1
|
Hatano A, Matsuzaka R, Shimane G, Wakana H, Suzuki K, Nishioka C, Kojima A, Kidowaki M. Introduction of pseudo-base benzimidazole derivatives into nucleosides via base exchange by a nucleoside metabolic enzyme. Bioorg Med Chem 2023; 91:117411. [PMID: 37451053 DOI: 10.1016/j.bmc.2023.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
In alternate organic synthesis, biocatalysis using enzymes provides a more stereoselective and cost-effective approach. Synthesis of unnatural nucleosides by nucleoside base exchange reactions using nucleoside-metabolizing enzymes has previously shown that the 5-position recognition of pyrimidine bases on nucleoside substrates is loose and can be used to introduce functional molecules into pyrimidine nucleosides. Here we explored the incorporation of purine pseudo bases into nucleosides by the base exchange reaction of pyrimidine nucleoside phosphorylase (PyNP), demonstrating that an imidazole five-membered ring is an essential structure for the reaction. In the case of benzimidazole, the base exchange proceeded to give the deoxyribose form in 96 % yield, and the ribose form in 23 % yield. The reaction also proceeded with 1H-imidazo[4,5-b]phenazine, a benzimidazole analogue with an additional ring, although the yield of nucleoside was only 31 %. Docking simulations between 1H and imidazo[4,5-b]phenazine nucleoside and the active site of PyNP (PDB 1BRW) supported our observation that 1H-imidazo[4,5-b]phenazine can be used as a substrate by PyNP. Thus, the enzymatic substitution reaction using PyNP can be used to incorporate many purine pseudo bases and benzimidazole derivatives with various functional groups into nucleoside structures, which have potential utility as diagnostic or therapeutic agents.
Collapse
Affiliation(s)
- Akihiko Hatano
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan.
| | - Riki Matsuzaka
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Genki Shimane
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Hiroyuki Wakana
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kou Suzuki
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Chisato Nishioka
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Aoi Kojima
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Masatoshi Kidowaki
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
2
|
Eistrikh-Heller PA, Rubinsky SV, Samygina VR, Lashkov AA. Calculation of Free Energy of Binding for Widely Specific Pyrimidine-Nucleoside Phosphorylase and Suspected Inhibitors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Nucleic acid aptamer controls mycoplasma infection for inhibiting the malignancy of esophageal squamous cell carcinoma. Mol Ther 2022; 30:2224-2241. [DOI: 10.1016/j.ymthe.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
|
4
|
Lee J, Kind T, Tantillo DJ, Wang LP, Fiehn O. Evaluating the Accuracy of the QCEIMS Approach for Computational Prediction of Electron Ionization Mass Spectra of Purines and Pyrimidines. Metabolites 2022; 12:68. [PMID: 35050190 PMCID: PMC8779335 DOI: 10.3390/metabo12010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/04/2022] Open
Abstract
Mass spectrometry is the most commonly used method for compound annotation in metabolomics. However, most mass spectra in untargeted assays cannot be annotated with specific compound structures because reference mass spectral libraries are far smaller than the complement of known molecules. Theoretically predicted mass spectra might be used as a substitute for experimental spectra especially for compounds that are not commercially available. For example, the Quantum Chemistry Electron Ionization Mass Spectra (QCEIMS) method can predict 70 eV electron ionization mass spectra from any given input molecular structure. In this work, we investigated the accuracy of QCEIMS predictions of electron ionization (EI) mass spectra for 80 purine and pyrimidine derivatives in comparison to experimental data in the NIST 17 database. Similarity scores between every pair of predicted and experimental spectra revealed that 45% of the compounds were found as the correct top hit when QCEIMS predicted spectra were matched against the NIST17 library of >267,000 EI spectra, and 74% of the compounds were found within the top 10 hits. We then investigated the impact of matching, missing, and additional fragment ions in predicted EI mass spectra versus ion abundances in MS similarity scores. We further include detailed studies of fragmentation pathways such as retro Diels-Alder reactions to predict neutral losses of (iso)cyanic acid, hydrogen cyanide, or cyanamide in the mass spectra of purines and pyrimidines. We describe how trends in prediction accuracy correlate with the chemistry of the input compounds to better understand how mechanisms of QCEIMS predictions could be improved in future developments. We conclude that QCEIMS is useful for generating large-scale predicted mass spectral libraries for identification of compounds that are absent from experimental libraries and that are not commercially available.
