the EEG recorded over the sensorimotor cortex and the surface EMG of the triceps brachii (TB) muscle were quantified for the pre- and post-fatigue elbow extension contractions. RESULTS Coherence and PSI in the gamma frequency band (35-60 Hz) were found significantly decreased in the postfatigue elbow extension contraction than the prefatigue contraction. The power of the EEG in the beta and gamma band were significantly increased, while the EMG power showed no significant changes when the antagonistic muscle was prefatigued. PSI in the gamma frequency band between the EMG of the TB muscle and the EEG were found significantly decreased during postfatigue elbow extension contraction compared with prefatigue contraction. CONCLUSION Antagonistic muscle prefatigue led to significantly lower gamma band corticomuscular coherence and phase coupling during an isometric elbow extension position task. The lower corticomuscular coupling may indicate a central modulation mechanism of antagonist muscle prefatigue that related to decreased descending common drive or joint instability compensation modulation mechanism.
Collapse
|
37
|
Weersink JB, de Jong BM, Halliday DM, Maurits NM. Intermuscular coherence analysis in older adults reveals that gait-related arm swing drives lower limb muscles via subcortical and cortical pathways. J Physiol 2021; 599:2283-2298. [PMID: 33687081 PMCID: PMC8252748 DOI: 10.1113/jp281094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Gait-related arm swing in humans supports efficient lower limb muscle activation, indicating a neural coupling between the upper and lower limbs during gait. Intermuscular coherence analyses of gait-related electromyography from upper and lower limbs in 20 healthy participants identified significant coherence in alpha and beta/gamma bands indicating that upper and lower limbs share common subcortical and cortical drivers that coordinate the rhythmic four-limb gait pattern. Additional directed connectivity analyses revealed that upper limb muscles drive and shape lower limb muscle activity during gait via subcortical and cortical pathways and to a lesser extent vice versa. The results provide a neural underpinning that arm swing may serve as an effective rehabilitation therapy concerning impaired gait in neurological diseases. ABSTRACT Human gait benefits from arm swing, as it enhances efficient lower limb muscle activation in healthy participants as well as patients suffering from neurological impairment. The underlying neuronal mechanisms of such coupling between upper and lower limbs remain poorly understood. The aim of the present study was to examine this coupling by intermuscular coherence analysis during gait. Additionally, directed connectivity analysis of this coupling enabled assessment of whether gait-related arm swing indeed drives lower limb muscles. To that end, electromyography recordings were obtained from four lower limb muscles and two upper limb muscles bilaterally, during gait, of 20 healthy participants (mean (SD) age 67 (6.8) years). Intermuscular coherence analysis revealed functional coupling between upper and lower limb muscles in the alpha and beta/gamma band during muscle specific periods of the gait cycle. These effects in the alpha and beta/gamma bands indicate involvement of subcortical and cortical sources, respectively, that commonly drive the rhythmic four-limb gait pattern in an efficiently coordinated fashion. Directed connectivity analysis revealed that upper limb muscles drive and shape lower limb muscle activity during gait via subcortical and cortical pathways and to a lesser extent vice versa. This indicates that gait-related arm swing reflects the recruitment of neuronal support for optimizing the cyclic movement pattern of the lower limbs. These findings thus provide a neural underpinning for arm swing to potentially serve as an effective rehabilitation therapy concerning impaired gait in neurological diseases.
