1
|
Nandi D, Sharma D. Integrating immunotherapy with conventional treatment regime for breast cancer patients- an amalgamation of armamentarium. Front Immunol 2024; 15:1477980. [PMID: 39555066 PMCID: PMC11563812 DOI: 10.3389/fimmu.2024.1477980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Immunotherapy stands as the frontrunner in treatment strategies imparting efficient remission in various types of cancer. In fact, emerging breakthroughs with immune checkpoint inhibitors (ICI) in a spectrum of cancers have evoked interest in research related to the potential effects of immunotherapy in breast cancer patients. A major challenge with breast cancer is the molecular heterogeneity that limits the efficacy of many therapeutic regimes. Clinical trials have shown favorable clinical outcomes with immunotherapeutic options in some subtypes of breast cancer. However, ICI monotherapy may not be sufficient for all breast cancer patients, emphasizing the need for combinatorial approaches. Ongoing research is focused on untangling the interplay of ICI with established as well as novel anticancer therapeutic regimens in preclinical models of breast cancer. Our review will analyze the existing research regarding the mechanisms and clinical impact of immunotherapy for the treatment of breast cancer. We shall evaluate the role of immune cell modulation for improved therapeutic response in breast cancer patients. This review will provide collated evidences about the current clinical trials that are testing out the implications of immunotherapy in conjunction with traditional treatment modalities in breast cancer and summarize the potential future research directions in the field. In addition, we shall underline the recent findings related to microbiota modulation as a key regulator of immune therapy response in cancer patients and its plausible applications in breast cancer.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| |
Collapse
|
2
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
3
|
de Mato FC, Barreto N, Cordeiro G, Munhoz J, Bonfanti AP, da Rocha-e-Silva TAA, Sutti R, Cruz PBM, Sanches LR, Bombeiro AL, Chalbatani GM, Verinaud L, Rapôso C. Isolated Peptide from Spider Venom Modulates Dendritic Cells In Vitro: A Possible Application in Oncoimmunotherapy for Glioblastoma. Cells 2023; 12:cells12071023. [PMID: 37048096 PMCID: PMC10092987 DOI: 10.3390/cells12071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 03/29/2023] Open
Abstract
Dendritic cells (DCs) vaccine is a potential tool for oncoimmunotherapy. However, it is known that this therapeutic strategy has failed in solid tumors, making the development of immunoadjuvants highly relevant. Recently, we demonstrated that Phoneutria nigriventer spider venom (PnV) components are cytotoxic to glioblastoma (GB) and activate macrophages for an antitumor profile. However, the effects of these molecules on the adaptive immune response have not yet been evaluated. This work aimed to test PnV and its purified fractions in DCs in vitro. For this purpose, bone marrow precursors were collected from male C57BL6 mice, differentiated into DCs and treated with venom or PnV-isolated fractions (F1—molecules < 3 kDa, F2—3 to 10 kDa and F3—>10 kDa), with or without costimulation with human GB lysate. The results showed that mainly F1 was able to activate DCs, increasing the activation-dependent surface marker (CD86) and cytokine release (IL-1β, TNF-α), in addition to inducing a typical morphology of mature DCs. From the F1 purification, a molecule named LW9 was the most effective, and mass spectrometry showed it to be a peptide. The present findings suggest that this molecule could be an immunoadjuvant with possible application in DC vaccines for the treatment of GB.
Collapse
Affiliation(s)
- Felipe Cezar de Mato
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas 13083-862, SP, Brazil
| | - Natália Barreto
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas 13083-862, SP, Brazil
| | - Gabriel Cordeiro
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas 13083-862, SP, Brazil
| | - Jaqueline Munhoz
- Department of Agricultural, Food and Nutritional Sciences (AFNS), University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Amanda Pires Bonfanti
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas 13083-862, SP, Brazil
| | - Thomaz A. A. da Rocha-e-Silva
- Department of Physiological Sciences, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo 05653-120, SP, Brazil
| | - Rafael Sutti
- Valer Laboratórios Eireli, São Paulo 13347-633, SP, Brazil
| | - Priscilla B. M. Cruz
- Department of Physiological Sciences, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo 05653-120, SP, Brazil
| | - Livia R. Sanches
- Department of Physiological Sciences, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo 05653-120, SP, Brazil
| | - André Luis Bombeiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas 13083-862, SP, Brazil
| | | | - Liana Verinaud
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas 13083-862, SP, Brazil
| | - Catarina Rapôso
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas 13083-862, SP, Brazil
- Correspondence: ; Tel.: +55-19-983544559
| |
Collapse
|
4
|
Antonarelli G, Corti C, Tarantino P, Ascione L, Cortes J, Romero P, Mittendorf EA, Disis ML, Curigliano G. Therapeutic cancer vaccines revamping: technology advancements and pitfalls. Ann Oncol 2021; 32:1537-1551. [PMID: 34500046 PMCID: PMC8420263 DOI: 10.1016/j.annonc.2021.08.2153] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/21/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer vaccines (CVs) represent a long-sought therapeutic and prophylactic immunotherapy strategy to obtain antigen (Ag)-specific T-cell responses and potentially achieve long-term clinical benefit. However, historically, most CV clinical trials have resulted in disappointing outcomes, despite promising signs of immunogenicity across most formulations. In the past decade, technological advances regarding vaccine delivery platforms, tools for immunogenomic profiling, and Ag/epitope selection have occurred. Consequently, the ability of CVs to induce tumor-specific and, in some cases, remarkable clinical responses have been observed in early-phase clinical trials. It is notable that the record-breaking speed of vaccine development in response to the coronavirus disease-2019 pandemic mainly relied on manufacturing infrastructures and technological platforms already developed for CVs. In turn, research, clinical data, and infrastructures put in place for the severe acute respiratory syndrome coronavirus 2 pandemic can further speed CV development processes. This review outlines the main technological advancements as well as major issues to tackle in the development of CVs. Possible applications for unmet clinical needs will be described, putting into perspective the future of cancer vaccinology.
Collapse
Affiliation(s)
- G Antonarelli
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - C Corti
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - P Tarantino
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - L Ascione
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - J Cortes
- International Breast Cancer Center (IBCC), Quironsalud Group, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - P Romero
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - E A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA; Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, USA
| | - M L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, USA
| | - G Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
5
|
Miyazawa M, Katsuda M, Kawai M, Hirono S, Okada KI, Kitahata Y, Yamaue H. Advances in immunotherapy for pancreatic ductal adenocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2021; 28:419-430. [PMID: 33742512 DOI: 10.1002/jhbp.944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Advances in immunotherapy against advanced cancers can be considered stunning and epoch-making. Meanwhile, efficacy of immune-based therapies, especially immune checkpoint inhibitors, remains insufficient in pancreatic ductal adenocarcinoma, differing from other immunogenic cancers. To date, neither immunotherapies targeting immune system acceleration nor release of immunologic brakes have been able to overcome the robust immune barrier in the pancreatic tumor microenvironment, which is characterized by rich fibrotic stroma and accumulation of immunosuppressive myeloid cells. However, by receiving an immune checkpoint blockade, patients with abundant tumor-infiltrating lymphocytes in pancreatic ductal adenocarcinoma clearly have better prognosis, and patients with mismatch repair deficiency have achieved better outcomes, albeit in a small population of pancreatic ductal adenocarcinoma. We overview recent preclinical and clinical studies that have been concerned with immune-based therapies including cancer vaccine and immune checkpoint inhibitors. By providing a deep insight into the immunosuppressive tumor microenvironment, we suggest the possibility of comprehensive immune intensification that could reverse the tumor microenvironment, making it conducive to cytotoxic T lymphocyte activity for overcoming pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Motoki Miyazawa
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Katsuda
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Manabu Kawai
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Seiko Hirono
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ken-Ichi Okada
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuji Kitahata
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
6
|
Myeloid and plasmacytoid dendritic cell combined vaccines loaded with heat-treated tumor cell lysates enhance antitumor activity in murine lung cancer. Oncol Lett 2020; 21:90. [PMID: 33376523 PMCID: PMC7751334 DOI: 10.3892/ol.2020.12351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023] Open
Abstract
The present study aimed to investigate the efficacy of a myeloid dendritic cell (mDCs) and plasmacytoid (p)DC combined vaccine loaded with heat-treated cancer cell lysates against lung cancer cells. The mDCs and pDCs were selected using magnetic bead sorting. Antigen loading was performed by adding heat-treated Lewis lung cancer cell lysates to mDC, pDC or mDC+pDC (1:1). Surface expression of CD80, CD86, CD40 and major histocompatibility complex (MHC)-II molecules were determined using flow cytometry, and the secretion of cytokines IL-12, IL-6 and TNF-α were assessed using ELISA assays. The effect of the mDC and pDC vaccine on cytotoxic T lymphocytes (CTLs) against tumor cells was investigated. Tumor-bearing nude mice were intravenously injected with the mDC and pDC combined vaccine. Tumor tissues were collected for hematoxylin and eosin and TUNEL staining. Loading with tumor cell lysate significantly upregulated the surface expression of costimulatory molecules MHC-II on DCs and enhanced secretions of IL-6, IL-12 and TNF-α by DCs. In addition, the tumor cell lysate-loaded mDC and pDC combined vaccine significantly promoted lymphocyte proliferation and enhanced CTL-mediated cytotoxicity against Lewis lung cancer cells compared with mDC or pDC treatment alone. Furthermore, intravenous injection of the mDC and pDC combined vaccine into tumor-bearing nude mice significantly inhibited subcutaneous tumor growth and induced necrosis and apoptosis within the tumor tissue. Overall, the pDC and mDC combination vaccine loaded with heat-treated Lewis lung cancer cell lysate had a synergistic effect on the induction of T lymphocyte proliferation and antitumor efficacy, which may be associated with the upregulation of co-stimulatory molecules and cytokine secretions.
