1
|
Hao T, Xiao Y, Varjani S. Transiting from the inhibited steady-state to the steady-state through the ammonium bicarbonate mediation in the anaerobic digestion of low-C/N-ratio food wastes. BIORESOURCE TECHNOLOGY 2022; 351:127046. [PMID: 35337997 DOI: 10.1016/j.biortech.2022.127046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The current study aimed to determine the effects of NH4+ on anaerobic digestion (AD) metabolism and the feasibility of using NH4HCO3 to improve methane production in an AD system when treating a low-C/N-ratio food waste (FW). Increasing the ammonium concentration (500-1000 mg NH4Cl-N/L) added into the AD system did not limit the methane production but caused the volatile fatty acid (VFA) accumulation, forming an "inhibited steady-state" system. The addition of 200 mg NH4HCO3-N/L increased methane yield by 20% by aiding the microbial oxidation of VFAs. The high acetate content (65-85%) and abundance of acetoclastic methanogens (Methanosaeta and Methanosarcina) indicated an efficient acetoclastic methanogenesis process, which was facilitated by NH4HCO3. The long-term operation of the AD system demonstrated that NH4HCO3, at a concentration of 200 mg N/L, was capable of forming an active buffer system with NH4+ and VFAs, enhancing methane production (221 ± 86 mL/g VS).
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China
| | - Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| |
Collapse
|
2
|
Zhan C, Li X, Yang Y, Nielsen J, Bai Z, Chen Y. Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol Bioeng 2021; 118:3655-3668. [PMID: 34133022 DOI: 10.1002/bit.27862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
As alternatives to traditional fermentation substrates, methanol (CH3 OH), carbon dioxide (CO2 ) and methane (CH4 ) represent promising one-carbon (C1) sources that are readily available at low-cost and share similar metabolic pathway. Of these C1 compounds, methanol is used as a carbon and energy source by native methylotrophs, and can be obtained from CO2 and CH4 by chemical catalysis. Therefore, constructing and rewiring methanol utilization pathways may enable the use of one-carbon sources for microbial fermentations. Recent bioengineering efforts have shown that both native and nonnative methylotrophic organisms can be engineered to convert methanol, together with other carbon sources, into biofuels and other commodity chemicals. However, many challenges remain and must be overcome before industrial-scale bioprocessing can be established using these engineered cell refineries. Here, we provide a comprehensive summary and comparison of methanol metabolic pathways from different methylotrophs, followed by a review of recent progress in engineering methanol metabolic pathways in vitro and in vivo to produce chemicals. We discuss the major challenges associated with establishing efficient methanol metabolic pathways in microbial cells, and propose improved designs for future engineering.
Collapse
Affiliation(s)
- Chunjun Zhan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Eregowda T, Kokko ME, Rene ER, Rintala J, Lens PNL. Volatile fatty acid production from Kraft mill foul condensate in upflow anaerobic sludge blanket reactors. ENVIRONMENTAL TECHNOLOGY 2021; 42:2447-2460. [PMID: 31928330 DOI: 10.1080/09593330.2019.1703823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
The utilization of foul condensate (FC) collected from a Kraft pulp mill for the anaerobic production of volatile fatty acids (VFA) was tested in upflow anaerobic sludge blanket (UASB) reactors operated at 22, 37 and 55°C at a hydraulic retention time (HRT) of ∼75 h. The FC consisted mainly of 11370, 500 and 592 mg/L methanol, ethanol and acetone, respectively. 42-46% of the organic carbon (methanol, ethanol and acetone) was utilized in the UASB reactors operated at an organic loading of ∼8.6 gCOD/L.d and 52-70% of the utilized organic carbon was converted into VFA. Along with acetate, also propionate, isobutyrate, butyrate, isovalerate and valerate were produced from the FC. Prior to acetogenesis of FC, enrichment of the acetogenic biomass was carried out in the UASB reactors for 113 d by applying operational parameters that inhibit methanogenesis and induce acetogenesis. Activity tests after 158 d of reactor operation showed that the biomass from the 55°C UASB reactor exhibited the highest activity after the FC feed compared to the biomass from the reactors at 22 and 37°C. Activity tests at 37°C to compare FC utilization for CH4 versus VFA production showed that an organic carbon utilization >98% for CH4 production occurred in batch bottles, whereas the VFA production batch bottles showed 51% organic carbon utilization. Furthermore, higher concentrations of C3-C5 VFA were produced when FC was the substrate compared to synthetic methanol rich wastewater.