Collapse
Affiliation(s)
- Jesi Lee
- Department of Chemistry, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Tobias Kind
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | | | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Mishra R, Mishra S. Updates in bile acid-bioactive molecule conjugates and their applications. Steroids 2020; 159:108639. [PMID: 32222373 DOI: 10.1016/j.steroids.2020.108639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/28/2019] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
Abstract
Bile acid conjugates are emerging as important chemical resources due to their low cost and wide availability of bile acids, making them privileged molecules in drug carrier systems and building blocks for derivatization and chiral template introduction into bioactive molecules. In recent years, bile acids as scaffolds in supramolecular, medicinal, and material chemistry attracted prime focus of researchers as an area of research to be followed with passion. Due to peculiar physicochemical and biological properties, bile acid exhibited various applications in biomedical and pharmaceutical fields. In this review, the bile acid conjugations with different bioactive compounds have been discussed to understand their influence on the bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Roli Mishra
- Department of Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat 382007, India
| | - Satyendra Mishra
- Department of Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat 382007, India.
| |
Collapse
|
6
|
Agarwal DS, Siva Krishna V, Sriram D, Yogeeswari P, Sakhuja R. Clickable conjugates of bile acids and nucleosides: Synthesis, characterization, in vitro anticancer and antituberculosis studies. Steroids 2018; 139:35-44. [PMID: 30236620 DOI: 10.1016/j.steroids.2018.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023]
Abstract
A series of clickable bile acid-nucleosides conjugates linked directly or via amino acid linker were synthesized, and characterized by spectroscopic techniques such as 1H NMR, 13C NMR, FT-IR, HRMS and HPLC. The synthesized compounds 6a-p were screened for their in vitro anticancer property against a panel of three cancer cell lines (PC-3, MCF-7, IMR-32). In addition, the synthesized derivatives were also tested for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv (ATCC 27294 strain). Among the screened compounds, cholic acid-uridine clicked conjugate (6c), and cholic acid-uridine clicked conjugate liked via phenylalanine moiety (6m) were found to be most active against MCF-7 and IMR-32 exhibiting an IC50 value of 8.084 and 8.71 µM, respectively. The antimycobacterial study of the synthesized conjugates revealed all the conjugates to be active with MIC values in the range of 4.09-15.41 µM. Deoxycholic acid-adenosine clicked conjugate (6b) showed most promising antituberculosis property with MIC value of 4.09 µM. Most of the synthesized conjugates were found to be safe at 50 µM against normal human embryonic kidney (HEK 293 T) cell line.