Collapse
|
7
|
Chen X, Yang J, Wang L, Liu B. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 2020; 10:6011-6023. [PMID: 32483434 PMCID: PMC7255011 DOI: 10.7150/thno.38742] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Therapeutic cancer vaccines are one of the most promising strategies of immunotherapy. Traditional vaccines consisting of tumor-associated antigens have met with limited success. Recently, neoantigens derived from nonsynonymous mutations in tumor cells have emerged as alternatives that can improve tumor-specificity and reduce on-target off-tumor toxicity. Synthetic peptides are a common platform for neoantigen vaccines. It has been suggested that extending short peptides into long peptides can overcome immune tolerance and induce both CD4+ and CD8+ T cell responses. This review will introduce the history of long peptide-based neoantigen vaccines, discuss their advantages, summarize current preclinical and clinical developments, and propose future perspectives.
Collapse
|
8
|
Kohnepoushi C, Nejati V, Delirezh N, Biparva P. Poly Lactic-co-Glycolic Acid Nanoparticles Containing Human Gastric Tumor Lysates as Antigen Delivery Vehicles for Dendritic Cell-Based Antitumor Immunotherapy. Immunol Invest 2019; 48:794-808. [DOI: 10.1080/08820139.2019.1610889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chia Kohnepoushi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Vahid Nejati
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Nowruz Delirezh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Pouria Biparva
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
9
|
Medler T, Patel JM, Alice A, Baird JR, Hu HM, Gough MJ. Activating the Nucleic Acid-Sensing Machinery for Anticancer Immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 344:173-214. [PMID: 30798988 PMCID: PMC6754183 DOI: 10.1016/bs.ircmb.2018.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acid sensing pathways have likely evolved as part of a broad pathogen sensing strategy intended to discriminate infectious agents and initiate appropriate innate and adaptive controls. However, in the absence of infectious agents, nucleic acid sensing pathways have been shown to play positive and negative roles in regulating tumorigenesis, tumor progression and metastatic spread. Understanding the normal biology behind these pathways and how they are regulated in malignant cells and in the tumor immune environment can help us devise strategies to exploit nucleic acid sensing to manipulate anti-cancer immunity.
Collapse
Affiliation(s)
- Terry Medler
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Jaina M Patel
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Jason R Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Hong-Ming Hu
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
10
|
Valpione S, Pasquali S, Campana LG, Piccin L, Mocellin S, Pigozzo J, Chiarion-Sileni V. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade. J Transl Med 2018; 16:94. [PMID: 29642948 PMCID: PMC5896157 DOI: 10.1186/s12967-018-1467-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/30/2018] [Indexed: 11/30/2022] Open
Abstract
Background Ipilimumab is a licensed immunotherapy for metastatic melanoma patients and, in the US, as adjuvant treatment for high risk melanoma radically resected. The use of ipilimumab is associated with a typical but unpredictable pattern of side effects. The purpose of this study was to identify clinical features and blood biomarkers capable of predicting ipilimumab related toxicity. Methods We performed a prospective study aimed at analyzing potential clinical and biological markers associated with immune-related toxicity in patients treated with ipilimumab (3 mg/kg, q3w). We enrolled 140 consecutive melanoma patients treated with ipilimumab for metastatic disease. The following prospectively collected data were utilized: patient characteristics, previous therapies, level of circulating biomarkers associated with tumour burden or immune-inflammation status (lactic dehydrogenase, C-reactive protein, β2-microglobulin, vascular endothelial growth factor, interleukin-2, interleukin-6, S-100, alkaline phosphatase, transaminases) and blood cells subsets (leukocyte and lymphocyte subpopulations). Logistic regression was used for multivariate analysis of data. Results Out of 140 patients, 36 (26%) experienced a severe adverse event, 33 (24%) discontinued treatment for severe toxicity. Among the immune-profile biomarkers analyzed, only interleukin-6 was associated with the risk of toxicity. Female patients had a further increase of immune-related adverse events. Low baseline interleukin-6 serum levels (OR = 2.84, 95% CI 1.34–6.03, P = 0.007) and sex female (OR = 1.5, 95% CI 1.06–2.16 P = 0.022) and were significant and independent risk factors for immune related adverse events. Conclusions Baseline IL6 serum levels and female sex were significantly and independently associated with higher risk of severe toxicity and could be exploited in clinical practice to personalize toxicity surveillance in patients treated with ipilimumab. Electronic supplementary material The online version of this article (10.1186/s12967-018-1467-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Valpione
- CRUK Manchester Institute and The Christie NHS Foundation Trust, The University of Manchester, Manchester, M20 4GJ, UK. .,Melanoma and Esophageal Cancer Unit, Istituto Oncologico Veneto-IRCCS, Via Gattamelata 64, 35128, Padua, Italy. .,Department of Surgery, Oncology and Gastroenterology, University of Padova, 64 Gattamelata St, 35128, Padua, Italy.
| | - Sandro Pasquali
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 64 Gattamelata St, 35128, Padua, Italy.,Surgical Oncology, Veneto Oncology Institute, Via Gattamelata 64, 35128, Padua, Italy.,Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G Venezian 1, 20133, Milan, Italy
| | - Luca Giovanni Campana
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 64 Gattamelata St, 35128, Padua, Italy.,Surgical Oncology, Veneto Oncology Institute, Via Gattamelata 64, 35128, Padua, Italy
| | - Luisa Piccin
- Melanoma and Esophageal Cancer Unit, Istituto Oncologico Veneto-IRCCS, Via Gattamelata 64, 35128, Padua, Italy.,Department of clinical medicine and surgery, Medical Oncology Unit, University of Naples Federico II, Via S Pansini 5, 80131, Naples, Italy
| | - Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 64 Gattamelata St, 35128, Padua, Italy.,Surgical Oncology, Veneto Oncology Institute, Via Gattamelata 64, 35128, Padua, Italy
| | - Jacopo Pigozzo
- Melanoma and Esophageal Cancer Unit, Istituto Oncologico Veneto-IRCCS, Via Gattamelata 64, 35128, Padua, Italy
| | - Vanna Chiarion-Sileni
- Melanoma and Esophageal Cancer Unit, Istituto Oncologico Veneto-IRCCS, Via Gattamelata 64, 35128, Padua, Italy
| |
Collapse
|
11
|
Pasquali S, Hadjinicolaou AV, Chiarion Sileni V, Rossi CR, Mocellin S. Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst Rev 2018; 2:CD011123. [PMID: 29405038 PMCID: PMC6491081 DOI: 10.1002/14651858.cd011123.pub2] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The prognosis of people with metastatic cutaneous melanoma, a skin cancer, is generally poor. Recently, new classes of drugs (e.g. immune checkpoint inhibitors and small-molecule targeted drugs) have significantly improved patient prognosis, which has drastically changed the landscape of melanoma therapeutic management. This is an update of a Cochrane Review published in 2000. OBJECTIVES To assess the beneficial and harmful effects of systemic treatments for metastatic cutaneous melanoma. SEARCH METHODS We searched the following databases up to October 2017: the Cochrane Skin Group Specialised Register, CENTRAL, MEDLINE, Embase and LILACS. We also searched five trials registers and the ASCO database in February 2017, and checked the reference lists of included studies for further references to relevant randomised controlled trials (RCTs). SELECTION CRITERIA We considered RCTs of systemic therapies for people with unresectable lymph node metastasis and distant metastatic cutaneous melanoma compared to any other treatment. We checked the reference lists of selected articles to identify further references to relevant trials. DATA COLLECTION AND ANALYSIS Two review authors extracted data, and a third review author independently verified extracted data. We implemented a network meta-analysis approach to make indirect comparisons and rank treatments according to their effectiveness (as measured by the impact on survival) and harm (as measured by occurrence of high-grade toxicity). The same two review authors independently assessed the risk of bias of eligible studies according to Cochrane standards and assessed evidence quality based on the GRADE criteria. MAIN RESULTS We included 122 RCTs (28,561 participants). Of these, 83 RCTs, encompassing 21 different comparisons, were included in meta-analyses. Included participants were men and women with a mean age of 57.5 years who were recruited from hospital settings. Twenty-nine studies included people whose cancer had spread to their brains. Interventions were categorised into five groups: conventional chemotherapy (including single agent and polychemotherapy), biochemotherapy (combining chemotherapy with cytokines such as interleukin-2 and interferon-alpha), immune checkpoint inhibitors (such as anti-CTLA4 and anti-PD1 monoclonal antibodies), small-molecule targeted drugs used for melanomas with specific gene changes (such as BRAF inhibitors and MEK inhibitors), and other agents (such as anti-angiogenic drugs). Most interventions were compared with chemotherapy. In many cases, trials were sponsored by pharmaceutical companies producing the tested drug: this was especially true for new classes of drugs, such as immune checkpoint inhibitors and small-molecule targeted drugs.When compared to single agent chemotherapy, the combination of multiple chemotherapeutic agents (polychemotherapy) did not translate into significantly better survival (overall survival: HR 0.99, 95% CI 0.85 to 1.16, 6 studies, 594 participants; high-quality evidence; progression-free survival: HR 1.07, 95% CI 0.91 to 1.25, 5 studies, 398 participants; high-quality evidence. Those who received combined treatment are probably burdened by higher toxicity rates (RR 1.97, 95% CI 1.44 to 2.71, 3 studies, 390 participants; moderate-quality evidence). (We defined toxicity as the occurrence of grade 3 (G3) or higher adverse events according to the World Health Organization scale.)Compared to chemotherapy, biochemotherapy (chemotherapy combined with both interferon-alpha and interleukin-2) improved progression-free survival (HR 0.90, 95% CI 0.83 to 0.99, 6 studies, 964 participants; high-quality evidence), but did not significantly improve overall survival (HR 0.94, 95% CI 0.84 to 1.06, 7 studies, 1317 participants; high-quality evidence). Biochemotherapy