1
|
Tian HH, Huang XH, Qin L. Insights into application progress of seafood processing technologies and their implications on flavor: a review. Crit Rev Food Sci Nutr 2023; 64:13259-13274. [PMID: 37788446 DOI: 10.1080/10408398.2023.2263893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seafood tends to be highly vulnerable to spoilage and deterioration due to biochemical reactions and microbial contaminations, which requires appropriate processing technologies to improve or maintain its quality. Flavor, as an indispensable aspect reflecting the quality profile of seafood and influencing the final choice of consumers, is closely related to the processing technologies adopted. This review gives updated information on traditional and emerging processing technologies used in seafood processing and their implications on flavor. Traditional processing technologies, especially thermal treatment, effectively deactivate microorganisms to enhance seafood safety and prolong its shelf life. Nonetheless, these methods come with limitations, including reduced processing efficiency, increased energy consumption, and alterations in flavor, color, and texture due to overheating. Emerging processing technologies like microwave heating, infrared heating, high pressure processing, cold plasma, pulsed electric field, and ultrasound show alternative effects to traditional technologies. In addition to deactivating microorganisms and extending shelf life, these technologies can also safeguard the sensory quality of seafood. This review discusses emerging processing technologies in seafood and covers their principles, applications, developments, advantages, and limitations. In addition, this review examines the potential synergies that can arise from combining certain processing technologies in seafood processing.
Collapse
Affiliation(s)
- He-He Tian
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xu-Hui Huang
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Lei Qin
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
3
|
Müller WA, Sarkis JR, Marczak LDF, Muniz AR. Molecular dynamics insights on temperature and pressure effects on electroporation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184049. [PMID: 36113558 DOI: 10.1016/j.bbamem.2022.184049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Electroporation is a cell-level phenomenon caused by an ionic imbalance in the membrane, being of great relevance in various fields of knowledge. A dependence of the pore formation kinetics on the environmental conditions (temperature and pressure) of the cell membrane has already been reported, but further clarification regarding how these variables affect the pore formation/resealing dynamics and the transport of molecules through the membrane is still lacking. The objective of the present study was to investigate the temperature (288-348 K) and pressure (1-5000 atm) effects on the electroporation kinetics using coarse-grained molecular dynamics simulations. Results shown that the time for pore formation and resealing increased with pressure and decreased with temperature, whereas the maximum pore radius increased with temperature and decreased with pressure. This behavior influenced the ion migration through the bilayer, and the higher ionic mobility was obtained in the 288 K/1000 atm simulations, i.e., a combination of low temperature and (not excessively) high pressure. These results were used to discuss some experimental observations regarding the extraction of intracellular compounds applying this technique. This study contributes to a better understanding of electroporation under different thermodynamic conditions and to an optimal selection of processing parameters in practical applications which exploit this phenomenon.
Collapse
Affiliation(s)
- Wagner Augusto Müller
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | - Júlia Ribeiro Sarkis
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | | | - André Rodrigues Muniz
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Abel N, Rotabakk BT, Lerfall J. Mild processing of seafood-A review. Compr Rev Food Sci Food Saf 2021; 21:340-370. [PMID: 34913247 DOI: 10.1111/1541-4337.12876] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Recent years have shown a tremendous increase in consumer demands for healthy, natural, high-quality convenience foods, especially within the fish and seafood sector. Traditional processing technologies such as drying or extensive heating can cause deterioration of nutrients and sensory quality uncompilable with these demands. This has led to development of many novel processing technologies, which include several mild technologies. The present review highlights the potential of mild thermal, and nonthermal physical, and chemical technologies, either used alone or in combination, to obtain safe seafood products with good shelf life and preference among consumers. Moreover, applications and limitations are discussed to provide a clear view of the potential for future development and applications. Some of the reviewed technologies, or combinations thereof, have shown great potential for non-seafood products, yet data are missing for fish and seafood in general. The present paper visualizes these knowledge gaps and the potential for new technology developments in the seafood sector. Among identified gaps, the combination of mild heating (e.g., sous vide or microwave) with more novel technologies such as pulsed electric field, pulsed light, soluble gas stabilization, cold plasma, or Ohmic heat must be highlighted. However, before industrial applications are available, more research is needed.