Collapse
Affiliation(s)
- Devesh S Agarwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Vagolu Siva Krishna
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Perumal Yogeeswari
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
7
|
Boyarskikh UA, Shadrina AS, Smetanina MA, Tsepilov YA, Oscorbin IP, Kozlov VV, Kel AE, Filipenko ML. Mycoplasma hyorhinis reduces sensitivity of human lung carcinoma cells to Nutlin-3 and promotes their malignant phenotype. J Cancer Res Clin Oncol 2018; 144:1289-1300. [PMID: 29737431 DOI: 10.1007/s00432-018-2658-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE MDM2 inhibitors are promising anticancer agents that induce cell cycle arrest and tumor cells death via p53 reactivation. We examined the influence of Mycoplasma hyorhinis infection on sensitivity of human lung carcinoma cells NCI-H292 to MDM2 inhibitor Nutlin-3. In order to unveil possible mechanisms underlying the revealed effect, we investigated gene expression changes and signal transduction networks activated in NCI-H292 cells in response to mycoplasma infection. METHODS Sensitivity of NCI-Н292 cells to Nutlin-3 was estimated by resazurin-based cell viability assay. Genome-wide transcriptional profiles of NCI-H292 and NCI-Н292Myc.h cell lines were determined using Illumina Human HT-12 v3 Expression BeadChip. Search for key transcription factors and key node molecules was performed using the geneXplain platform. Ability for anchorage-independent growth was tested by soft agar colony formation assay. RESULTS NCI-Н292Myc.h cells were shown to be 1.5- and 5.2-fold more resistant to killing by Nutlin-3 at concentrations of 15 and 30 µM than uninfected NCI-Н292 cells (P < 0.05 and P < 0.001, respectively). Transcriptome analysis revealed differential expression of multiple genes involved in cancer progression and metastasis as well as epithelial-mesenchymal transition (EMT). Moreover, we have shown experimentally that NCI-Н292Myc.h cells were more capable of growing and dividing without binding to a substrate. The most likely mechanism explaining the observed changes was found to be TLR4- and IL-1b-mediated activation of NF-κB pathway. CONCLUSIONS Our results provide evidence that mycoplasma infection is an important factor modulating the effect of MDM2 inhibitors on cancer cells and is able to induce EMT-related changes.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Mucoepidermoid/drug therapy
- Carcinoma, Mucoepidermoid/genetics
- Carcinoma, Mucoepidermoid/metabolism
- Carcinoma, Mucoepidermoid/microbiology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/microbiology
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Female
- Gene Expression/drug effects
- Humans
- Imidazoles/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/microbiology
- Male
- Middle Aged
- Mycoplasma Infections/metabolism
- Mycoplasma Infections/microbiology
- Mycoplasma Infections/physiopathology
- Mycoplasma hyorhinis/physiology
- Piperazines/pharmacology
- Signal Transduction
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Uljana A Boyarskikh
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia.
| | - Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| | - Yakov A Tsepilov
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, 10 Lavrentjev Avenue, Novosibirsk, 630090, Russia
| | - Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| | - Vadim V Kozlov
- Novosibirsk Regional Clinical Oncological Center, 2 Plakhotnogo Street, Novosibirsk, 630108, Russia
| | - Alexander E Kel
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Department of Research and Development, geneXplain GmbH, Am Exer 10b, 38302, Wolfenbüttel, Germany
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| |
Collapse
|
8
|
Liu D, Hu Y, Guo Y, Zhu Z, Lu B, Wang X, Huang Y. Mycoplasma-associated multidrug resistance of hepatocarcinoma cells requires the interaction of P37 and Annexin A2. PLoS One 2017; 12:e0184578. [PMID: 28976984 PMCID: PMC5627893 DOI: 10.1371/journal.pone.0184578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022] Open
Abstract
Mycoplasma infection has been reported to be associated with cancer migration, invasion, epithelial-mesenchymal transition as well as the resistance to nucleoside analogues chemotherapeutic drugs. In this study, we found that the sensitivity of hepatocarcinoma cells to Cisplatin, Gemcitabine and Mitoxantrone was increased by mycoplasma elimination. Similar to the effect of anti-mycoplasma agent, interrupting the interaction between Mycoplasma hyorhinis membrane protein P37 and Annexin A2 of host cells using the N-terminal of ANXA2 polypeptide enhanced the sensitivity of HCC97L cells to Gemcitabine and Mitoxantrone. Meanwhile, we did not observe any changes in expression or distribution of multidrug resistance associated transporters, ATP-Binding Cassette protein B1, C1 and G2, on the removal of mycoplasma. These results suggest that mycoplasma induces a resistance to multiple drugs in hepatocarcinoma cells which required the interaction of P37 and Annexin A2. The pathway downstream this interaction needs to be explored.