had higher toxicity rates (RR 1.35, 95% CI 1.14 to 1.61, 2 studies, 631 participants; high-quality evidence).With regard to immune checkpoint inhibitors, anti-CTLA4 monoclonal antibodies plus chemotherapy probably increased the chance of progression-free survival compared to chemotherapy alone (HR 0.76, 95% CI 0.63 to 0.92, 1 study, 502 participants; moderate-quality evidence), but may not significantly improve overall survival (HR 0.81, 95% CI 0.65 to 1.01, 2 studies, 1157 participants; low-quality evidence). Compared to chemotherapy alone, anti-CTLA4 monoclonal antibodies is likely to be associated with higher toxicity rates (RR 1.69, 95% CI 1.19 to 2.42, 2 studies, 1142 participants; moderate-quality evidence).Compared to chemotherapy, anti-PD1 monoclonal antibodies (immune checkpoint inhibitors) improved overall survival (HR 0.42, 95% CI 0.37 to 0.48, 1 study, 418 participants; high-quality evidence) and probably improved progression-free survival (HR 0.49, 95% CI 0.39 to 0.61, 2 studies, 957 participants; moderate-quality evidence). Anti-PD1 monoclonal antibodies may also result in less toxicity than chemotherapy (RR 0.55, 95% CI 0.31 to 0.97, 3 studies, 1360 participants; low-quality evidence).Anti-PD1 monoclonal antibodies performed better than anti-CTLA4 monoclonal antibodies in terms of overall survival (HR 0.63, 95% CI 0.60 to 0.66, 1 study, 764 participants; high-quality evidence) and progression-free survival (HR 0.54, 95% CI 0.50 to 0.60, 2 studies, 1465 participants; high-quality evidence). Anti-PD1 monoclonal antibodies may result in better toxicity outcomes than anti-CTLA4 monoclonal antibodies (RR 0.70, 95% CI 0.54 to 0.91, 2 studies, 1465 participants; low-quality evidence).Compared to anti-CTLA4 monoclonal antibodies alone, the combination of anti-CTLA4 plus anti-PD1 monoclonal antibodies was associated with better progression-free survival (HR 0.40, 95% CI 0.35 to 0.46, 2 studies, 738 participants; high-quality evidence). There may be no significant difference in toxicity outcomes (RR 1.57, 95% CI 0.85 to 2.92, 2 studies, 764 participants; low-quality evidence) (no data for overall survival were available).The class of small-molecule targeted drugs, BRAF inhibitors (which are active exclusively against BRAF-mutated melanoma), performed better than chemotherapy in terms of overall survival (HR 0.40, 95% CI 0.28 to 0.57, 2 studies, 925 participants; high-quality evidence) and progression-free survival (HR 0.27, 95% CI 0.21 to 0.34, 2 studies, 925 participants; high-quality evidence), and there may be no significant difference in toxicity (RR 1.27, 95% CI 0.48 to 3.33, 2 studies, 408 participants; low-quality evidence).Compared to chemotherapy, MEK inhibitors (which are active exclusively against BRAF-mutated melanoma) may not significantly improve overall survival (HR 0.85, 95% CI 0.58 to 1.25, 3 studies, 496 participants; low-quality evidence), but they probably lead to better progression-free survival (HR 0.58, 95% CI 0.42 to 0.80, 3 studies, 496 participants; moderate-quality evidence). However, MEK inhibitors probably have higher toxicity rates (RR 1.61, 95% CI 1.08 to 2.41, 1 study, 91 participants; moderate-quality evidence).Compared to BRAF inhibitors, the combination of BRAF plus MEK inhibitors was associated with better overall survival (HR 0.70, 95% CI 0.59 to 0.82, 4 studies, 1784 participants; high-quality evidence). BRAF plus MEK inhibitors was also probably better in terms of progression-free survival (HR 0.56, 95% CI 0.44 to 0.71, 4 studies, 1784 participants; moderate-quality evidence), and there appears likely to be no significant difference in toxicity (RR 1.01, 95% CI 0.85 to 1.20, 4 studies, 1774 participants; moderate-quality evidence).Compared to chemotherapy, the combination of chemotherapy plus anti-angiogenic drugs was probably associated with better overall survival (HR 0.60, 95% CI 0.45 to 0.81; moderate-quality evidence) and progression-free survival (HR 0.69, 95% CI 0.52 to 0.92; moderate-quality evidence). There may be no difference in terms of toxicity (RR 0.68, 95% CI 0.09 to 5.32; low-quality evidence). All results for this comparison were based on 324 participants from 2 studies.Network meta-analysis focused on chemotherapy as the common comparator and currently approved treatments for which high- to moderate-quality evidence of efficacy (as represented by treatment effect on progression-free survival) was available (based on the above results) for: biochemotherapy (with both interferon-alpha and interleukin-2); anti-CTLA4 monoclonal antibodies; anti-PD1 monoclonal antibodies; anti-CTLA4 plus anti-PD1 monoclonal antibodies; BRAF inhibitors; MEK inhibitors, and BRAF plus MEK inhibitors. Analysis (which included 19 RCTs and 7632 participants) generated 21 indirect comparisons.The best evidence (moderate-quality evidence) for progression-free survival was found for the following indirect comparisons:• both combinations of immune checkpoint inhibitors (HR 0.30, 95% CI 0.17 to 0.51) and small-molecule targeted drugs (HR 0.17, 95% CI 0.11 to 0.26) probably improved progression-free survival compared to chemotherapy;• both BRAF inhibitors (HR 0.40, 95% CI 0.23 to 0.68) and combinations of small-molecule targeted drugs (HR 0.22, 95% CI 0.12 to 0.39) were probably associated with better progression-free survival compared to anti-CTLA4 monoclonal antibodies;• biochemotherapy (HR 2.81, 95% CI 1.76 to 4.51) probably lead to worse progression-free survival compared to BRAF inhibitors;• the combination of small-molecule targeted drugs probably improved progression-free survival (HR 0.38, 95% CI 0.21 to 0.68) compared to anti-PD1 monoclonal antibodies;• both biochemotherapy (HR 5.05, 95% CI 3.01 to 8.45) and MEK inhibitors (HR 3.16, 95% CI 1.77 to 5.65) were probably associated with worse progression-free survival compared to the combination of small-molecule targeted drugs; and• biochemotherapy was probably associated with worse progression-free survival (HR 2.81, 95% CI 1.54 to 5.11) compared to the combination of immune checkpoint inhibitors.The best evidence (moderate-quality evidence) for toxicity was found for the following indirect comparisons:• combination of immune checkpoint inhibitors (RR 3.49, 95% CI 2.12 to 5.77) probably increased toxicity compared to chemotherapy;• combination of immune checkpoint inhibitors probably increased toxicity (RR 2.50, 95% CI 1.20 to 5.20) compared to BRAF inhibitors;• the combination of immune checkpoint inhibitors probably increased toxicity (RR 3.83, 95% CI 2.59 to 5.68) compared to anti-PD1 monoclonal antibodies; and• biochemotherapy was probably associated with lower toxicity (RR 0.41, 95% CI 0.24 to 0.71) compared to the combination of immune checkpoint inhibitors.Network meta-analysis-based ranking suggested that the combination of BRAF plus MEK inhibitors is the most effective strategy in terms of progression-free survival, whereas anti-PD1 monoclonal antibodies are associated with the lowest toxicity.Overall, the risk of bias of the included trials can be considered as limited. When considering the 122 trials included in this review and the seven types of bias we assessed, we performed 854 evaluations only seven of which (< 1%) assigned high risk to six trials. AUTHORS' CONCLUSIONS We found high-quality evidence that many treatments offer better efficacy than chemotherapy, especially recently implemented treatments, such as small-molecule targeted drugs, which are used to treat melanoma with specific gene mutations. Compared with chemotherapy, biochemotherapy (in this case, chemotherapy combined with both interferon-alpha and interleukin-2) and BRAF inhibitors improved progression-free survival; BRAF inhibitors (for BRAF-mutated melanoma) and anti-PD1 monoclonal antibodies improved overall survival. However, there was no difference between polychemotherapy and monochemotherapy in terms of achieving progression-free survival and overall survival. Biochemotherapy did not significantly improve overall survival and has higher toxicity rates compared with chemotherapy.There was some evidence that combined treatments worked better than single treatments: anti-PD1 monoclonal antibodies, alone or with anti-CTLA4, improved progression-free survival compared with anti-CTLA4 monoclonal antibodies alone. Anti-PD1 monoclonal antibodies performed better than anti-CTLA4 monoclonal antibodies in terms of overall survival, and a combination of BRAF plus MEK inhibitors was associated with better overall survival for BRAF-mutated melanoma, compared to BRAF inhibitors alone.The combination of BRAF plus MEK inhibitors (which can only be administered to people with BRAF-mutated melanoma) appeared to be the most effective treatment (based on results for progression-free survival), whereas anti-PD1 monoclonal antibodies appeared to be the least toxic, and most acceptable, treatment.Evidence quality was reduced due to imprecision, between-study heterogeneity, and substandard reporting of trials. Future research should ensure that those diminishing influences are addressed. Clinical areas of future investigation should include the longer-term effect of new therapeutic agents (i.e. immune checkpoint inhibitors and targeted therapies) on overall survival, as well as the combination of drugs used in melanoma treatment; research should also investigate the potential influence of biomarkers.
Collapse
Affiliation(s)
- Sandro Pasquali
- Sarcoma Service, Fondazione IRCCS 'Istituto Nazionale Tumori', Via G. Venezian 1, Milano, Italy, 20133
| | | | | | | | | |
Collapse
|
12
|
Gao T, Bi A, Yang S, Liu Y, Kong X, Zeng W. Applications of Nanoparticles Probes for Prostate Cancer Imaging and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:99-115. [PMID: 30324350 DOI: 10.1007/978-3-319-99286-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) is the most common type of cancer in men with high morbidity and mortality. However, the current treatment with drugs often leads to chemotherapy resistance. It is known that the multi-disciplines research on molecular imaging is very helpful for early diagnosing, staging, restaging and precise treatment of PCa. In the past decades, the tumor-specific targeted drugs were developed for the clinic to treat prostate cancer. Among them, the emerging nanotechnology has brought about many exciting novel diagnosis and treatments systems for PCa. Nanotechnology can greatly enhance the treatment activity of PCa and provide novel theranostics platform by utilizing the unique physical/chemical properties, targeting strategy, or by loading with imaging/therapeutic agents. Herein, this chapter focuses on state-of-art advances in imaging and diagnosing PCa with nanomaterials and highlights the approaches used for functionalization of the targeted biomolecules, and in the treatment for various aspects of PCa with multifunctional nanoparticles, nanoplatforms and nanodelivery system.
