1
|
Cai S, Lao Q, Cai M, Silva DPTT, Lu X, Zhou X, Jin G, Chen C, Chen F. Water residence time controls seasonal nitrous oxide budget in a semi-enclosed bay: Insights from an improvement estimation method. MARINE POLLUTION BULLETIN 2024; 206:116701. [PMID: 38991612 DOI: 10.1016/j.marpolbul.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
This study developed an estimation method for the N2O budget using 15N stable isotope labeling techniques, a dual-layer model and a box model, which was used to elucidate the underlying dynamics of N2O accumulation in Zhanjiang Bay. The results showed that although the net input of N2O during the rainy season was 2.36 times higher than that during the dry season, the overall N2O concentration was only 66.6 % of that during the dry season due to the extended water residence time in the dry season. Our findings highlighted that water residence time was the key factor for the N2O emission, and a longer water residence time was unfavorable for the efflux of N2O through hydrodynamic processes and was more conducive to the production and accumulation of N2O within the bay. This research enhanced our comprehension of N2O dynamics and provided crucial insights for refining nitrogen management strategies and mitigation efforts.
Collapse
Affiliation(s)
- Shangjun Cai
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qibin Lao
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Dickwelle P T T Silva
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuan Lu
- Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Xin Zhou
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangzhe Jin
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunqing Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Cai S, Lao Q, Chen C, Zhu Q, Chen F. The impact of algal blooms on promoting in-situ N 2O emissions: A case in Zhanjiang bay, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120935. [PMID: 38648725 DOI: 10.1016/j.jenvman.2024.120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Under the influence of many factors, such as climate change, anthropogenic eutrophication, and the development of aquaculture, the area and frequency of algal blooms have showed an increasing trend worldwide, which has become a challenging issue at present. However, the coupled relationship between nitrous oxide (N2O) and algal blooms and the underlying mechanisms remain unclear. To address this issue, 15N isotope cultures and quantitative polymerase chain reaction (qPCR) experiments were conducted in Zhanjiang Bay during algal and non-algal bloom periods. The results showed that denitrification and nitrification-denitrification were the two processes responsible for the in-situ production of N2O during algal and non-algal bloom periods. Stable isotope rate cultivation experiments indicated that denitrification and nitrification-denitrification were promoted in the water during the algal bloom period. The in-situ production of N2O during the algal bloom period was three-fold that during the non-algal bloom period. This may be because fresh particulate organic matter (POM) from the organisms responsible for the algal bloom provides the necessary anaerobic and hypoxic environment for denitrification and nitrification-denitrification in the degradation environment. Additionally, a positive linear correlation between N2O concentrations and ammonia-oxidizing bacteria (AOB) and denitrifying bacteria (nirK and nirS) also supported the significant denitrification and nitrification-denitrification occurring in the water during the algal bloom period. However, the algal bloom changed the main process for the in-situ production of N2O, wherein it shifted from denitrification during the non-algal bloom period to nitrification-denitrification during the algal bloom period. The results of our study will improve our understanding of the processes responsible for the in-situ production of N2O during the algal bloom period, and can help formulate effective policies to mitigate N2O emissions in the bay.