Collapse
Affiliation(s)
- Danyang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yang Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuelan Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (YH); (XW)
| | - Yijun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (YH); (XW)
| |
Collapse
|
9
|
Vande Voorde J, Vervaeke P, Liekens S, Balzarini J. Mycoplasma hyorhinis-encoded cytidine deaminase efficiently inactivates cytosine-based anticancer drugs. FEBS Open Bio 2015; 5:634-9. [PMID: 26322268 PMCID: PMC4541722 DOI: 10.1016/j.fob.2015.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022] Open
Abstract
Mycoplasmas may colonize tumor tissue in patients. Mycoplasma-encoded cytidine deaminase deaminates cytosine-based anticancer drugs. The activity of gemcitabine is compromised in mycoplasma-infected tumor cells. Gemcitabine activity can be restored by nucleosides or a PNP inhibitor.
Mycoplasmas may colonize tumor tissue in patients. The cytostatic activity of gemcitabine was dramatically decreased in Mycoplasma hyorhinis-infected tumor cell cultures compared with non-infected tumor cell cultures. This mycoplasma-driven drug deamination could be prevented by exogenous administration of the cytidine deaminase (CDA) inhibitor tetrahydrouridine, but also by the natural nucleosides or by a purine nucleoside phosphorylase inhibitor. The M. hyorhinis-encoded CDAHyor gene was cloned, expressed as a recombinant protein and purified. CDAHyor was found to be more catalytically active than its human equivalent and efficiently deaminates (inactivates) cytosine-based anticancer drugs. CDAHyor expression at the tumor site may result in selective drug inactivation and suboptimal therapeutic efficiency.
Collapse
Key Words
- (d)Ado, (2′-deoxy)adenosine
- (d)Guo, (2′-deoxy)guanosine
- (d)Ino, (2′-deoxy)inosine
- (d)Urd, (2′-deoxy)uridine
- 3TC, 2′,3′-dideoxy-3′-thiacytidine
- CDA, cytidine deaminase
- Cancer
- Cytidine deaminase
- Gemcitabine
- Imm-H, Immucillin-H
- Mycoplasma
- NA, nucleoside analogue
- Nucleoside analogue
- PNP, purine nucleoside phosphorylase
- Purine nucleoside phosphorylase
- ara-Cyd, cytosine arabinoside
- dFdC, gemcitabine
- dFdU, 2′,2′-difluoro-2′-deoxyuridine
- dThd, thymidine
- ddC, 2′,3′-dideoxycytidine
Collapse
Affiliation(s)
| | | | | | - Jan Balzarini
- Corresponding author. Tel.: +32 16 337367; fax: +32 16 337340.
| |
Collapse
|
10
|
Vande Voorde J, Liekens S, Gago F, Balzarini J. The pyrimidine nucleoside phosphorylase of Mycoplasma hyorhinis and how it may affect nucleoside-based therapy. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:394-402. [PMID: 24940697 DOI: 10.1080/15257770.2013.851394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mycoplasmas are opportunistic parasites and some species are suggested to preferentially colonize tumor tissue in cancer patients. We could demonstrate that the annotated thymidine phosphorylase (TP) gene in the genome of Mycoplasma hyorhinis encodes a pyrimidine nucleoside phosphorylase (PyNPHyor) that not only efficiently catalyzes thymidine but also uridine phosphorolysis. The kinetic characteristics of PyNPHyor-catalyzed nucleoside and nucleoside analogue (NA) phosphorolysis were determined. We demonstrated that the expression of such an enzyme in mycoplasma-infected cell cultures dramatically alters the activity of various anticancer/antiviral NAs such as 5-halogenated pyrimidine nucleosides, including 5-trifluorothymidine (TFT). Due to their close association with human cancers, the presence of mycoplasmas may markedly influence the therapeutic efficiency of nucleoside-based drugs.