Collapse
Affiliation(s)
- Tang Gao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Shuiqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Yi Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Xiangqi Kong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China. .,Molecular Imaging Research Center, Central South University, Changsha, China.
| |
Collapse
|
13
|
Rajmani R, Singh LV, Gupta SK, Singh PK, Saxena S, Ravi Kumar G, Kumar R, Sahoo AP, Tiwari AK. Molecular cloning, expression and characterization of rat tumor necrosis factor-α as potent anti-tumor candidate. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Loi M, Desideri I, Greto D, Mangoni M, Sottili M, Meattini I, Becherini C, Terziani F, Delli Paoli C, Olmetto E, Bonomo P, Livi L. Radiotherapy in the age of cancer immunology: Current concepts and future developments. Crit Rev Oncol Hematol 2017; 112:1-10. [PMID: 28325250 DOI: 10.1016/j.critrevonc.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/24/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Major advances in the knowledge of cancer biology and its interactions with tumor immune environment led to the emergence, in the last five years of new immunotherapy-based treatment strategies in cancer patients. At the same time, improvement in radiation technique and progress in radiobiology allowed in the last decade to expand the applications of radiotherapy in a growing number of settings. At present, there are strong theoretical basis to propose immune-enhanced radiation therapy that may represent in the future a new paradigm of treatment, combining the intrinsic power of radiotherapy to elicit a specific, systemic, tumor-directed immune response with modern highly conformal and precise dose delivery, in order to maximize response at the major site of disease and obtain durable disease control. The aim of this review is to describe the principal mechanisms of immune modulation of response to radiation and investigational strategies to harness the potential of radiation-inducible immune response: radiation therapy is expected to be not just a local treatment but the cornerstone of a multimodal strategy that might achieve long-lasting tumor remission at the primary site and systemic efficacy metastatic lesions.
Collapse
Affiliation(s)
- Mauro Loi
- Department of Radiation Oncology, University of Florence, Florence, Italy.
| | - Isacco Desideri
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Daniela Greto
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Monica Mangoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mariangela Sottili
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Icro Meattini
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Carlotta Becherini
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Francesca Terziani
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | | | - Emanuela Olmetto
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Pierluigi Bonomo
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Li K, Chang S, Zhao X, Chen D. Further exploring the feasibility of dendritic cells-targeted biomimetic Texosomes as a therapeutic and preventive tumor-vaccine. RSC Adv 2017. [DOI: 10.1039/c6ra26434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Targeting tumor cells with immunotherapy by a dendritic cells-targeted vaccination is a potential treatment option.
Collapse
Affiliation(s)
- Kexin Li
- School of Pharmacy
- Shenyang Pharmaceutical University
- China
| | - Shasha Chang
- School of Pharmacy
- Shenyang Pharmaceutical University
- China
| | - Xiuli Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- China
| | - Dawei Chen
- School of Pharmacy
- Shenyang Pharmaceutical University
- China
| |
Collapse
|
16
|
Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:168. [PMID: 27782834 PMCID: PMC5080692 DOI: 10.1186/s13046-016-0444-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Developing safe and effective cancer vaccine formulations is a primary focus in the field of cancer immunotherapy. Dendritic cells (DC) are currently employed as cellular vaccine in clinical trials of tumor immunotherapy. Recognizing the critical role of DCs in initiating anti-tumor immunity has resulted in the development of several strategies that target vaccine antigens to DCs to trigger anti-tumor T cell responses. To increase the efficiency of antigen delivery systems for anti-tumor vaccines, encapsulation of tumor-associated antigens in polymer nanoparticles (NPs) has been established. METHODS In this study, the effect of tumor lysate antigen obtained from three stage III breast cancer tissues encapsulated within PLGA NPs to enhance the DC maturation was investigated. The T-cell immune response activation was then fallowed up. Fresh breast tumors were initially used to generate tumor lysate antigens containing poly lactic-co-glycolic acid (PLGA) NP. The encapsulation efficiency and release kinetics were profiled. The efficiency of encapsulation was measured using Bradford protein assays measuring the dissolved NPs. The stability of released antigen from NPs was verified using SDS-PAGE. To evaluate the hypothesis that NPs enhances antigen presentation, including soluble tumor lysate, tumor lysate containing NPs and control NPs the efficiency of NP-mediated tumor lysate delivery to DCs was evaluated by assessing CD3+ T-cell stimulation after T cell/and DCs co-culture. RESULTS The rate of encapsulation was increased by enhancing the antigen concentration of tumor lysate. However, increasing the antigen concentration diminished the encapsulation efficiency. In addition, higher initial protein contenting NPs led to a greater cumulative release. All three patients released variable amounts of IFN-γ, IL-10, IL-12 and IL-4 in response to re-stimulation. T cells stimulated with lysate-pulsed DCs induced a substantial increase in IFN-γ and IL-12 production. We demonstrated that NPs containing tumor lysate can induce maturation and activation of DCs, as antigen alone does. CONCLUSION PLGA-NPs are attractive vehicles for protein antigen delivery which effectively induce stimulation and maturation of DCs, allowing not only an enhanced antigen processing and immunogenicity or improved antigen stability, but also the targeted delivery and slow release of antigens.
Collapse
|
17
|
Müller I, Altherr D, Eyrich M, Flesch B, Friedmann KS, Ketter R, Oertel J, Schwarz EC, Technau A, Urbschat S, Eichler H. Tumor antigen-specific T cells for immune monitoring of dendritic cell-treated glioblastoma patients. Cytotherapy 2016; 18:1146-61. [PMID: 27424145 DOI: 10.1016/j.jcyt.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/26/2016] [Accepted: 05/20/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS CD8(+) T cells are part of the adaptive immune system and, as such, are responsible for the elimination of tumor cells. Dendritic cells (DC) are professional antigen-presenting cells (APC) that activate CD8(+) T cells. Effector CD8(+) T cells in turn mediate the active immunotherapeutic response of DC vaccination against the aggressive glioblastoma (GBM). The lack of tumor response assays complicates the assessment of treatment success in GBM patients. METHODS A novel assay to identify specific cytotoxicity of activated T cells by APC was evaluated. Tumor antigen-pulsed DCs from HLA-A*02-positive GBM patients were cultivated to stimulate autologous cytotoxic T lymphocytes (CTL) over a 12-day culture period. To directly correlate antigen specificity and cytotoxic capacity, intracellular interferon (IFN)-γ fluorescence flow cytometry-based measurements were combined with anti-GBM tumor peptide dextramer staining. IFN-γ response was quantified by real-time polymerase chain reaction (PCR), and selected GBM genes were compared with healthy human brain cDNA by single specific primer PCR characterization. RESULTS Using CTL of GBM patients stimulated with GBM lysate-pulsed DCs increased IFN-γ messenger RNA levels, and intracellular IFN-γ protein expression was positively correlated with specificity against GBM antigens. Moreover, the GBM peptide-specific CD8(+) T-cell response correlated with specific GBM gene expression. Following DC vaccination, GBM patients showed 10-fold higher tumor-specific signals compared with unvaccinated GBM patients. DISCUSSION These data indicate that GBM tumor peptide-dextramer staining of CTL in combination with intracellular IFN-γ staining may be a useful tool to acquire information on whether a specific tumor antigen has the potential to induce an immune response in vivo.
Collapse
Affiliation(s)
- Isabelle Müller
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Medical Center, Homburg, Germany.
| | - Dominik Altherr
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Medical Center, Homburg, Germany
| | - Matthias Eyrich
- Stem Cell Laboratory, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Brigitte Flesch
- Immungenetic/HLA, German Red Cross Blood Service, Bad Kreuznach, Germany
| | - Kim S Friedmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University School of Medicine, Homburg, Germany
| | - Ralf Ketter
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University School of Medicine, Homburg, Germany
| | - Antje Technau
- Stem Cell Laboratory, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Steffi Urbschat
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
18
|
|
19
|
Abstract
As calculated by the meta-analysis of Korn et al., the prognosis of metastatic melanoma in the pretarget and immunological therapy era was poor, with a median survival of 6.2 and a 1-year life expectancy of 25.5%. Nowadays, significant advances in melanoma treatment have been gained, and immunotherapy is one of the promising approaches to get to durable responses and survival improvement. The aim of the present review is to highlight the recent innovations in melanoma immunotherapy and to propose a critical perspective of the future directions of this enthralling oncology subspecialty.