Collapse
Affiliation(s)
- Joyce B Weersink
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, The Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, The Netherlands
| | - David M Halliday
- Department of Electronic Engineering & York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, The Netherlands
| |
Collapse
|
38
|
Effect of muscle fatigue on the cortical-muscle network: A combined electroencephalogram and electromyogram study. Brain Res 2020; 1752:147221. [PMID: 33358729 DOI: 10.1016/j.brainres.2020.147221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/14/2020] [Accepted: 11/28/2020] [Indexed: 11/23/2022]
Abstract
Electroencephalogram (EEG) and electromyogram (EMG) signals during motion control reflect the interaction between the cortex and muscle. Therefore, dynamic information regarding the cortical-muscle system is of significance for the evaluation of muscle fatigue. We treated the cortex and muscle as a whole system and then applied graph theory and symbolic transfer entropy to establish an effective cortical-muscle network in the beta band (12-30 Hz) and the gamma band (30-45 Hz). Ten healthy volunteers were recruited to participate in the isometric contraction at the level of 30% maximal voluntary contraction. Pre- and post-fatigue EEG and EMG data were recorded. According to the Borg scale, only data with an index greater than 14<19 were selected as fatigue data. The results show that after muscle fatigue: (1) the decrease in the force-generating capacity leads to an increase in STE of the cortical-muscle system; (2) increases of dynamic forces in fatigue leads to a shift from the beta band to gamma band in the activity of the cortical-muscle network; (3) the areas of the frontal and parietal lobes involved in muscle activation within the ipsilateral hemibrain have a compensatory role. Classification based on support vector machine algorithm showed that the accuracy is improved compared to the brain network. These results illustrate the regulation mechanism of the cortical-muscle system during the development of muscle fatigue, and reveal the great potential of the cortical-muscle network in analyzing motor tasks.
Collapse
|
39
|
Watanabe T, Nojima I, Mima T, Sugiura H, Kirimoto H. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults. Neuroimage 2020; 220:117089. [DOI: 10.1016/j.neuroimage.2020.117089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022] Open
|
40
|
Nenna F, Do CT, Protzak J, Gramann K. Alteration of brain dynamics during dual-task overground walking. Eur J Neurosci 2020; 54:8158-8174. [PMID: 32881128 DOI: 10.1111/ejn.14956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
When walking in our natural environment, we often solve additional cognitive tasks. This increases the demand of resources needed for both the cognitive and motor systems, resulting in Cognitive-Motor Interference (CMI). A large portion of neurophysiological investigations on CMI took place in static settings, emphasizing the experimental rigor but overshadowing the ecological validity. As a more ecologically valid alternative to treadmill and desktop-based setups to investigate CMI, we developed a dual-task walking scenario in virtual reality (VR) combined with Mobile Brain/Body Imaging (MoBI). We aimed at investigating how brain dynamics are modulated by dual-task overground walking with an additional task in the visual domain. Participants performed a visual discrimination task in VR while standing (single-task) and walking overground (dual-task). Even though walking had no impact on the performance in the visual discrimination task, a P3 amplitude reduction along with changes in power spectral densities (PSDs) were observed for discriminating visual stimuli during dual-task walking. These results reflect an impact of walking on the parallel processing of visual stimuli even when the cognitive task is particularly easy. This standardized and easy to modify VR paradigm helps to systematically study CMI, allowing researchers to control for the impact of additional task complexity of tasks in different sensory modalities. Future investigations implementing an improved virtual design with more challenging cognitive and motor tasks will have to investigate the roles of both cognition and motion, allowing for a better understanding of the functional architecture of attention reallocation between cognitive and motor systems during active behavior.
Collapse
Affiliation(s)
- Federica Nenna
- Department of General Psychology, University of Padova, Padova, Italy
| | - Cao Tri Do
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Janna Protzak
- Junior research group FANS (Pedestrian Assistance System for Older Road User), Berlin Institute of Technology, Berlin, Germany
| | - Klaus Gramann
- Biological Psychology and Neuroergonomics, Berlin Institute of Technology, Berlin, Germany.,School of Computer Science, University of Technology Sydney, Sydney, NSW, Australia.,Center for Advanced Neurological Engineering, University of California, San Diego, CA, USA
| |
Collapse
|
41
|
Guo Z, Qian Q, Wong K, Zhu H, Huang Y, Hu X, Zheng Y. Altered Corticomuscular Coherence (CMCoh) Pattern in the Upper Limb During Finger Movements After Stroke. Front Neurol 2020; 11:410. [PMID: 32477257 PMCID: PMC7240065 DOI: 10.3389/fneur.2020.00410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/20/2020] [Indexed: 01/15/2023] Open
Abstract