Collapse
Affiliation(s)
- Tejaswini Eregowda
- UNESCO-IHE, Institute for Water Education, Delft, Netherlands
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Marika E Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, Delft, Netherlands
| | - Jukka Rintala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Delft, Netherlands
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Albuquerque JND, Orellana MR, Ratusznei SM, Rodrigues JAD. THERMOPHILIC BIOMETHANE PRODUCTION BY VINASSE IN AN AnSBBR: START-UP STRATEGY AND PERFORMANCE OPTIMIZATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20170611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Zhang Y, Li J, Liu F, Yan H, Li J, Zhang X. Reduction of Gibbs free energy and enhancement of Methanosaeta by bicarbonate to promote anaerobic syntrophic butyrate oxidation. BIORESOURCE TECHNOLOGY 2018; 267:209-217. [PMID: 30025316 DOI: 10.1016/j.biortech.2018.06.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/24/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Bicarbonate (HCO3-) has been extensively researched as a buffer in anaerobic digestion. The effect of HCO3- concentration on syntrophic butyrate oxidation process was evaluated by batch culturing of anaerobic activated sludge, and the mechanism was further revealed by the changes of Gibbs free energy (ΔG) and the interspecies transfers of electron and proton. The results showed that butyrate degradation rate was enhanced by 32.07% when the supplement of HCO3- increased from 0 to 0.20 mol/L. However, methane production and acetate degradation were strongly inhibited by HCO3- more than 0.10 mol/L. More function of HCO3- was found as 1) decreasing the ΔG of syntrophic methanogenesis of butyrate while increasing the ΔG of methanogenesis of acetate, 2) enriching M. harundinacea and M. concilii, 3) increasing the diffusion rate of protons between the syntrophic consortia. This work would increase the anaerobic digestion efficiency by enhancing the interaction of the syntrophic consortia.
Collapse
Affiliation(s)
- Yupeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Fengqin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Han Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Xue Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| |
Collapse
|
6
|
Zhang Y, Li J, Liu F, Yan H, Li J. Mediative mechanism of bicarbonate on anaerobic propionate degradation revealed by microbial community and thermodynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12434-12443. [PMID: 29460248 DOI: 10.1007/s11356-018-1430-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Syntrophic acetogenesis of volatile fatty acids (VFAs) such as propionate and butyrate is considered as the rate-limiting step of anaerobic digestion. Though being extensively researched, the mechanism is not well understood as the main constraint on developing effective solutions to the practical problem. In the present research work, the mediation of methanogenic propionate degradation by exogenous bicarbonate was evaluated, while the mechanism was revealed by microbial community and thermodynamics. It was found that the exogenous bicarbonate not more than 0.10 mol/L acted as a mediative role to enrich syntrophic acetogenic bacteria and decrease the actual Gibbs free energy change (ΔG) of syntrophic acetogenesis reaction, resulted in the increased degradation rate and methane production rate of propionate. The remarkably increased ΔG of methanogenic propionate degradation by the exogenous bicarbonate more than 0.15 mol/L decreased the degradation rate and methane production rate of propionate, though the ΔG of syntrophic acetogenesis reaction was also decreased by the exogenous bicarbonate. This research work provided a control strategy to enhance syntrophic acetogenesis, as well as the methanogenic VFAs degradation.
Collapse
Affiliation(s)
- Yupeng Zhang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jianzheng Li
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China.
| | - Fengqin Liu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Han Yan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
7
|
Derakhshan Z, Mahvi AH, Ghaneian MT, Mazloomi SM, Faramarzian M, Dehghani M, Fallahzadeh H, Yousefinejad S, Berizi E, Ehrampoush MH, Bahrami S. Simultaneous removal of atrazine and organic matter from wastewater using anaerobic moving bed biofilm reactor: A performance analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 209:515-524. [PMID: 29324361 DOI: 10.1016/j.jenvman.2017.12.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/27/2017] [Accepted: 12/30/2017] [Indexed: 01/29/2023]
Abstract
In this study, an anaerobic moving bed biofilm reactor (AMBBR) was designed to biodegrade atrazine under mesophilic (32 °C) condition and then it was evaluated for approximately 1 year. After biofilm formation, acclimation, and enrichment of microbial population within the bioreactor, the effect of various operation conditions such as changes in the concentration of influent atrazine and sucrose, hydraulic retention time (HRT), and salinity on the removal of atrazine and chemical oxygen demand (COD) were studied. In optimum conditions, the maximum removal efficiency of atrazine and COD was 60.5% and 97.4%, respectively. Various models were developed to predict the performance of atrazine removal as a function of HRT during continuous digestion. Also, coefficients kinetics was studied and the maximum atrazine removal rate was determined by Stover - Kincannon model (rmax = 0.223 kgATZ/m3d). Increasing salinity up to 20 g/L NaCl in influent flow could inhibit atrazine biodegradation process strongly in the AMBBR reactor; whereas, the reactor could tolerate the concentrations less than 20 g/L easily. Results showed that AMBBR is feasible, easy, affordable, so suitable process for efficiently biodegrading toxic chlorinated organic compounds such as atrazine. There was no accumulation of atrazine in the biofilm and the loss of atrazine in the control reactor was negligible; this shows that atrazine removal mechanism in this system was due to co-metabolism.