Collapse
Affiliation(s)
- J Vande Voorde
- a Rega Institute for Medical Research , KU Leuven , Leuven , Belgium
| | | | | | | |
Collapse
|
11
|
Efremova AS, Shram SI, Drenichev MS, Posypanova GA, Myasoedov NF, Mikhailov SN. The selective toxic effect of dialdehyde derivatives of pyrimidine nucleosides on human ovarian cancer cells. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s1990750814040027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Vande Voorde J, Balzarini J, Liekens S. An emerging understanding of the Janus face of the human microbiome: enhancement versus impairment of cancer therapy. J Antimicrob Chemother 2014; 69:2878-80. [PMID: 24925896 DOI: 10.1093/jac/dku201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Johan Vande Voorde
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, blok x-bus 1030, B-3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, blok x-bus 1030, B-3000 Leuven, Belgium
| | - Sandra Liekens
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, blok x-bus 1030, B-3000 Leuven, Belgium
| |
Collapse
|
13
|
Vande Voorde J, Sabuncuoğlu S, Noppen S, Hofer A, Ranjbarian F, Fieuws S, Balzarini J, Liekens S. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem 2014; 289:13054-65. [PMID: 24668817 DOI: 10.1074/jbc.m114.558924] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intracellular metabolism and cytostatic activity of the anticancer drug gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) was severely compromised in Mycoplasma hyorhinis-infected tumor cell cultures. Pronounced deamination of dFdC to its less cytostatic metabolite 2',2'-difluoro-2'-deoxyuridine was observed, both in cell extracts and spent culture medium (i.e. tumor cell-free but mycoplasma-containing) of mycoplasma-infected tumor cells. This indicates that the decreased antiproliferative activity of dFdC in such cells is attributed to a mycoplasma cytidine deaminase causing rapid drug catabolism. Indeed, the cytostatic activity of gemcitabine could be restored by the co-administration of tetrahydrouridine (a potent cytidine deaminase inhibitor). Additionally, mycoplasma-derived pyrimidine nucleoside phosphorylase (PyNP) activity indirectly potentiated deamination of dFdC: the natural pyrimidine nucleosides uridine, 2'-deoxyuridine and thymidine inhibited mycoplasma-associated dFdC deamination but were efficiently catabolized (removed) by mycoplasma PyNP. The markedly lower anabolism and related cytostatic activity of dFdC in mycoplasma-infected tumor cells was therefore also (partially) restored by a specific TP/PyNP inhibitor (TPI), or by exogenous thymidine. Consequently, no effect on the cytostatic activity of dFdC was observed in tumor cell cultures infected with a PyNP-deficient Mycoplasma pneumoniae strain. Because it has been reported that some commensal mycoplasma species (including M. hyorhinis) preferentially colonize tumor tissue in cancer patients, our findings suggest that the presence of mycoplasmas in the tumor microenvironment could be a limiting factor for the anticancer efficiency of dFdC-based chemotherapy. Accordingly, a significantly decreased antitumor effect of dFdC was observed in mice bearing M. hyorhinis-infected murine mammary FM3A tumors compared with uninfected tumors.
Collapse
Affiliation(s)
- Johan Vande Voorde
- From the Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, blok x-bus 1030, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Vande Voorde J, Liekens S, Balzarini J. Mycoplasma hyorhinis-encoded purine nucleoside phosphorylase: kinetic properties and its effect on the cytostatic potential of purine-based anticancer drugs. Mol Pharmacol 2013; 84:865-75. [PMID: 24068428 DOI: 10.1124/mol.113.088625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A mycoplasma-encoded purine nucleoside phosphorylase (designated PNPHyor) has been cloned and characterized for the first time. Efficient phosphorolysis of natural 6-oxopurine and 6-aminopurine nucleosides was observed, with adenosine the preferred natural substrate (Km = 61 µM). Several cytostatic purine nucleoside analogs proved to be susceptible to PNPHyor-mediated phosphorolysis, and a markedly decreased or increased cytostatic activity was observed in Mycoplasma hyorhinis-infected human breast carcinoma MCF-7 cell cultures (MCF-7.Hyor), depending on the properties of the released purine base. We demonstrated an ∼10-fold loss of cytostatic activity of cladribine in MCF-7.Hyor cells and observed a rapid and complete phosphorolysis of this drug when it was exposed to the supernatant of mycoplasma-infected cells. This conversion (inactivation) could be prevented by a specific PNP inhibitor. These findings correlated well with the high efficiency of PNPHyor-catalyzed phosphorolysis of cladribine to its less toxic base 2-chloroadenine (Km = 80 µM). In contrast, the cytostatic activity of nucleoside analogs carrying a highly toxic purine base and being a substrate for PNPHyor, but not human PNP, was substantially increased in MCF-7.Hyor cells (∼130-fold for fludarabine and ∼45-fold for 6-methylpurine-2'-deoxyriboside). Elimination of the mycoplasma from the tumor cell cultures or selective inhibition of PNPHyor by a PNP inhibitor restored the cytostatic activity of the purine-based nucleoside drugs. Since several studies suggest a high and preferential colonization or association of tumor tissue in cancer patients with different prokaryotes (including mycoplasmas), the data presented here may be of relevance for the optimization of purine nucleoside-based anticancer drug treatment.