Collapse
Affiliation(s)
- Shangjun Cai
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qibin Lao
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunqing Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qingmei Zhu
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
3
|
Wang H, Bier R, Zgleszewski L, Peipoch M, Omondi E, Mukherjee A, Chen F, Zhang C, Kan J. Distinct Distribution of Archaea From Soil to Freshwater to Estuary: Implications of Archaeal Composition and Function in Different Environments. Front Microbiol 2020; 11:576661. [PMID: 33193193 PMCID: PMC7642518 DOI: 10.3389/fmicb.2020.576661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
In addition to inhabiting extreme territories, Archaea are widely distributed in common environments spanning from terrestrial to aquatic environments. This study investigated and compared archaeal community structures from three different habitats (representing distinct environments): agriculture soils (from farming system trials FST, PA, United States), freshwater biofilms (from White Clay Creek, PA, United States), and estuary water (Chesapeake Bay, United States). High-throughput sequencing of 16S rRNA genes indicated that Thaumarchaeota, Euryarchaeota, Nanoarchaeota, Crenarchaeota, and Diapherotrites were the commonly found dominant phyla across these three environments. Similar to Bacteria, distinct community structure and distribution patterns for Archaea were observed in soils vs. freshwater vs. estuary. However, the abundance, richness, evenness, and diversity of archaeal communities were significantly greater in soils than it was in freshwater and estuarine environments. Indicator species (or amplicon sequence variants, ASVs) were identified from different nitrogen and carbon cycling archaeal groups in soils (Nitrososphaerales, Nitrosotaleales, Nitrosopumilales, Methanomassiliicoccales, Lainarchaeales), freshwater biofilms (Methanobacteria, Nitrososphaerales) and Chesapeake Bay (Marine Group II, Nitrosopumilales), suggesting the habitat-specificity of their biogeochemical contributions to different environments. Distinct functional aspects of Archaea were also confirmed by functional predictions (PICRUSt2 analysis). Further, co-occurrence network analysis indicated that only soil Archaea formed stable modules. Keystone species (ASVs) were identified mainly from Methanomassiliicoccales, Nitrososphaerales, Nitrosopumilales. Overall, these results indicate a strong habitat-dependent distribution of Archaea and their functional partitions within the local environments.
Collapse
Affiliation(s)
- Hualong Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Raven Bier
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
| | - Laura Zgleszewski
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
| | - Marc Peipoch
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
| | | | | | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Gao D, Hou L, Liu M, Li X, Zheng Y, Yin G, Wu D, Yang Y, Han P, Liang X, Dong H. Mechanisms responsible for N 2O emissions from intertidal soils of the Yangtze Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137073. [PMID: 32036146 DOI: 10.1016/j.scitotenv.2020.137073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Estuarine and coastal wetland ecosystems are important sources of atmospheric nitrous oxide (N2O). However, the underlying driver of emitted N2O from estuarine and coastal wetlands remains poorly understood. Here, natural-abundance isotope technique was applied to characterize the processes responsible for N2O emission from the intertidal soils of the Yangtze Estuary. Measured N2O emission rates ranged from 0.70 to 2.15 μmol m-2 h-1, with relatively high values at the upper estuarine sites. The δ15N, δ18O and SP (intramolecular 15N site preference) of emitted N2O varied from -4.5 to 6.7‰, 42.4 to 53.2‰, and 6.7 to 15.4‰, respectively. Gross N2O production and consumption rates were within the ranges of 3.16-14.34 μmol m-2 h-1 and 2.22-12.54 μmol m-2 h-1, respectively, showing a similar spatial pattern to N2O emission. N2O consumption proportion varied from 69.56 to 90.31%, which was generally lower at the upper estuarine sites. The gross production rates and consumption degree of N2O simultaneously controlled the variations in N2O emission. Bacterial denitrification was the dominant production pathway (78.22-97.36%), while hydroxylamine (NH2OH) oxidation contributed 2.64-21.78% to N2O production. Soil pH, Fe2+/Fe3+, sulfide and substrate availability were probably the main factors governing the N2O emission dynamics. Overall, these results highlight the substantial role of NH2OH oxidation and N2O consumption in N2O release in redox-dynamic soils of estuarine intertidal wetlands.