Background: Proximal compensation to the distal movements is commonly observed in the affected upper extremity (UE) of patients with chronic stroke. However, the cortical origin of this compensation has not been well-understood. In this study, corticomuscular coherence (CMCoh) and electromyography (EMG) analysis were adopted to investigate the corticomuscular coordinating pattern of proximal UE compensatory activities when conducting distal UE movements in chronic stroke. Method: Fourteen chronic stroke subjects and 10 age-matched unimpaired controls conducted isometric finger extensions and flexions at 20 and 40% of maximal voluntary contractions. Electroencephalogram (EEG) data were recorded from the sensorimotor area and EMG signals were captured from extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii (BIC) to investigate the CMCoh peak values in the Beta band. EMG parameters, i.e., the EMG activation level and co-contraction index (CI), were analyzed to evaluate the compensatory muscular patterns in the upper limb. Result: The peak CMCoh with statistical significance (P < 0.05) was found shifted from the ipsilesional side to the contralesional side in the proximal UE muscles, while to the central regions in the distal UE muscle in chronic strokes. Significant differences (P < 0.05) were observed in both peak ED and FD CMCohs during finger extensions between the two groups. The unimpaired controls exhibited significant intragroup differences between 20 and 40% levels in extensions for peak ED and FD CMCohs (P < 0.05). The stroke subjects showed significant differences in peak TRI and BIC CMCohs (P < 0.01). No significant inter- or intra-group difference was observed in peak CMCoh during finger flexions. EMG parameters showed higher EMG activation levels in TRI and BIC muscles (P < 0.05), and higher CI values in the muscle pairs involving TRI and BIC during all the extension and flexion tasks in the stroke group than those in the control group (P < 0.05). Conclusion: The post-stroke proximal muscular compensations from the elbow to the finger movements were cortically originated, with the center mainly located in the contralesional hemisphere.
Collapse
Affiliation(s)
- Ziqi Guo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qiuyang Qian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kiufung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hanlin Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yongping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
42
|
Sh T, S P, A Z, A M, Z B. Does Muscle Fatigue Alter EEG Bands of Brain Hemispheres? J Biomed Phys Eng 2020; 10:187-196. [PMID: 32337186 PMCID: PMC7166226 DOI: 10.31661/jbpe.v0i0.621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 11/16/2022]
Abstract
Background: Muscle fatigue has been known to influence brain activity, but very little is known about how cortical centers respond to muscle fatigue. Objective: This study was conducted to investigate the effects of muscle contraction and fatigue induced by two different percents of maximal
voluntary contraction (MVC) on Electroencephalography (EEG) signals. Material and Methods: In this quasi-experimental study, EEG signals were recorded from twenty-one healthy human subjects during three phases
(rest, pre fatigue and post fatigue) contraction of Adductor pollicis muscle (APM) at 30% and 70% MVC. The mean powers
of EEG bands (alpha, beta and gamma) were computed offline in the frequency domain. Results: None of the three phases with each percent of MVC revealed significant differences for all bands (p>0.05).
Comparison of two hemispheres showed that right hemisphere gamma band activity was enhanced during pre-fatigue state
at 30% MVC (p= 0.042) and post-fatigue state at 70% MVC (p= 0.028). Right hemisphere beta band activity also increased prominently at 70% MVC in post-fatigue condition (p = 0.030). Conclusion: These results suggest muscle contraction and fatigue at 30% and 70% MVC have no significant effect on EEG activity, but the
trends of beta and gamma band activities are almost similar in each percent of 30% and 70% MVC. Right brain hemisphere shows
more activity than left hemisphere in beta and gamma rhythm after fatigue state at 70% MVC.
Collapse
Affiliation(s)
- Taghizadeh Sh
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Student Research Committee, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pirouzi S
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Rehabilitation sciences research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zamani A
- PhD, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motealleh A
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Rehabilitation sciences research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagheri Z
- PhD, Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Igasaki T, Yamashita K, Ushijima T. Force-Temporal Characteristics of EEG-EMG Coherence during Isometric Contraction of Lateral Head of Gastrocnemius Muscle. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2157-2160. [PMID: 31946328 DOI: 10.1109/embc.2019.8856456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coherence between an electroencephalogram (EEG) and an electromyogram (EMG) of the soleus (SOL) muscle during an isometric contraction is observed in the beta-band (15 to 35 Hz) regardless of the contraction force. However, the dynamics on how a variation in coherence occurs over time in the head of the gastrocnemius (GLH) muscle, which is also known to have the same role as the soleus muscle, have yet to be considered. In this study, we focused on GLH and measured an EEG and EMG taken of the GLH muscle when executing an isometric contraction through the dorsiflexion of the right ankle joint for a 1-min period. Moreover, we investigated changes in the EEG-EMG coherence based on the contraction force and elapsed time. As a result, in most subjects, the peak coherence during a weak contraction force was continuously observed in the β-band, whereas the peak coherence during a strong contraction force was observed in the γ-band (35 to 60 Hz) for only the first 12 s. In addition, no significant coherence was observed. Therefore, it was suggested that muscle fatigue induced by a strong contraction force affects the peak coherence. Meanwhile, the inconsistencies observed between the properties of the peak coherence and SOL might be due to the differences in muscle composition.