Collapse
|
15
|
Characterization of pyrimidine nucleoside phosphorylase of Mycoplasma hyorhinis: implications for the clinical efficacy of nucleoside analogues. Biochem J 2012; 445:113-23. [PMID: 22475552 DOI: 10.1042/bj20112225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present paper we demonstrate that the cytostatic and antiviral activity of pyrimidine nucleoside analogues is markedly decreased by a Mycoplasma hyorhinis infection and show that the phosphorolytic activity of the mycoplasmas is responsible for this. Since mycoplasmas are (i) an important cause of secondary infections in immunocompromised (e.g. HIV infected) patients and (ii) known to preferentially colonize tumour tissue in cancer patients, catabolic mycoplasma enzymes may compromise efficient chemotherapy of virus infections and cancer. In the genome of M. hyorhinis, a TP (thymidine phosphorylase) gene has been annotated. This gene was cloned, expressed in Escherichia coli and kinetically characterized. Whereas the mycoplasma TP efficiently catalyses the phosphorolysis of thymidine (Km=473 μM) and deoxyuridine (Km=578 μM), it prefers uridine (Km=92 μM) as a substrate. Our kinetic data and sequence analysis revealed that the annotated M. hyorhinis TP belongs to the NP (nucleoside phosphorylase)-II class PyNPs (pyrimidine NPs), and is distinct from the NP-II class TP and NP-I class UPs (uridine phosphorylases). M. hyorhinis PyNP also markedly differs from TP and UP in its substrate specificity towards therapeutic nucleoside analogues and susceptibility to clinically relevant drugs. Several kinetic properties of mycoplasma PyNP were explained by in silico analyses.
Collapse
|
16
|
Abstract
In recent years, numerous new targets have been identified and new experimental therapeutics have been developed. Importantly, existing non-cancer drugs found novel use in cancer therapy. And even more importantly, new original therapeutic strategies to increase potency, selectivity and decrease detrimental side effects have been evaluated. Here we review some recent advances in targeting cancer.
Collapse
Affiliation(s)
- Zoya N Demidenko
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | |
Collapse
|
17
|
Inhibition of pyrimidine and purine nucleoside phosphorylases by a 3,5-dichlorobenzoyl-substituted 2-deoxy-D-ribose-1-phosphate derivative. Biochem Pharmacol 2012; 83:1358-63. [PMID: 22366108 DOI: 10.1016/j.bcp.2012.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 11/23/2022]
Abstract
The 3,5-dichlorobenzoyl-substituted 2-deoxy-D-ribose-1-phosphate derivative, designated Cf2891, was found to inhibit a variety of pyrimidine and purine nucleoside phosphorylases (NPs) with preference for uridine- and inosine-hydrolyzing enzymes [uridine phosphorylase (UP; EC 2.4.2.3), pyrimidine nucleoside phosphorylase (PyNP; EC 2.4.2.2) and purine nucleoside phosphorylase (PNP; EC 2.4.2.1)]. Kinetic analyses revealed that Cf2891 competes with inorganic phosphate (P(i)) for binding to the NPs and, depending on the nature of the enzyme, acts as a competitive or non-competitive inhibitor with regard to the nucleoside binding site. Also, the compound prevents breakdown of pyrimidine analogues used in the treatment of viral infections and cancer. Since NPs are abundantly present in tumor tissue and may be overexpressed due to secondary bacterial infections in immunocompromised patients suffering viral infections, Cf2891 may serve as a lead molecule for the development of inhibitors to be used in nucleoside-based combination therapy.