Collapse
Affiliation(s)
- Dengzhou Gao
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaofei Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, 8 Shangsan Road, Fuzhou 350007, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dianming Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ping Han
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xia Liang
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
5
|
Grefe I, Fielding S, Heywood KJ, Kaiser J. Nitrous oxide variability at sub-kilometre resolution in the Atlantic sector of the Southern Ocean. PeerJ 2018; 6:e5100. [PMID: 30002961 PMCID: PMC6037155 DOI: 10.7717/peerj.5100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/05/2018] [Indexed: 11/20/2022] Open
Abstract
The Southern Ocean is an important region for global nitrous oxide (N2O) cycling. The contribution of different source and sink mechanisms is, however, not very well constrained due to a scarcity of seawater data from the area. Here we present high-resolution surface N2O measurements from the Atlantic sector of the Southern Ocean, taking advantage of a relatively new underway setup allowing for collection of data during transit across mesoscale features such as frontal systems and eddies. Covering a range of different environments and biogeochemical settings, N2O saturations and sea-to-air fluxes were highly variable: Saturations ranged from 96.5% at the sea ice edge in the Weddell Sea to 126.1% across the Polar Frontal Zone during transit to South Georgia. Negative sea-to-air fluxes (N2O uptake) of up to −1.3 µmol m−2 d−1 were observed in the Subantarctic Zone and highest positive fluxes (N2O emission) of 14.5 µmol m−2 d−1 in Stromness Bay, coastal South Georgia. Although N2O saturations were high in areas of high productivity, no correlation between saturations and chlorophyll a (as a proxy for productivity) was observed. Nevertheless, there is a clear effect of islands and shallow bathymetry on N2O production as inferred from supersaturations.
Collapse
Affiliation(s)
- Imke Grefe
- Centre for Ocean and Atmospheric Sciences, University of East Anglia, Norwich, United Kingdom.,Current affiliation: Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | | | - Karen J Heywood
- Centre for Ocean and Atmospheric Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jan Kaiser
- Centre for Ocean and Atmospheric Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
6
|
Evidence for fungal and chemodenitrification based N 2O flux from nitrogen impacted coastal sediments. Nat Commun 2017; 8:15595. [PMID: 28580932 PMCID: PMC5465357 DOI: 10.1038/ncomms15595] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
Although increasing atmospheric nitrous oxide (N2O) has been linked to nitrogen loading, predicting emissions remains difficult, in part due to challenges in disentangling diverse N2O production pathways. As coastal ecosystems are especially impacted by elevated nitrogen, we investigated controls on N2O production mechanisms in intertidal sediments using novel isotopic approaches and microsensors in flow-through incubations. Here we show that during incubations with elevated nitrate, increased N2O fluxes are not mediated by direct bacterial activity, but instead are largely catalysed by fungal denitrification and/or abiotic reactions (e.g., chemodenitrification). Results of these incubations shed new light on nitrogen cycling complexity and possible factors underlying variability of N2O fluxes, driven in part by fungal respiration and/or iron redox cycling. As both processes exhibit N2O yields typically far greater than direct bacterial production, these results emphasize their possibly substantial, yet widely overlooked, role in N2O fluxes, especially in redox-dynamic sediments of coastal ecosystems.
Collapse
|
7
|
Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME JOURNAL 2013; 8:1115-25. [PMID: 24225887 DOI: 10.1038/ismej.2013.205] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 11/09/2022]
Abstract
N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ(15)N(bulk) and δ(18)O -N2O of soil AOA strains were 13-30%, -13 to -35% and 22-36%, respectively, and strains MY1-3 and other soil AOA strains had distinct isotopic signatures. A (15)N-NH4(+)-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA.