Collapse
|
44
|
Elting JWJ, Tas J, Aries MJ, Czosnyka M, Maurits NM. Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations. J Cereb Blood Flow Metab 2020; 40:135-149. [PMID: 30353763 PMCID: PMC6927073 DOI: 10.1177/0271678x18806107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.
Collapse
Affiliation(s)
- Jan Willem J Elting
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeanette Tas
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel Jh Aries
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, The Netherlands.,Brain Physics Group, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Group, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Associations between cognitive performance and sigma power during sleep in children with attention-deficit/hyperactivity disorder, healthy children, and healthy adults. PLoS One 2019; 14:e0224166. [PMID: 31648258 PMCID: PMC6812820 DOI: 10.1371/journal.pone.0224166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/06/2019] [Indexed: 01/07/2023] Open
Abstract
Sigma power during sleep is associated with cognitive abilities in healthy humans. We examined the relationship between sigma power in sleep EEG and intelligence and alertness in schoolchildren with ADHD (n = 17) in comparison to mentally healthy children (n = 16) and adults (n = 23). We observed a positive correlation between sigma power in sleep stage 2 and IQ in healthy adults but a negative correlation in children with ADHD. Furthermore, children with ADHD showed slower reaction times in alertness testing than both control groups. In contrast, only healthy children displayed a positive correlation between sigma power and reaction times. These data suggest that the associations between sigma power and cognitive performance underlie distinct developmental processes. A negative association between IQ and sigma power indicates a disturbed function of sleep in cognitive functions in ADHD, whereas the function of sleep appears to be matured early in case of motor-related alertness performance.
Collapse
|
46
|
Wang L, Niu W, Wang K, Zhang S, Li L, Lu T. Badminton players show a lower coactivation and higher beta band intermuscular interactions of ankle antagonist muscles during isokinetic exercise. Med Biol Eng Comput 2019; 57:2407-2415. [PMID: 31473946 DOI: 10.1007/s11517-019-02040-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
Previous studies have suggested that skilled athletes may show a specific muscle activation pattern with a lower antagonist coactivation level. Based on the point, we hypothesize that the coupling of antagonistic muscles may be different between badminton players and non-skilled individuals during exercises. The current work was designed to verify the hypothesis. Ten male college students and eight male badminton players performed three maximal voluntary isometric contractions (MVC) and a set of three maximal concentric ankle dorsiflexion and plantar flexions at an angular velocity of 30°, 60°, 120°, and 180°/s. Surface electromyography (EMG) was recorded from the tibialis anterior (TA) and lateral gastrocnemius (LG) muscles during the test. Normalized average EMG amplitude and phase synchronization index (PSI) between surface EMG of TA and LG were calculated. Antagonist muscle coactivation was significantly lower (from 22.1% ± 9.4 and 10.7% ± 3.7 at 30°/s to 22.4% ± 9.7 and 10.6% ± 2.5 at 180°/s for non-players and badminton players group, respectively), and PSI in beta frequency band was significantly higher (from 0.42 ± 0.06 and 0.47 ± 0.15 at 30°/s to 0.35 ± 0.12 and 0.49 ± 0.14 at 180°/s) in the badminton player group compared with the non-player group during isokinetic ankle dorsiflexion contraction. No significant difference was found in antagonist muscle coactivation and PSI between two group subjects during ankle plantar flexion. The decrease of antagonist coactivation may indicate an optimal motor control style to increase the contraction efficiency, while the increase coupling of antagonistic muscles may help to ensure joint stability to compensate for the decrease of antagonist coactivation. Graphical abstract Significant difference of observed indexes between non-players and badminton players.