Collapse
Affiliation(s)
- Sara Valpione
- Christie Hospital NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, UK
| | - Luca G Campana
- Department of Surgery, Oncology & Gastroenterology, University of Padova, via Gattamelata 64, 35128 Padova, Italy
| |
Collapse
|
20
|
Wei FQ, Sun W, Wong TS, Gao W, Wen YH, Wei JW, Wei Y, Wen WP. Eliciting cytotoxic T lymphocytes against human laryngeal cancer-derived antigens: evaluation of dendritic cells pulsed with a heat-treated tumor lysate and other antigen-loading strategies for dendritic-cell-based vaccination. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:18. [PMID: 26795730 PMCID: PMC4722756 DOI: 10.1186/s13046-016-0295-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/17/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dendritic cells (DCs) have been used successfully in clinical pilot studies. However, tumor-specific immunity and clinical responses were only induced in certain cancer patients. It has been well documented that immunotherapy efficacy can be optimized for responses using antigen pulsing. METHODS The human laryngeal squamous cell cancer (LSCC) cell line SNU899 was used to evaluate the in vitro anti-tumor efficacy of three different preparations of dendritic cell (DC) vaccines consisting of either whole tumor cells or their derivatives including: i) DCs pulsed with a tumor cell supernatant (DC-TCS), ii) DCs pulsed with whole-cell tumor stressed lysate (DC-TSL), and iii) DCs pulsed with irradiated tumor cells (DC-ITC). RESULTS Our results showed that DC-TSL is an effective source of tumor-associated antigens (TAAs) for pulsing DCs. DC-TSL induced the highest expansion of TAA-specific T cells, the strongest Th1 cytokine response, and the most potent cytotoxic T lymphocyte (CTL) activity. DC-TCS and DC-ITC inhibited T cell activation but induced a certain extent of CTL activity. CONCLUSIONS These data suggest that DC-TSL is a more potent inducer of antitumor immunity against laryngeal cancer than other antigen-loading strategies using whole tumor cell materials. This strategy provides an alternative approach for DC-based immunotherapy for laryngeal cancer.
Collapse
Affiliation(s)
- Fan-Qin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Department of Otorhinolaryngology Head and Neck Surgery, the Sixth Affiliated Hospital of Sun Yat-Sen University, Yuancun Second Cross Road 26#, Guangzhou, 510655, Guangdong, P.R. China.
| | - Wei Sun
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| | - Thian-Sze Wong
- Department of Surgery, The University of Hong Kong, Pokfulam Road 102#, Hong Kong, P.R. China.
| | - Wei Gao
- Department of Surgery, The University of Hong Kong, Pokfulam Road 102#, Hong Kong, P.R. China.
| | - Yi-Hui Wen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| | - Jia-Wei Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| | - Yi Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| | - Wei-Ping Wen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| |
Collapse
|
21
|
Wang Q, Klinke DJ, Wang Z. CD8(+) T cell response to adenovirus vaccination and subsequent suppression of tumor growth: modeling, simulation and analysis. BMC SYSTEMS BIOLOGY 2015; 9:27. [PMID: 26048402 PMCID: PMC4458046 DOI: 10.1186/s12918-015-0168-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/15/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Using immune checkpoint modulators in the clinic to increase the number and activity of cytotoxic T lymphocytes that recognize tumor antigens can prolong survival for metastatic melanoma. Yet, only a fraction of the patient population receives clinical benefit. In short, these clinical trials demonstrate proof-of-principle but optimizing the specific therapeutic strategies remains a challenge. In many fields, CAD (computer-aided design) is a tool used to optimize integrated system behavior using a mechanistic model that is based upon knowledge of constitutive elements. The objective of this study was to develop a predictive simulation platform for optimizing anti-tumor immunity using different treatment strategies. METHODS To better understand the therapeutic role that cytotoxic CD8(+) T cells can play in controlling tumor growth, we developed a multi-scale mechanistic model of the biology using impulsive differential equations and calibrated it to a self-consistent data set. RESULTS The multi-scale model captures the activation and differentiation of naïve CD8(+) T cells into effector cytotoxic T cells in the lymph node following adenovirus-mediated vaccination against a tumor antigen, the trafficking of the resulting cytotoxic T cells into blood and tumor microenvironment, the production of cytokines within the tumor microenvironment, and the interactions between tumor cells, T cells and cytokines that control tumor growth. The calibrated model captures the modest suppression of tumor cell growth observed in the B16F10 model, a transplantable mouse model for metastatic melanoma, and was used to explore the impact of multiple vaccinations on controlling tumor growth. CONCLUSIONS Using the calibrated mechanistic model, we found that the cytotoxic CD8(+) T cell response was prolonged by multiple adenovirus vaccinations. However, the strength of the immune response cannot be improved enough by multiple adenovirus vaccinations to reduce tumor burden if the cytotoxic activity or local proliferation of cytotoxic T cells in response to tumor antigens is not greatly enhanced. Overall, this study illustrates how mechanistic models can be used for in silico screening of the optimal therapeutic dosage and timing in cancer treatment.
Collapse
Affiliation(s)
- Qing Wang
- Department of Computer Sciences, Mathematics, and Engineering, Shepherd University, Shepherdstown, 25443, WV, USA.
| | - David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, 25606, WV, USA. .,Department of Microbiology, Immunology, & Cell Biology, West Virginia University, Morgantown, 25606, WV, USA.
| | - Zhijun Wang
- Department of Computer Sciences, Mathematics, and Engineering, Shepherd University, Shepherdstown, 25443, WV, USA.
| |
Collapse
|
22
|
Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N, Czapla J, Matuszczak S, Szala S. Combined Tumor Cell-Based Vaccination and Interleukin-12 Gene Therapy Polarizes the Tumor Microenvironment in Mice. Arch Immunol Ther Exp (Warsz) 2015; 63:451-64. [PMID: 25801067 PMCID: PMC4633448 DOI: 10.1007/s00005-015-0337-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Tumor progression depends on tumor milieu, which influences neovasculature formation and immunosuppression. Combining immunotherapy with antiangiogenic/antivascular therapy might be an effective therapeutic approach. The aim of our study was to elaborate an anticancer therapeutic strategy based on the induction of immune response which leads to polarization of tumor milieu. To achieve this, we developed a tumor cell-based vaccine. CAMEL peptide was used as a B16-F10 cell death-inducing agent. The lysates were used as a vaccine to immunize mice bearing B16-F10 melanoma tumors. To further improve the therapeutic effect of the vaccine, we combined it with interleukin (IL)-12 gene therapy. IL-12, a cytokine with antiangiogenic properties, activates nonspecific and specific immune responses. We observed that combined therapy is significantly more effective (as compared with monotherapies) in inhibiting tumor growth. Furthermore, the tested combination polarizes the tumor microenvironment, which results in a switch from a proangiogenic/immunosuppressive to an antiangiogenic/immunostimulatory one. The switch manifests itself as a decreased number of tumor blood vessels, increased levels of tumor-infiltrating CD4+, CD8+ and NK cells, as well as lower level of suppressor lymphocytes (Treg). Our results suggest that polarizing tumor milieu by such combined therapy does inhibit tumor growth and seems to be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Natalia Kułach
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
- Department of Animal Physiology and Ecotoxycology, University of Silesia, Katowice, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
23
|
Kazemi T, Younesi V, Jadidi-Niaragh F, Yousefi M. Immunotherapeutic approaches for cancer therapy: An updated review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:769-79. [PMID: 25801036 DOI: 10.3109/21691401.2015.1019669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In spite of specific immune effector mechanisms raised against tumor cells, there are mechanisms employed by the tumor cells to keep them away from immune recognition and elimination; some of these mechanisms have been identified, while others are still poorly understood. Manipulation or augmentation of specific antitumor immune responses are now the preferred approaches for treatment of malignancies, and traditional therapeutic approaches are being replaced by the use of agents which potentiate immune effector mechanisms, broadly called "immunotherapy". Cancer immunotherapy is generally classified into two main classes including active and passive methods. Interventions to augment the immune system of the patient, for example, vaccination or adjuvant therapy, actively promote antitumor effector mechanisms to improve cancer elimination. On the other hand, administration of specific monoclonal antibodies (mAbs) against different tumor antigens and adoptive transfer of genetically-modified specific T cells are currently the most rapidly developing approaches for cancer targeted therapy. In this review, we will discuss the different modalities for active and passive immunotherapy for cancer.
Collapse
Affiliation(s)
- Tohid Kazemi
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahid Younesi
- c Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Farhad Jadidi-Niaragh
- c Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Mehdi Yousefi
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
24
|
Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS NANO 2015; 9:16-30. [PMID: 25469470 DOI: 10.1021/nn5062029] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The design of nanovaccines capable of triggering effective antitumor immunity requires an understanding of how the immune system senses and responds to threats, including pathogens and tumors. Equally important is an understanding of the mechanisms employed by tumor cells to evade immunity and an appreciation of the deleterious effects that antitumor immune responses can have on tumor growth, such as by skewing tumor cell composition toward immunologically silent tumor cell variants. The immune system and tumors engage in a tug-of-war driven by competition where promoting antitumor immunity or tumor cell death alone may be therapeutically insufficient. Nanotechnology affords a unique opportunity to develop therapeutic compounds than can simultaneously tackle both aspects, favoring tumor eradication. Here, we review the current status of nanoparticle-based immunotherapeutic strategies for the treatment of cancer, ranging from antigen/adjuvant delivery vehicles (to professional antigen-presenting cell types of the immune system) to direct tumor antigen-specific T-lymphocyte-targeting compounds and their combinations thereof.
Collapse
Affiliation(s)
- Kun Shao
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cummings School of Medicine, University of Calgary , Calgary, Alberta T2N 4N1 Canada
| | | | | | | | | | | |
Collapse
|
25
|
Bunse L, Schumacher T, Sahm F, Pusch S, Oezen I, Rauschenbach K, Gonzalez M, Solecki G, Osswald M, Capper D, Wiestler B, Winkler F, Herold-Mende C, von Deimling A, Wick W, Platten M. Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Invest 2015; 125:593-606. [PMID: 25555220 DOI: 10.1172/jci77780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/20/2014] [Indexed: 01/28/2023] Open
Abstract
For a targeted cancer vaccine to be effective, the antigen of interest needs to be naturally processed and presented on MHC by the target cell or an antigen-presenting cell (APC) in the tumor stroma. The presence of these characteristics is often assumed based on animal models, evaluation of antigen-overexpressing APCs in vitro, or assays of material-consuming immune precipitation from fresh solid tissue. Here, we evaluated the use of an alternative approach that uses the proximity ligation assay (PLA) to identify the presentation of an MHC class II-restricted antigen in paraffin-embedded tissue sections from patients with brain tumors. This approach required a specific antibody directed against the epitope that was presented. We used an antibody that specifically binds an epitope of mutated isocitrate dehydrogenase type 1 (IDH1R132H), which is frequently expressed in gliomas and other types of tumors. In situ PLA showed that the IDH1R132H epitope colocalizes with MHC class II in IDH1R132H-mutated glioma tissue. Moreover, PLA demonstrated colocalization between the class II epitope-containing melanoma antigen New York esophageal 1 and MHC class II. Collectively, our data suggest that PLA may be a useful tool to acquire information on whether an antigen is presented in situ, and this technique has potential to guide clinical studies that use antigen-specific cancer immunotherapy.