Collapse
|
8
|
The Isotopomers of Nitrous Oxide: Analytical Considerations and Application to Resolution of Microbial Production Pathways. ADVANCES IN ISOTOPE GEOCHEMISTRY 2012. [DOI: 10.1007/978-3-642-10637-8_23] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Santoro AE, Buchwald C, McIlvin MR, Casciotti KL. Isotopic signature of N(2)O produced by marine ammonia-oxidizing archaea. Science 2011; 333:1282-5. [PMID: 21798895 DOI: 10.1126/science.1208239] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The ocean is an important global source of nitrous oxide (N(2)O), a greenhouse gas that contributes to stratospheric ozone destruction. Bacterial nitrification and denitrification are thought to be the primary sources of marine N(2)O, but the isotopic signatures of N(2)O produced by these processes are not consistent with the marine contribution to the global N(2)O budget. Based on enrichment cultures, we report that archaeal ammonia oxidation also produces N(2)O. Natural-abundance stable isotope measurements indicate that the produced N(2)O had bulk δ(15)N and δ(18)O values higher than observed for ammonia-oxidizing bacteria but similar to the δ(15)N and δ(18)O values attributed to the oceanic N(2)O source to the atmosphere. Our results suggest that ammonia-oxidizing archaea may be largely responsible for the oceanic N(2)O source.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | | | |
Collapse
|
10
|
Effects of entrapment on nucleic acid content, cell morphology, cell surface property, and stress of pure cultures commonly found in biological wastewater treatment. Appl Microbiol Biotechnol 2011; 92:407-18. [DOI: 10.1007/s00253-011-3393-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 01/10/2023]
|
11
|
Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. ISME JOURNAL 2011; 5:1796-808. [PMID: 21562601 DOI: 10.1038/ismej.2011.58] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Archaeal genes for ammonia oxidation are widespread in the marine environment, but direct physiological evidence for ammonia oxidation by marine archaea is limited. We report the enrichment and characterization of three strains of pelagic ammonia-oxidizing archaea (AOA) from the North Pacific Ocean that have been maintained in laboratory culture for over 3 years. Phylogenetic analyses indicate the three strains belong to a previously identified clade of water column-associated AOA and possess 16S ribosomal RNA genes and ammonia monooxygenase subunit a (amoA) genes highly similar (98-99% identity) to those recovered in DNA and complementary DNA clone libraries from the open ocean. The strains grow in natural seawater-based liquid medium while stoichiometrically converting ammonia (NH(3)) to nitrite (NO(2)(-)). Ammonia oxidation by the enrichments is only partially inhibited by allylthiourea at concentrations known to completely inhibit cultivated ammonia-oxidizing bacteria. The three strains were used to determine the nitrogen stable isotope effect ((15)ɛ(NH3)) during archaeal ammonia oxidation, an important parameter for interpreting stable isotope ratios in the environment. Archaeal (15)ɛ(NH3) ranged from 13‰ to 41‰, within the range of that previously reported for ammonia-oxidizing bacteria. Despite low amino acid identity between the archaeal and bacterial Amo proteins, their functional diversity as captured by (15)ɛ(NH3) is similar.
Collapse
|
12
|
Xiong ZQ, Khalil MAK, Xing G, Shearer MJ, Butenhoff C. Isotopic signatures and concentration profiles of nitrous oxide in a rice-based ecosystem during the drained crop-growing season. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jg000827] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Z. Q. Xiong
- College of Resources and Environmental Sciences; Nanjing Agricultural University; Nanjing China
- Department of Physics; Portland State University; Portland Oregon USA
| | - M. A. K. Khalil
- Department of Physics; Portland State University; Portland Oregon USA
| | - G. Xing
- State Key Laboratory of Soil and Sustainable Agriculture; Institute of Soil Science, Chinese Academy of Sciences; Nanjing China
| | - M. J. Shearer
- Department of Physics; Portland State University; Portland Oregon USA
| | - C. Butenhoff
- Department of Physics; Portland State University; Portland Oregon USA
| |
Collapse
|
13
|
Yamagishi H, Westley MB, Popp BN, Toyoda S, Yoshida N, Watanabe S, Koba K, Yamanaka Y. Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jg000227] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Ostrom NE, Pitt A, Sutka R, Ostrom PH, Grandy AS, Huizinga KM, Robertson GP. Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jg000287] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Well R, Flessa H, Jaradat F, Toyoda S, Yoshida N. Measurement of isotopomer signatures of N2O in groundwater. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005jg000044] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R. Well