Collapse
Affiliation(s)
- Lejun Wang
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, 200092, China.
| | - Wenxin Niu
- Yangzhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai, 201619, China.
| | - Kuan Wang
- Yangzhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai, 201619, China
| | - Shengnian Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Li Li
- Department of Health & Kinesiology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Tianfeng Lu
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, 200092, China
| |
Collapse
|
47
|
Corticospinal control of normal and visually guided gait in healthy older and younger adults. Neurobiol Aging 2019; 78:29-41. [DOI: 10.1016/j.neurobiolaging.2019.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 01/18/2023]
|
48
|
Liu J, Sheng Y, Zeng J, Liu H. Corticomuscular Coherence for Upper Arm Flexor and Extensor Muscles During Isometric Exercise and Cyclically Isokinetic Movement. Front Neurosci 2019; 13:522. [PMID: 31178688 PMCID: PMC6538811 DOI: 10.3389/fnins.2019.00522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023] Open
Abstract
Cortical-muscular functional coupling reflects the interaction between the cerebral cortex and the muscle activities. Corticomuscular coherence (CMC) has been extensively revealed in sustained contractions of various upper- and lower-limb muscles during static and dynamic force outputs. However, it is not well-understood that the CMC modulation mechanisms, i.e., the relation between a cerebral hemisphere and dynamic motor controlling limbs at constant speeds, such as isokinetic movement. In this paper, we explore the CMC between upper arm flexors/extensors movement and motor cortex during isometric exercise and cyclically isokinetic movement. We also provide further insights of frequency-shift and the neural pathway mechanisms in isokinetic movement by evaluating the coherence between motor cortex and agonistic or antagonistic muscles. This study is the first to investigate the relationship between cortical-muscular functional connections in elbow flexion-extension movement with constant speeds. The result shows that gamma-range coherence for isokinetic movement is greatly increased compared with isometric exercise, and significant CMC is observed in the entire flexion-extension stage regardless the nature of muscles contraction, although dominant synchronization of cortical oscillation and muscular activity resonated in sustained contraction stage principally. Besides, the CMC for extensors and flexors are explicitly consistent in contraction stage during cyclically isokinetic elbow movement. It is concluded that cortical-muscular coherence can be dynamically modulated as well as selective by cognitive demands of the body, and the time-varying mechanisms of the synchronous motor oscillation exist in healthy individuals during dynamic movement.
Collapse
Affiliation(s)
- Jinbiao Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yixuan Sheng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Zeng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Honghai Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Chen X, Zhang Y, Cheng S, Xie P. Transfer Spectral Entropy and Application to Functional Corticomuscular Coupling. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1092-1102. [DOI: 10.1109/tnsre.2019.2907148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Liu J, Sheng Y, Liu H. Corticomuscular Coherence and Its Applications: A Review. Front Hum Neurosci 2019; 13:100. [PMID: 30949041 PMCID: PMC6435838 DOI: 10.3389/fnhum.2019.00100] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Corticomuscular coherence (CMC) is an index utilized to indicate coherence between brain motor cortex and associated body muscles, conventionally. As an index of functional connections between the cortex and muscles, CMC research is the focus of neurophysiology in recent years. Although CMC has been extensively studied in healthy subjects and sports disorders, the purpose of its applications is still ambiguous, and the magnitude of CMC varies among individuals. Here, we aim to investigate factors that modulate the variation of CMC amplitude and compare significant CMC between these factors to find a well-developed research prospect. In the present review, we discuss the mechanism of CMC and propose a general definition of CMC. Factors affecting CMC are also summarized as follows: experimental design, band frequencies and force levels, age correlation, and difference between healthy controls and patients. In addition, we provide a detailed overview of the current CMC applications for various motor disorders. Further recognition of the factors affecting CMC amplitude can clarify the physiological mechanism and is beneficial to the implementation of CMC clinical methods.
Collapse
Affiliation(s)
- Jinbiao Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yixuan Sheng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Honghai Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|