Collapse
Affiliation(s)
- Nanna Abel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Effect of ethanol adaption on the inactivation of Acetobacter sp. by pulsed electric fields. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Zhao YM, de Alba M, Sun DW, Tiwari B. Principles and recent applications of novel non-thermal processing technologies for the fish industry-a review. Crit Rev Food Sci Nutr 2018; 59:728-742. [PMID: 30580554 DOI: 10.1080/10408398.2018.1495613] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thermal treatment is a traditional method for food processing, which can kill microorganisms but also lead to physicochemical and sensory quality damage, especially to temperature-sensitive foods. Nowadays consumers' increasing interest in microbial safety products with premium appearance, flavor, great nutritional value and extended shelf-life has promoted the development of emerging non-thermal food processing technologies as alternative or substitution to traditional thermal methods. Fish is an important and world-favored food but has a short shelf-life due to its extremely perishable characteristic, and the microbial spoilage and oxidative process happen rapidly just from the moment of capture, making it dependent heavily on post-harvest preservation. The applications of novel non-thermal food processing technologies, including high pressure processing (HPP), ultrasound (US), pulsed electric fields (PEF), pulsed light (PL), cold plasma (CP) and ozone can extend the shelf-life by microbial inactivation and also keep good sensory quality attributes of fish, which is of high interest for the fish industry. This review presents the principles, developments of emerging non-thermal food processing technologies, and also their applications in fish industry, with the main focus on microbial inactivation and sensory quality. The promising results showed great potential to keep microbial safety while maintaining organoleptic attributes of fish products. What's more, the strengths and weaknesses of these technologies are also discussed. The combination of different food processing technologies or with advanced packaging methods can improve antimicrobial efficacy while not significantly affect other quality properties under optimized treatment.
Collapse
Affiliation(s)
- Yi-Ming Zhao
- a Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering , University College Dublin, National University of Ireland , Belfield , Dublin 4 , Ireland.,b Teagasc Food Research Centre , Ashtown , Dublin 15 , Ireland
| | - Maria de Alba
- b Teagasc Food Research Centre , Ashtown , Dublin 15 , Ireland
| | - Da-Wen Sun
- a Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering , University College Dublin, National University of Ireland , Belfield , Dublin 4 , Ireland
| | - Brijesh Tiwari
- b Teagasc Food Research Centre , Ashtown , Dublin 15 , Ireland
| |
Collapse
|
7
|
Puligundla P, Pyun YR, Mok C. Pulsed electric field (PEF) technology for microbial inactivation in low-alcohol red wine. Food Sci Biotechnol 2018; 27:1691-1696. [PMID: 30483433 PMCID: PMC6233397 DOI: 10.1007/s10068-018-0422-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 11/26/2022] Open
Abstract
The decontamination of spoilage-related microbes in low-alcohol red wine was performed using a serial multiple electrode pulsed electric field (PEF) treatment system. The system consisted of seven electrodes connected in series, and it has been designed to produce square-wave high-voltage pulses of 1 μs duration at various electric field strengths and frequencies for decontamination. The initial counts of aerobic bacteria, yeast and lactic acid bacteria (spoilage-associated microbes) in the wine were 5.56, 5.61 and 5.22 log CFU/mL, respectively. The pattern of decontamination of the spoilage microorganisms followed first-order kinetics and the decontamination effect increased as the field strength and frequency increases. DHz and DPEF values were inversely related to the electric field strength of the PEF treatment. The yeast exhibited relatively low DPEF-value than the aerobic and lactic acid bacteria. The lowest ZPEF-value was observed for the lactic acid bacteria (24.6 kV/cm) among the spoilage microbes.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13120 Republic of Korea
| | - Yu-Ryang Pyun
- R&D Division, Biovan Co., Bucheon, Republic of Korea
| | - Chulkyoon Mok
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13120 Republic of Korea
| |
Collapse
|
8
|
Pyatkovskyy TI, Shynkaryk MV, Mohamed HM, Yousef AE, Sastry SK. Effects of combined high pressure (HPP), pulsed electric field (PEF) and sonication treatments on inactivation of Listeria innocua. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Ozturk B, Anli E. Pulsed electric fields (PEF) applications on wine production: A review. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170902008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