Collapse
Affiliation(s)
- Zahra Derakhshan
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Environmental Health, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Amir Hossein Mahvi
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER) and Department of Environmental Health Engineering, School of Public Health Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Ghaneian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Mazloomi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Faramarzian
- Research Center for Health Sciences, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Fallahzadeh
- Prevention and Epidemiology of Non-Communicable Disease Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Enayat Berizi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Shima Bahrami
- Research Center for Health Sciences, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Assessment of active methanogenic archaea in a methanol-fed upflow anaerobic sludge blanket reactor. Appl Microbiol Biotechnol 2016; 100:10137-10146. [DOI: 10.1007/s00253-016-7862-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/04/2016] [Accepted: 09/15/2016] [Indexed: 11/25/2022]
|
9
|
Lu X, Zhen G, Chen M, Kubota K, Li YY. Biocatalysis conversion of methanol to methane in an upflow anaerobic sludge blanket (UASB) reactor: Long-term performance and inherent deficiencies. BIORESOURCE TECHNOLOGY 2015; 198:691-700. [PMID: 26441026 DOI: 10.1016/j.biortech.2015.09.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Abstract
Long-term performance of methanol biocatalysis conversion in a lab-scale UASB reactor was evaluated. Properties of granules were traced to examine the impact of methanol on granulation. Methanolic wastewater could be stably treated during initial 240d with the highest biogas production rate of 18.6 ± 5.7 L/Ld at OLR 48 g-COD/Ld. However, the reactor subsequently showed severe granule disintegration, inducing granule washout and process upsets. Some steps (e.g. increasing influent Ca(2+) concentration, etc.) were taken to prevent rising dispersion, but no clear improvement was observed. Further characterizations in granules revealed that several biotic/abiotic factors all caused the dispersion: (1) depletion of extracellular polymeric substances (EPS) and imbalance of protein/polysaccharide ratio in EPS; (2) restricted formation of hard core and weak Ca-EPS bridge effect due to insufficient calcium supply; and (3) simplification of species with the methanol acclimation. More efforts are required to solve the technical deficiencies observed in methanolic wastewater treatment.
Collapse
Affiliation(s)
- Xueqin Lu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Guangyin Zhen
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-0053, Japan
| | - Mo Chen
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
10
|
Saha S, Badhe N, De Vrieze J, Biswas R, Nandy T. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures. BIORESOURCE TECHNOLOGY 2015; 189:370-378. [PMID: 25913884 DOI: 10.1016/j.biortech.2015.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
Low temperature (<20 °C) limits bio-methanation of sewage. Literature shows that hydrogenotrophic methanogens can adapt themselves to low temperature and methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor.
Collapse
Affiliation(s)
- Shaswati Saha
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Neha Badhe
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Jo De Vrieze
- Laboratory of Microbial Ecology & Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Rima Biswas
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India.
| | - Tapas Nandy
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| |
Collapse
|
11
|
Cysneiros D, Banks CJ, Heaven S, Karatzas KAG. The effect of pH control and 'hydraulic flush' on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. BIORESOURCE TECHNOLOGY 2012; 123:263-271. [PMID: 22940328 DOI: 10.1016/j.biortech.2012.06.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/17/2012] [Accepted: 06/23/2012] [Indexed: 06/01/2023]
Abstract
The effect of hydraulic flush and pH control on hydrolysis, Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors was investigated for the first time. Six reactors were operated under different regimes for two consecutive batches of 28days each. Buffering at pH ∼6.5 improved hydrolysis (Volatile Solid (VS) degradation) and VFA production by ∼50%. Butyric and acetic acid were dominant when reactors were buffered, while only butyric acid was produced at low pH. Hydraulic flush enhanced VS degradation and VFA production by ∼15% and ∼32%, respectively. Most Probable Number (MPN) of cellulolytic microorganisms indicated a wash out when hydraulic flush was applied, but pH control helped to counteract this. The highest VS degradation (∼89%), VFA yield (0.84kgCODkg(-1)VS(added)) and theoretical methane potential (0.37m(3)CH(4)kg(-1)VS(added)) were obtained when pH control and hydraulic flush were applied, and therefore, these conditions are recommended.
Collapse
Affiliation(s)
- Denise Cysneiros
- University of Southampton, School of Civil Engineering and the Environment, University Road, Southampton, SO17 1BJ, UK.
| | | | | | | |
Collapse
|
12
|
Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation. J Ind Microbiol Biotechnol 2008; 35:1465-74. [DOI: 10.1007/s10295-008-0448-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
|