Collapse
|
26
|
Flörcken A, Grau M, Wolf A, Weilemann A, Kopp J, Dörken B, Blankenstein T, Pezzutto A, Lenz P, Lenz G, Westermann J. Gene expression profiling of peripheral blood mononuclear cells during treatment with a gene-modified allogeneic tumor cell vaccine in advanced renal cell cancer: tumor-induced immunosuppression and a possible role for NF-κB. Int J Cancer 2014; 136:1814-26. [PMID: 25242680 DOI: 10.1002/ijc.29230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022]
Abstract
Tumor-induced immunosuppression remains a major challenge for immunotherapy of cancer patients. To further elucidate why an allogeneic gene-modified [interleukin-7 (IL-7)/CD80-cotransfected] renal cell cancer (RCC) vaccine failed to induce clinically relevant TH-1-polarized immune responses, peripheral blood mononuclear cells from enrolled study patients were analyzed by gene expression profiling (GEP) both prior and after vaccination. At baseline before vaccination, a profound downregulation of gene signatures associated with antigen presentation, immune response/T cells, cytokines/chemokines and signaling/transcription factors was observed in RCC patients as compared to healthy controls. Vaccination led to a partial reversion of preexisting immunosuppression, however, GEP indicated that an appropriate TH-1 polarization could not be achieved. Most interestingly, our results suggest that the nuclear factor-kappa B signaling pathway might be involved in the impairment of immunological responsiveness and the observed TH-2 deviation. In summary, our data suggest that GEP might be a powerful tool for the prediction of immunosuppression and the monitoring of immune responses within immunotherapy trials.
Collapse
Affiliation(s)
- Anne Flörcken
- Department of Hematology, Oncology, and Tumor Immunology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Z, Li W, Procissi D, Li K, Sheu AY, Gordon AC, Guo Y, Khazaie K, Huan Y, Han G, Larson AC. Antigen-loaded dendritic cell migration: MR imaging in a pancreatic carcinoma model. Radiology 2014; 274:192-200. [PMID: 25222066 DOI: 10.1148/radiol.14132172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes ( LN lymph node s) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. MATERIALS AND METHODS The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LN lymph node s was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio ( SNR signal-to-noise ratio ) of the draining LN lymph node s was measured. One-way analysis of variance ( ANOVA analysis of variance ) was used to compare Prussian blue-positive dendritic cell measurements in LN lymph node s. Repeated-measures ANOVA analysis of variance was used to compare in vivo T2-weighted SNR signal-to-noise ratio LN lymph node measurements between groups over the observation time points. RESULTS Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm(2) ± 16.4 and 109 mm(2) ± 24.3 for the 1-million dendritic cell group, 92.2 mm(2) ± 9.9 and 90.4 mm(2) ± 12.8 for the 2-million dendritic cell group, and 193.7 mm(2) ± 20.9 and 189.4 mm(2) ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNR signal-to-noise ratio decreases in the left popliteal LN lymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). CONCLUSION MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell-based vaccines in draining LN lymph node s. The amount of dendritic cell-based vaccine in draining LN lymph node s correlates well with observed protective effects.
Collapse
Affiliation(s)
- Zhuoli Zhang
- From the Department of Radiology (Z.Z., W.L., D.P., K.L., A.Y.S., A.C.G., Y.G., A.C.L.), Robert H. Lurie Comprehensive Cancer Center (Z.Z., K.K., A.C.L.), and Department of Biomedical Engineering (A.C.L.), Northwestern University, 737 N Michigan Ave, 16th Floor, Chicago, IL 60611; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (Z.Z., Y.H., A.C.L.); and Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China (G.H.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V. Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 2014; 1319:47-65. [DOI: 10.1111/nyas.12469] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Samantha Solito
- Department of Surgery; Oncology and Gastroenterology; Oncology and Immunology Section; University of Padova; Padova Italy
| | | | - Laura Pinton
- Department of Surgery; Oncology and Gastroenterology; Oncology and Immunology Section; University of Padova; Padova Italy
| | - Vera Damuzzo
- Department of Surgery; Oncology and Gastroenterology; Oncology and Immunology Section; University of Padova; Padova Italy
| | - Susanna Mandruzzato
- Department of Surgery; Oncology and Gastroenterology; Oncology and Immunology Section; University of Padova; Padova Italy
- Istituto Oncologico Veneto; IOV-IRCCS; Padova Italy
| | - Vincenzo Bronte
- Pathology and Diagnostics; Verona University Hospital; Verona Italy
| |
Collapse
|
29
|
Pasquali S, Kefford R, Chiarion Sileni V, Nitti D, Rossi CR, Pilati P, Mocellin S. Systemic treatments for metastatic cutaneous melanoma. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2014. [DOI: 10.1002/14651858.cd011123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandro Pasquali
- Veneto Institute of Oncology - IRCCS; Surgical Oncology Unit; Via Gattamelata 64 Padova Italy 35128
| | - Richard Kefford
- The University of Sydney; Discipline of Medicine; Clinical Sciences Block, Westmead Hospital Westmead Australia 2145
| | - Vanna Chiarion Sileni
- Veneto Region Oncology Research Institute; Medical Oncology Unit 2; Via Gattamelata 64 Padova Italy 35128
| | - Donato Nitti
- University of Padova; Clinica Chirurgica II; Via Giustiniani 2 Padova Italy 35128
| | - Carlo Riccardo Rossi
- Veneto Institute of Oncology; Melanoma and Sarcomas Unit; Via Gattamelata 64 Padova Italy 35128
| | - Pierluigi Pilati
- University of Padova; Meta-Analysis Unit, Department of Surgery, Oncology and Gastroenterology; via Giustiniani 2 Padova Italy 35128
| | - Simone Mocellin
- University of Padova; Dept. Surgery Oncology and Gastroenterology; Via Giustiniani 2 Padova Veneto Italy 35128
- IOV-IRCCS; Istituto Oncologico Veneto; Padova Italy 35100
| |
Collapse
|
30
|
Xiang SD, Scalzo-Inguanti K, Minigo G, Park A, Hardy CL, Plebanski M. Promising particle-based vaccines in cancer therapy. Expert Rev Vaccines 2014; 7:1103-19. [DOI: 10.1586/14760584.7.7.1103] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
van der Burg SH. Therapeutic vaccines in cancer: moving from immunomonitoring to immunoguiding. Expert Rev Vaccines 2014; 7:1-5. [DOI: 10.1586/14760584.7.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Morrison BJ, Steel JC, Morris JC. Immunotherapy in lung cancer: the potential of cancer stem cells in future therapies. Future Oncol 2013; 9:623-5. [PMID: 23647289 DOI: 10.2217/fon.13.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
33
|
Abstract
Since the introduction of the concept of immunosurveillance in 1970 by Macfarlane Burnet and Lewis Thomas, cancer immunology has known a significant revolution and an explosion of discoveries. In this regard, manipulation of the immune system in cancer pathology has been a succession of enthusiasms and failures. Thanks to the fundamental achievements during the past three decades, non-specific passive immunotherapy of cancer has shifted to active specific immunotherapy. Thanks to the immunological arsenal (tumor peptides, dendritic cells), the clinical trials have increased but the results were not encouraging. It became clear that the escape of immunosurveillance by tumor cells is under the control of the complex tumor microenvironment and its heterogeneity, complexity and plasticity. The future of immunotherapy lies in an integrative approach to simultaneously boost the immune system and target the tumor microenvironment or combine immunotherapy with conventional treatments. In this review, we will focus on the development of cancer immunotherapy, its realities, failure and hope it raises as the fourth modality of cancer therapy.
Collapse
|
34
|
de Azevedo MTA, Saad STO, Gilli SCO. IL4 and IFNalpha generation of dendritic cells reveals great migratory potential and NFkB and cJun expression in IL4DCs. Immunol Invest 2013; 42:711-25. [PMID: 23845179 DOI: 10.3109/08820139.2013.809580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dendritic cells (DCs) recently revealed as a potent tumor vaccine component, are commonly differentiated from monocytes by cultivation with IL-4 and GM-CSF. Despite the different opinions, the use of IFNalpha can promote DCs differentiation and activation. The aim of this study was to compare the functionality and phenotypic characterization of monocyte-derived DC generated by IL-4 (IL4DC) and IFNalpha (IFNalphaDC) modified protocols. To this aim, we investigated the expression of maturation markers, co-stimulatory molecules, relevant miRNA, cytokine and migratory profiles and the functional ability of these cells to stimulate autologous T cells in vitro. We herein investigated the molecular mechanism underlying the parameters previously described, as the relative expression of NF-kB p65, c-fos and c-jun, transcription factors. Our results demonstrated that IL4DC presented a stable phenotype, an increase in migratory capacity and NF-KB activation, in addition to lower levels of miR-146 a and miR-221. We believe that the IL4DC migratory potential and increase in NFkBp65 expression may be involved in higher IL12 expression and migration, suggesting a preferential activation of TH1 immune responses by IL4DC.