|
11
|
González-Arenzana L, Portu J, López R, López N, Santamaría P, Garde-Cerdán T, López-Alfaro I. Inactivation of wine-associated microbiota by continuous pulsed electric field treatments. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Siemer C, Toepfl S, Heinz V. Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy – I. Influence of process- and product parameters. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.10.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Saldaña G, Álvarez I, Condón S, Raso J. Microbiological Aspects Related to the Feasibility of PEF Technology for Food Pasteurization. Crit Rev Food Sci Nutr 2014; 54:1415-26. [DOI: 10.1080/10408398.2011.638995] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Najim N, Aryana KJ. A mild pulsed electric field condition that improves acid tolerance, growth, and protease activity of Lactobacillus acidophilus LA-K and Lactobacillus delbrueckii subspecies bulgaricus LB-12. J Dairy Sci 2013; 96:3424-34. [PMID: 23587394 DOI: 10.3168/jds.2012-5842] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 01/19/2013] [Indexed: 11/19/2022]
Abstract
Pulsed electric field (PEF) processing involves the application of pulses of voltage for less than 1 s to fluid products placed between 2 electrodes. The effect of mild PEF on beneficial characteristics of probiotic bacteria Lactobacillus acidophilus and Lactobacillus delbrueckii ssp. bulgaricus is not clearly understood. The objective of this study was to determine the influence of mild PEF conditions on acid tolerance, growth, and protease activity of Lb. acidophilus LA-K and Lactobacillus delbrueckii ssp. bulgaricus LB-12. A pilot plant PEF system (OSU-4M; The Ohio State University, Columbus) was used. The PEF treatments were positive square unipolar pulse width of 3 µs, pulse period of 0.5s, electric field strength of 1 kV/cm, delay time of 20 µs, flow rate of 60 mL/min, and 40.5°C PEF treatment temperature. Both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 subjected to mild PEF conditions were acid tolerant until the end of the 120 min of incubation, unlike the Lb. bulgaricus control, which was not acid tolerant after 30 min. The mild PEF-treated Lb. acidophilus LA-K and Lb. bulgaricus LB-12 reached the logarithmic phase of growth an hour earlier than the control. Mild PEF conditions studied significantly improved acid tolerance, exponential growth, and protease activity of both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 compared with the control. The mild PEF conditions studied can be recommended for pretreating cultures to enhance these desirable attributes.
Collapse
Affiliation(s)
- N Najim
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803, USA
| | | |
Collapse
|
15
|
Kumar Sing P, Kumar S, Kumar P, Bhat Z. Pulsed Light and Pulsed Electric Field-emerging Non Thermal Decontamination of Meat. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajft.2012.506.516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Ayari S, Dussault D, Millette M, Hamdi M, Lacroix M. Response of Bacillus cereus to gamma-irradiation in combination with carvacrol or mild heat treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8217-8224. [PMID: 20568774 DOI: 10.1021/jf101044f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Carvacrol and mild heat treatment were tested for their efficiency to increase the radiosensitivity of Bacillus cereus in broth. The bacterium was treated with gamma-irradiation alone or in combination with carvacrol at its minimal inhibitory concentration or mild heat treatment for 10 min at 45 degrees C. The effects of this combination of treatments were studied on various parameters: the bacterial viability, the modifications of the cell morphology with scanning electron microscopy (SEM), the cellular fatty acids composition of the membrane quantified by gas chromatography, the intracellular and extracellular adenosine 5'-triphosphate (ATP) concentrations, and the DNA degradation. Combined treatments resulted in additive or synergistic effects as compared to gamma-irradiation alone. A significant modification (P < or = 0.05) of the fatty acid composition and unsaturation ratios was observed. Pretreatment with mild heat or carvacrol before irradiation disturbed the membrane integrity of B. cereus and induced a significant decrease (P < or = 0.05) of the intracellular ATP concentration. SEM observations revealed that the cell membrane was more severely affected with combined treatment than irradiation alone. The electrophoresis analysis showed that DNA degradation by combined treatments was greater than the gamma-irradiation alone.