- Institute of Soil Science and Forest Nutrition; University of Göttingen; Gottingen Germany
| | - H. Flessa
- Institute of Soil Science and Forest Nutrition; University of Göttingen; Gottingen Germany
| | - F. Jaradat
- Institute of Soil Science; University of Göttingen; Gottingen Germany
| | - S. Toyoda
- Department of Environmental Chemistry and Engineering; Tokyo Institute of Technology; Tokyo Japan
| | - N. Yoshida
- Department of Environmental Chemistry and Engineering; Tokyo Institute of Technology; Tokyo Japan
| |
Collapse
|
16
|
Casciotti KL, Ward BB. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiol Ecol 2004; 52:197-205. [PMID: 16329906 DOI: 10.1016/j.femsec.2004.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 09/15/2004] [Accepted: 11/03/2004] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) and nitrous oxide (N2O) are climatically important trace gases that are produced by both nitrifying and denitrifying bacteria. In the denitrification pathway, N2O is produced from nitric oxide (NO) by the enzyme nitric oxide reductase (NOR). The ammonia-oxidizing bacterium Nitrosomonas europaea also possesses a functional nitric oxide reductase, which was shown recently to serve a unique function. In this study, sequences homologous to the large subunit of nitric oxide reductase (norB) were obtained from eight additional strains of ammonia-oxidizing bacteria, including Nitrosomonas and Nitrosococcus species (i.e., both beta- and gamma-Proteobacterial ammonia oxidizers), showing widespread occurrence of a norB homologue in ammonia-oxidizing bacteria. However, despite efforts to detect norB homologues from Nitrosospira strains, sequences have not yet been obtained. Phylogenetic analysis placed nitrifier norB homologues in a subcluster, distinct from denitrifier sequences. The similarities and differences of these sequences highlight the need to understand the variety of metabolisms represented within a "functional group" defined by the presence of a single homologous gene. These results expand the database of norB homologue sequences in nitrifying bacteria.
Collapse
Affiliation(s)
- Karen L Casciotti
- Department of Geosciences, Princeton University, Princeton, NJ 08540, USA.
| | | |
Collapse
|
17
|
Sutka RL, Ostrom NE, Ostrom PH, Gandhi H, Breznak JA. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:738-745. [PMID: 12661029 DOI: 10.1002/rcm.968] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The relative importance of individual microbial pathways in nitrous oxide (N(2)O) production is not well known. The intramolecular distribution of (15)N in N(2)O provides a basis for distinguishing biological pathways. Concentrated cell suspensions of Methylococcus capsulatus Bath and Nitrosomonas europaea were used to investigate the site preference of N(2)O by microbial processes during nitrification. The average site preference of N(2)O formed during hydroxylamine oxidation by M. capsulatus Bath (5.5 +/- 3.5 per thousand) and N. europaea (-2.3 +/- 1.9 per thousand) and nitrite reduction by N. europaea (-8.3 +/- 3.6 per thousand) differed significantly (ANOVA, f((2,35)) = 247.9, p = 0). These results demonstrate that the mechanisms for hydroxylamine oxidation are distinct in M. capsulatus Bath and N. europaea. The average delta(18)O-N(2)O values of N(2)O formed during hydroxylamine oxidation for M. capsulatus Bath (53.1 +/- 2.9 per thousand) and N. europaea (-23.4 +/- 7.2 per thousand) and nitrite reduction by N. europaea (4.6 +/- 1.4 per thousand) were significantly different (ANOVA, f((2,35)) = 279.98, p = 0). Although the nitrogen isotope value of the substrate, hydroxylamine, was similar in both cultures, the observed fractionation (delta(15)N) associated with N(2)O production via hydroxylamine oxidation by M. capsulatus Bath and N. europaea (-2.3 and 26.0 per thousand, respectively) provided evidence that differences in isotopic fractionation were associated with these two organisms. The site preferences in this study are the first measured values for isolated microbial processes. The differences in site preference are significant and indicate that isotopomers provide a basis for apportioning biological processes producing N(2)O.
Collapse
Affiliation(s)
- R L Sutka
- Department of Geological Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|