Collapse
|
35
|
Turning Tumors into Vaccines: Co-opting the Innate Immune System. Immunity 2013; 39:27-37. [DOI: 10.1016/j.immuni.2013.07.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
|
36
|
Mocellin S, Nitti D. CTLA-4 blockade and the renaissance of cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2013; 1836:187-96. [PMID: 23748107 DOI: 10.1016/j.bbcan.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022]
Abstract
Cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) plays a key role in restraining the adaptive immune response of T-cells towards a variety of antigens including tumor associated antigens (TAAs). The blockade of this immune checkpoint elicits an effective anticancer immune response in a range of preclinical models, suggesting that naturally occurring (or therapeutically induced) TAA specific lymphocytes need to be "unleashed" in order to properly fight against malignant cells. Therefore, investigators have tested this therapeutic hypothesis also in humans: the favorable results obtained with this strategy in patients with advanced cutaneous melanoma are revolutionizing the management of this highly aggressive disease and are fueling new enthusiasm on cancer immunotherapy in general. Here we summarize the biology of CTLA-4, overview the experimental data supporting the rational for targeting CTLA-4 to treat cancer and review the main clinical findings on this novel anticancer approach. Moreover, we critically discuss the current challenges and potential developments of this promising field of cancer immunotherapy.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy.
| | | |
Collapse
|
37
|
Nigam A. Breast cancer stem cells, pathways and therapeutic perspectives 2011. Indian J Surg 2013; 75:170-80. [PMID: 24426422 PMCID: PMC3689383 DOI: 10.1007/s12262-012-0616-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 06/06/2012] [Indexed: 01/16/2023] Open
Abstract
The evidence for the existence of a heterogeneous population of cancer stem cells (CSCs) responsible for the initiation and maintenance of cancer has been characterized for several tumors recently. Purification and molecular characterization of normal human mammary stem cells from cultured mammospheres has been achieved, providing evidence supporting a model in which breast tumor heterogeneity is a reflection of a number of CSC-like cells in the tumor. A number of experimental methodologies have been developed to characterize epithelial stem cells, including the expression of cell surface or intracellular markers, mammosphere formation, exclusion of fluorescent dye by a side population, retention of the radionucleotide label, etc. Methodologies have also been successfully employed to identify tumorigenic cells within breast cancers. The most important characteristics of stem cells are the capacity for self-renewal and the regulation of the balance between self-renewal and differentiation. In the mammary gland, signaling pathways, such as Hedgehog (Hh), Wnt/β-catenin, and Notch, play a role in embryogenesis and organogenesis and maintenance of tissues in the adult through regulation of the balance between self-renewal and differentiation of stem cells. Breast TAAs include epitopes from proteins, such as carcinoembryonic antigen and NYBR-1, which are involved in tissue differentiation. Targeting BCSCs may be achieved by a number of approaches such as chemotherapy sensitization of BCSCs, differentiating therapy, targeting stem cell elimination, targeting signaling pathways and drug transporters, and inhibition of regulatory pathways involved in self-renewal. Targeting cells which have the potential to metastasize will be an important aspect of the BCSC field as these are the cells that cause the majority of morbidity and mortality from breast cancer.
Collapse
Affiliation(s)
- Anjana Nigam
- Department of Surgery, Pt.J.N.M.Medical College, Raipur, 492001 CG India
| |
Collapse
|
38
|
Lu J, Sun LX, Lin ZB, Duan XS, Ge ZH, Xing EH, Lan TF, Yang N, Li XJ, Li M, Li WD. Antagonism by Ganoderma lucidum
Polysaccharides Against the Suppression by Culture Supernatants of B16F10 Melanoma Cells on Macrophage. Phytother Res 2013; 28:200-6. [PMID: 23519930 DOI: 10.1002/ptr.4980] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/25/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Jie Lu
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - Li-Xin Sun
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
- Department of Pharmacology; Peking University Health Science Center, School of Basic Medical Sciences; Beijing 100191 China
| | - Zhi-Bin Lin
- Department of Pharmacology; Peking University Health Science Center, School of Basic Medical Sciences; Beijing 100191 China
| | - Xin-Suo Duan
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - Zhi-Hua Ge
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - En-Hong Xing
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - Tian-Fei Lan
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - Ning Yang
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - Xue-Jun Li
- Department of Pharmacology; Peking University Health Science Center, School of Basic Medical Sciences; Beijing 100191 China
| | - Min Li
- Department of Pharmacology; Peking University Health Science Center, School of Basic Medical Sciences; Beijing 100191 China
| | - Wei-Dong Li
- Department of Pharmacology; Peking University Health Science Center, School of Basic Medical Sciences; Beijing 100191 China
| |
Collapse
|
39
|
Flörcken A, Kopp J, van Lessen A, Movassaghi K, Takvorian A, Jöhrens K, Möbs M, Schönemann C, Sawitzki B, Egerer K, Dörken B, Pezzutto A, Westermann J. Allogeneic partially HLA-matched dendritic cells pulsed with autologous tumor cell lysate as a vaccine in metastatic renal cell cancer: a clinical phase I/II study. Hum Vaccin Immunother 2013; 9:1217-27. [PMID: 23458999 DOI: 10.4161/hv.24149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Multi-kinase inhibitors have been established for the treatment of advanced renal cell cancer, but long-term results are still disappointing and immunotherapeutic approaches remain an interesting experimental option particularly in patients with a low tumor burden. DC are crucial for antigen-specific MHC-restricted T cell immunity. Furthermore, allogeneic HLA-molecules pose a strong immunogenic signal and may help to induce tumor-specific T cell responses. In this phase I/II trial, 7 patients with histologically confirmed progressive metastatic RCC were immunized repetitively with 1 × 10 (7) allogeneic partially HLA-matched DC pulsed with autologous tumor lysate following a schedule of 8 vaccinations over 20 weeks. Patients also received 3 Mio IE IL-2 s.c. once daily starting in week 4. Primary endpoints of the study were feasibility and safety. Secondary endpoints were immunological and clinical responses. Vaccination was feasible and safe with no severe toxicity being observed. No objective response could be documented. However, while all patients had documented progress at study entry, 29% of the patients showed SD throughout the study with a mean TTP of 24.6 weeks (range 5 to 96 weeks). In 3/7 patients, TH1-polarized immune responses against RCC-associated antigens were observed. In one patient showing a minimal clinical response and a TTP of 96 weeks, clonally proliferated T cells against yet undefined antigens were induced by the vaccine. Vaccination with tumor antigen loaded DC remains an interesting experimental approach, but should rather be applied in the situation of minimal residual disease after systemic therapy. Additional depletion of regulatory cells might be a promising strategy.
Collapse
Affiliation(s)
- Anne Flörcken
- Department of Hematology; Oncology, and Tumor Immunology; Charité University Medicine Berlin; Campus Virchow- Klinikum; Berlin, Germany; Department of Hematology; Oncology, and Tumor Immunology; Charité University Medicine Berlin; Campus Benjamin Franklin; Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mocellin S, Benna C, Pilati P. Coinhibitory molecules in cancer biology and therapy. Cytokine Growth Factor Rev 2013; 24:147-61. [PMID: 23380546 DOI: 10.1016/j.cytogfr.2013.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/09/2013] [Indexed: 12/31/2022]
Abstract
The adaptive immune response is controlled by checkpoints represented by coinhibitory molecules, which are crucial for maintaining self-tolerance and minimizing collateral tissue damage under physiological conditions. A growing body of preclinical evidence supports the hypothesis that unleashing this immunological break might be therapeutically beneficial in the fight against cancer, as it would elicit an effective antitumor immune response. Remarkably, recent clinical trials have demonstrated that this novel strategy can be highly effective in the treatment of patients with cancer, as shown by the paradigmatic case of ipilimumab (a monoclonal antibody blocking the coinhibitory molecule cytotoxic T lymphocyte associated antigen-4 [CTLA4]) that is opening a new era in the therapeutic approach to a chemoresistant tumor such as cutaneous melanoma. In this review we summarize the biology of coinhibitory molecules, overview the experimental and clinical attempts to interfere with these immune checkpoints to treat cancer and critically discuss the challenges posed by such a promising antitumor modality.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | | | | |
Collapse
|
41
|
Telomerase and the search for the end of cancer. Trends Mol Med 2013; 19:125-33. [DOI: 10.1016/j.molmed.2012.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/11/2012] [Accepted: 11/16/2012] [Indexed: 12/30/2022]
|
42
|
Guan CN, Zhang PW, Lou HQ, Liao XH, Chen BY. DLC-1 expression levels in breast cancer assessed by qRT- PCR are negatively associated with malignancy. Asian Pac J Cancer Prev 2013; 13:1231-3. [PMID: 22799310 DOI: 10.7314/apjcp.2012.13.4.1231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The aim of this study was to explore the expression of DLC-l in breast carcinoma and any association with tumor metastasis. METHODS 51 surgical specimens of human breast carcinoma, divided into high invasive and low invasive groups according to their clinicopathological features, 30 cases of adjacent normal tissue and 28 benign breast lesions were examined by qRT-PCR for expression of DLC-1. RESULTS Expression level of DLC-1 in adjacent normal tissue and benign breast lesion specimens was higher than that in breast carcinoma (P<0.0001); the values in the high invasive group with synchronous metastases were also lower than in the low invasive group (P=0.0275). The correlation between DLC-1 expression level and tumor progression and metastasis of breast cancer was negative. CONCLUSION As an anti-oncogene, DLC-1 could play an important part in breast carcinoma occurrence, progression, invasiveness and metastasis. Detecting the changes of the expression of DLC-1 in the breast carcinoma may contribute to earlier auxiliary diagnosis of invasiveness, metastasis and recrudescence.
Collapse
Affiliation(s)
- Cheng-Nong Guan
- Department of Oncology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, China.
| | | | | | | | | |
Collapse
|
43
|
Lung cancer-initiating cells: a novel target for cancer therapy. Target Oncol 2013; 8:159-172. [PMID: 23314952 PMCID: PMC3763165 DOI: 10.1007/s11523-012-0247-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/20/2012] [Indexed: 12/20/2022]
Abstract
Lung cancer is a major public health problem causing more deaths than any other cancer. A better understanding of the biology of this disease and improvements in treatment are greatly needed. Increasing evidence supports the concept that a rare and specialized population of cancer cells, so-called cancer-initiating cells with stem cell-like characteristics, is responsible for tumor growth, maintenance, and recurrence. Cancer-initiating cells also exhibit characteristics that render them resistant to both radiation and chemotherapy, and therefore they are believed to play a role in treatment failure. This has led to the hypothesis that traditional therapies that indiscriminately kill tumor cells will not be as effective as therapies that selectively target cancer-initiating cells. Investigating putative cancer-initiating cells in lung cancer will greatly benefit the understanding of the origins of this disease and may lead to novel approaches to therapy by suggesting markers for use in either further isolating this population for study or for selectively targeting these cells. This review will discuss (1) lung cancer, (2) stem cells, and the role of cancer-initiating cells in tumorigenesis; (3) markers and functional characteristics associated with lung cancer-initiating cells; and (4) the potential to selectively target this subpopulation of tumor cells.