Collapse
Affiliation(s)
- Samia Ayari
- National Center for Nuclear Sciences and Technologies, Tunis Cedex, Tunisia
| | | | | | | | | |
Collapse
|
17
|
Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. FOOD ENGINEERING REVIEWS 2010. [DOI: 10.1007/s12393-010-9023-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Arroyo C, Cebrián G, Pagán R, Condón S. Resistance of Enterobacter sakazakii to pulsed electric fields. INNOV FOOD SCI EMERG 2010. [DOI: 10.1016/j.ifset.2009.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Modeling inactivation kinetics and occurrence of sublethal injury of a pulsed electric field-resistant strain of Escherichia coli and Salmonella Typhimurium in media of different pH. INNOV FOOD SCI EMERG 2010. [DOI: 10.1016/j.ifset.2010.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Golberg A, Fischer J, Rubinsky B. The Use of Irreversible Electroporation in Food Preservation. IRREVERSIBLE ELECTROPORATION 2010. [DOI: 10.1007/978-3-642-05420-4_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Huang K, Wang J. Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process: A review. J FOOD ENG 2009. [DOI: 10.1016/j.jfoodeng.2009.06.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Saldaña G, Puértolas E, López N, García D, Álvarez I, Raso J. Comparing the PEF resistance and occurrence of sublethal injury on different strains of Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes and Staphylococcus aureus in media of pH 4 and 7. INNOV FOOD SCI EMERG 2009. [DOI: 10.1016/j.ifset.2008.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int J Food Microbiol 2009; 130:49-55. [DOI: 10.1016/j.ijfoodmicro.2008.12.035] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/09/2008] [Accepted: 12/29/2008] [Indexed: 11/22/2022]
|
24
|
Bazhal M, Ngadi M, Raghavan G, Smith J. Inactivation of Escherichia coli O157:H7 in liquid whole egg using combined pulsed electric field and thermal treatments. Lebensm Wiss Technol 2006. [DOI: 10.1016/j.lwt.2005.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Barbosa-Cánovas GV, Altunakar B. Pulsed Electric Fields Processing of Foods: An Overview. PULSED ELECTRIC FIELDS TECHNOLOGY FOR THE FOOD INDUSTRY 2006. [DOI: 10.1007/978-0-387-31122-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Toepfl S, Heinz V, Knorr D. Applications of Pulsed Electric Fields Technology for the Food Industry. PULSED ELECTRIC FIELDS TECHNOLOGY FOR THE FOOD INDUSTRY 2006. [DOI: 10.1007/978-0-387-31122-7_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Álvarez I, Condón S, Raso J. Microbial Inactivation by Pulsed Electric Fields. PULSED ELECTRIC FIELDS TECHNOLOGY FOR THE FOOD INDUSTRY 2006. [DOI: 10.1007/978-0-387-31122-7_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
García D, Gómez N, Mañas P, Condón S, Raso J, Pagán R. Occurrence of sublethal injury after pulsed electric fields depending on the micro-organism, the treatment medium ph and the intensity of the treatment investigated. J Appl Microbiol 2005; 99:94-104. [PMID: 15960669 DOI: 10.1111/j.1365-2672.2005.02611.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS The objective was to investigate the occurrence of sublethal injury after pulsed electric field (PEF) depending on the treatment time, the electric field strength and the pH of the treatment media in two Gram-positive (Bacillus subtilis ssp. niger, Listeria monocytogenes) and six Gram-negative (Escherichia coli, Escherichia coli O157:H7, Pseudomonas aeruginosa, Salmonella serotype Senftenberg 775W, Salmonella serotype Typhimurium, Yersinia enterocolitica) bacterial strains. METHODS AND RESULTS A characteristic behaviour was observed for the Gram-positive and Gram-negative bacteria studied. Whereas Gram-positive bacteria showed a higher PEF resistance at pH 7.0, the Gram-negative were more resistant at pH 4.0. In these conditions, in which bacteria showed their maximum resistance, a large proportion of sublethally injured cells were detected. In most cases, the longer the treatment time and the higher the electric field applied, the greater the proportion of sublethally injured cells that were detected. No sublethal injury was detected when Gram-positive bacteria were treated at pH 4.0 and Gram-negative at pH 7.0. CONCLUSIONS Sublethal injury was detected after PEF so, bacterial inactivation by PEF is not an 'all or nothing' event. SIGNIFICANCE AND IMPACT OF THE STUDY This work could be useful for improving food preservation by PEF.