Collapse
|
18
|
McGuigan C, Murziani P, Slusarczyk M, Gonczy B, Vande Voorde J, Liekens S, Balzarini J. Phosphoramidate ProTides of the Anticancer Agent FUDR Successfully Deliver the Preformed Bioactive Monophosphate in Cells and Confer Advantage over the Parent Nucleoside. J Med Chem 2011; 54:7247-58. [DOI: 10.1021/jm200815w] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher McGuigan
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Paola Murziani
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Magdalena Slusarczyk
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Blanka Gonczy
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Johan Vande Voorde
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Sandra Liekens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium
| |
Collapse
|
19
|
Jakubiec D, Walczak KZ. Aldimines of 5-aminouracil as reagents in 1,3-dipolar cycloaddition reaction. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-011-0616-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Vande Voorde J, Liekens S, McGuigan C, Murziani PG, Slusarczyk M, Balzarini J. The cytostatic activity of NUC-3073, a phosphoramidate prodrug of 5-fluoro-2′-deoxyuridine, is independent of activation by thymidine kinase and insensitive to degradation by phosphorolytic enzymes. Biochem Pharmacol 2011; 82:441-52. [DOI: 10.1016/j.bcp.2011.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 11/29/2022]
|
21
|
Synthesis and biological evaluation of unsaturated keto and exomethylene d-arabinopyranonucleoside analogs: Novel 5-fluorouracil analogs that target thymidylate synthase. Eur J Med Chem 2011; 46:993-1005. [DOI: 10.1016/j.ejmech.2011.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/06/2010] [Accepted: 01/06/2011] [Indexed: 11/18/2022]
|
22
|
Wang L, Hames C, Schmidl SR, Stülke J. Upregulation of thymidine kinase activity compensates for loss of thymidylate synthase activity in Mycoplasma pneumoniae. Mol Microbiol 2010; 77:1502-11. [DOI: 10.1111/j.1365-2958.2010.07298.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Bronckaers A, Gago F, Balzarini J, Liekens S. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med Res Rev 2009; 29:903-53. [PMID: 19434693 PMCID: PMC7168469 DOI: 10.1002/med.20159] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thymidine phosphorylase (TP), also known as "platelet-derived endothelial cell growth factor" (PD-ECGF), is an enzyme, which is upregulated in a wide variety of solid tumors including breast and colorectal cancers. TP promotes tumor growth and metastasis by preventing apoptosis and inducing angiogenesis. Elevated levels of TP are associated with tumor aggressiveness and poor prognosis. Therefore, TP inhibitors are synthesized in an attempt to prevent tumor angiogenesis and metastasis. TP is also indispensable for the activation of the extensively used 5-fluorouracil prodrug capecitabine, which is clinically used for the treatment of colon and breast cancer. Clinical trials that combine capecitabine with TP-inducing therapies (such as taxanes or radiotherapy) suggest that increasing TP expression is an adequate strategy to enhance the antitumoral efficacy of capecitabine. Thus, TP plays a dual role in cancer development and therapy: on the one hand, TP inhibitors can abrogate the tumorigenic and metastatic properties of TP; on the other, TP activity is necessary for the activation of several chemotherapeutic drugs. This duality illustrates the complexity of the role of TP in tumor progression and in the clinical response to fluoropyrimidine-based chemotherapy.
Collapse
Affiliation(s)
| | - Federico Gago
- Departamento de Farmacología, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Jan Balzarini
- Rega Institute for Medical Research, K.U.Leuven, B‐3000 Leuven, Belgium
| | - Sandra Liekens
- Rega Institute for Medical Research, K.U.Leuven, B‐3000 Leuven, Belgium
| |
Collapse
|