Collapse
|
44
|
Abstract
Many immunotherapeutic agents in phase II cancer studies have given optimistic results, which were not confirmed in larger randomized studies. Here we explore the evidence that, contrary to previous opinion, many chemotherapeutic agents and other classes of drugs may enhance the response to therapeutic vaccines by reducing inflammation and/or by inhibiting regulatory T lymphocytes or myeloid-derived suppressor cells. In addition, some of these agents, such as the immunomodulatory drugs, may produce marked costimulatory activities as in the case of lenalidomide, which also has marked anti-inflammatory properties. With the first approval for a vaccine-based therapy for prostate cancer, we propose that many more vaccines will be able to achieve approval, especially when combined with the optimal chemotherapy and/or immunomodulatory drug schedule.
Collapse
Affiliation(s)
- Wai M Liu
- Department of Oncology, Division of Clinical Sciences, St George's, University of London, London, UK
| | | |
Collapse
|
45
|
van Hall T, van der Burg SH. Mechanisms of peptide vaccination in mouse models: tolerance, immunity, and hyperreactivity. Adv Immunol 2012; 114:51-76. [PMID: 22449778 DOI: 10.1016/b978-0-12-396548-6.00003-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of synthetic peptide vaccines capable of inducing strong and protective T-cell immunity has taken more than 20 years. Peptide vaccines come in many flavors and although their design is simple, their use is more complicated as the success of a particular peptide vaccine is influenced by many parameters. In fact, peptide vaccination may lead to tolerance, immunity or even hyper-reactivity causing death of the animals. Here we systematically dissect the parameters that influence the final outcome of peptide vaccines as examined in mouse models and this will guide the rational design of new vaccines in the future.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Clinical Oncology, Experimental Cancer Immunology and Therapy, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
46
|
Arce F, Breckpot K, Collins M, Escors D. Targeting lentiviral vectors for cancer immunotherapy. CURRENT CANCER THERAPY REVIEWS 2011; 7:248-260. [PMID: 22983382 DOI: 10.2174/157339411797642605] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Delivery of tumour-associated antigens (TAA) in a way that induces effective, specific immunity is a challenge in anti-cancer vaccine design. Circumventing tumour-induced tolerogenic mechanisms in vivo is also critical for effective immunotherapy. Effective immune responses are induced by professional antigen presenting cells, in particular dendritic cells (DC). This requires presentation of the antigen to both CD4(+) and CD8(+) T cells in the context of strong co-stimulatory signals. Lentiviral vectors have been tested as vehicles, for both ex vivo and in vivo delivery of TAA and/or activation signals to DC, and have been demonstrated to induce potent T cell mediated immune responses that can control tumour growth. This review will focus on the use of lentiviral vectors for in vivo gene delivery to DC, introducing strategies to target DC, either targeting cell entry or gene expression to improve safety of the lentiviral vaccine or targeting dendritic cell activation pathways to enhance performance of the lentiviral vaccine. In conclusion, this review highlights the potential of lentiviral vectors as a generally applicable 'off-the-shelf' anti-cancer immunotherapeutic.
Collapse
Affiliation(s)
- Frederick Arce
- Division of Infection and Immunity, Medical School of the Royal Free and University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | | | | | | |
Collapse
|
47
|
Speetjens FM, Zeestraten ECM, Kuppen PJK, Melief CJM, van der Burg SH. Colorectal cancer vaccines in clinical trials. Expert Rev Vaccines 2011; 10:899-921. [PMID: 21692708 DOI: 10.1586/erv.11.63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article elucidates current strategies of active immunotherapy for colorectal cancer patients with a focus on T-cell mediated immunotherapy. Poor prognosis of especially stage III and IV colorectal cancer patients emphasizes the need for advanced therapeutic intervention. Here, we refer to clinical trials using either tumor cell-derived vaccines or tumor antigen vaccines with a special interest on safety, induced immune responses, clinical benefit and efforts to improve the clinical impact of these vaccines in the context of colorectal cancer treatment.
Collapse
Affiliation(s)
- Frank M Speetjens
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Zhong R, Teng J, Han B, Zhong H. Dendritic cells combining with cytokine-induced killer cells synergize chemotherapy in patients with late-stage non-small cell lung cancer. Cancer Immunol Immunother 2011; 60:1497-502. [PMID: 21681372 PMCID: PMC11029021 DOI: 10.1007/s00262-011-1060-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/03/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Lung cancer is the leading cause for cancer-related mortality and morbidity, and the survival of late-stage non-small cell lung cancer (NSCLC) remains poor. We hereby evaluate conventional chemotherapy followed by immunotherapy using dendritic cells and cytokine-induced killer cells in the treatment for late stage of NSCLC. METHODS Twenty-eight untreated patients suffered from IIIB to IV NSCLC were enrolled in the study between August 2004 and October 2005, and all received four courses of vinorelbine-platinum (NP) chemotherapy. Fourteen of them received conventional NP chemotherapy followed by vaccinated with CEA (605-613) peptide-pulsed autologous dendritic cells and CIK cells. Vaccination was repeated at 30-day intervals for 4 cycles. The adverse effects, time to progression (TTP), and overall survival (OS) in each group were evaluated. RESULTS The adverse effect as a result of chemoimmunotherapy was mild and tolerable. Rash, acne, and pruritus were more frequent in the chemoimmunotherapy group than in the chemotherapy group (64.2% vs. 7.1%, P = 0.004). Non-infectious fever was more frequent in the chemoimmunotherapy group than in the chemotherapy group (71.4% vs. 21.4% P = 0.02). Less grade 3/4 fatigue was observed in patients receiving chemoimmunotherapy: 7.1% versus 57.1% in chemotherapy group, P = 0.01. Compared with patients in chemotherapy group, time to progression in chemoimmunotherapy significantly prolonged, with the median improved from 5.2 months (95% CI: 3.3-6.0) to 6.9 months (95% CI: 5.0-8.8) (P = 0.03). The 1-, 2-, and 5-year survival rates were 64.3, 49, and 21.0%, respectively in chemoimmunotherapy group. Overall survival rate showed no statistically difference between two groups (P = 0.18). CONCLUSIONS Chemoimmunotherapy could alleviate adverse effects of conventional chemotherapy and prolong survival for patients with late-stage NSCLC.
Collapse
Affiliation(s)
- Runbo Zhong
- Department of Pulmonary Disease, Shanghai Chest Hospital, 241#, West Huaihai Road, Shanghai, China
| | - Jiajun Teng
- Department of Pulmonary Disease, Shanghai Chest Hospital, 241#, West Huaihai Road, Shanghai, China
| | - Baohui Han
- Department of Pulmonary Disease, Shanghai Chest Hospital, 241#, West Huaihai Road, Shanghai, China
| | - Hua Zhong
- Department of Pulmonary Disease, Shanghai Chest Hospital, 241#, West Huaihai Road, Shanghai, China
| |
Collapse
|
49
|
Abstract
For the last two decades the immunotherapy of patients with solid and hematopoietic tumors has met with variable success. We have reviewed the field of tumor vaccines to examine what has worked and what has not, why this has been the case, how the anti-tumor responses were examined, and how we can make tumor immunity successful for the majority of individuals rather than for the exceptional patients who currently show successful immune responses against their tumors.
Collapse
Affiliation(s)
- Jan Joseph Melenhorst
- Stem Cell Allogeneic Transplant Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
50
|
Bot A, Qiu Z, Wong R, Obrocea M, Smith KA. Programmed cell death-1 (PD-1) at the heart of heterologous prime-boost vaccines and regulation of CD8+ T cell immunity. J Transl Med 2010; 8:132. [PMID: 21144062 PMCID: PMC3012026 DOI: 10.1186/1479-5876-8-132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/14/2010] [Indexed: 01/24/2023] Open
Abstract
Developing new vaccination strategies and optimizing current vaccines through heterologous prime-boost carries the promise of integrating the benefits of different yet synergistic vectors. It has been widely thought that the increased immunity afforded by heterologous prime-boost vaccination is mainly due to the minimization of immune responses to the carrier vectors, which allows a progressive build up of immunity against defined epitopes and the subsequent induction of broader immune responses against pathogens. Focusing on CD8+ T cells, we put forward a different yet complementary hypothesis based primarily on the systematic analysis of DNA vaccines as priming agents. This hypothesis relies on the finding that during the initiation of immune response, acquisition of co-inhibitory receptors such as programmed cell death-1 (PD-1) is determined by the pattern of antigen exposure in conjunction with Toll-like receptor (TLR)-dependent stimulation, critically affecting the magnitude and profile of secondary immunity. This hypothesis, based upon the acquisition and co-regulation of pivotal inhibitory receptors by CD8+ T cells, offers a rationale for gene-based immunization as an effective priming strategy and, in addition, outlines a new dimension to immune homeostasis during immune reaction to pathogens. Finally, this model implies that new and optimized immunization approaches for cancer and certain viral infections must induce highly efficacious T cells, refractory to a broad range of immune-inhibiting mechanisms, rather than solely or primarily focusing on the generation of large pools of vaccine-specific lymphocytes.
Collapse
Affiliation(s)
- Adrian Bot
- MannKind Corporation, 28903 North Avenue Paine, Valencia, CA 91355, USA.
| | | | | | | | | |
Collapse
|