Collapse
Affiliation(s)
- D García
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Álvarez I, Raso J, Sala F, Condón S. Inactivation of Yersinia enterocolitica by pulsed electric fields. Food Microbiol 2003. [DOI: 10.1016/s0740-0020(03)00033-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Alvarez I, Pagán R, Raso J, Condón S. Environmental factors influencing the inactivation of Listeria monocytogenes by pulsed electric fields. Lett Appl Microbiol 2003; 35:489-93. [PMID: 12460430 DOI: 10.1046/j.1472-765x.2002.01221.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the influence of the growth phase, growth temperature, storage time, pH and aw of the treatment medium on the resistance of Listeria monocytogenes to pulsed electric fields (PEF). METHODS AND RESULTS Square wave pulses of 2 micros at a frequency of 1 Hz and 25 and 28 kV cm(-1) were used. Cells were more PEF resistant in the stationary than in the exponential phase at both incubation temperatures investigated (4 and 35 degrees C). Cells grown at 4 degrees C were more PEF sensitive than cells grown at 35 degrees C independent of the growth phase. After a treatment of 25 kV cm(-1) and 800 micros, 1.48, 3.86 and 5.09 log10 cycles of inactivation were obtained at pH 7.0, 5.4 and 3.8, respectively. A reduction in the aw of the treatment medium protected cells against PEF treatments. CONCLUSIONS The PEF resistance of L. monocytogenes depended on different environmental factors. The influence of growth conditions and treatment medium characteristics should be known and controlled to obtain reproducible and reliable PEF inactivation data. SIGNIFICANCE AND IMPACT OF THE STUDY Erroneous conclusions and misinterpretation of results are possible if factors affecting the PEF resistance of L. monocytogenes are not considered during PEF inactivation studies.
Collapse
Affiliation(s)
- I Alvarez
- Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | |
Collapse
|
31
|
Ulmer HM, Heinz V, Gänzle MG, Knorr D, Vogel RF. Effects of pulsed electric fields on inactivation and metabolic activity of Lactobacillus plantarum in model beer. J Appl Microbiol 2002; 93:326-35. [PMID: 12147082 DOI: 10.1046/j.1365-2672.2002.01699.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Inactivation and sublethal injury of Lactobacillus plantarum at different pulsed electric field (PEF) strengths and total energy inputs were investigated to differentiate reversible and irreversible impacts on cell functionality. METHODS AND RESULTS Lactobacillus plantarum was treated with PEF in model beer (MB) to determine critical values of field strength and energy input for cell inactivation. Below critical values, metabolic activity and membrane integrity were initially reduced without loss of viability. Above critical values, however, irreversible cell damage occurred. Presence of nisin or hop extract, during PEF treatment, resulted in an additional reduction of cell viability by 1;5 log cycles. Also, addition of the hop extract resulted in an additional two log cycles of sublethal injury. Partial reversibility of membrane damage was observed using propidium iodide (PI) uptake and staining. Inoculated MB containing hops was stored after PEF to evaluate the efficacy of such treatment for beer preservation. CONCLUSION Cells were inactivated only above critical values of 13 kV x cm(-1) and 64 kJ x kg(-1); below these values cell damage was reversible. Storage experiments revealed that surviving cells were killed after 15 h storage in MB containing hops. SIGNIFICANCE AND IMPACT OF THE STUDY Both reversible and irreversible cell damage due to PEF treatment was detected, depending on specific treatment conditions. The combination of PEF and hop addition is a promising nonthermal method of preservation for beer.
Collapse
Affiliation(s)
- H M Ulmer
- Lehrstuhl für Technische Mikrobiologie, TU München, Freising, Germany
| | | | | | | | | |
Collapse
|
32
|
Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci Technol 2001. [DOI: 10.1016/s0924-2244(01)00067-x] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Preservation of liquid foods by high intensity pulsed electric fields—basic concepts for process design. Trends Food Sci Technol 2001. [DOI: 10.1016/s0924-2244(01)00064-4] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|