1
|
Afzal A, Abbasi MH, Ahmad S, Sheikh N, Khawar MB. Current Trends in Messenger RNA Technology for Cancer Therapeutics. Biomater Res 2025; 29:0178. [PMID: 40207255 PMCID: PMC11978394 DOI: 10.34133/bmr.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Messenger RNA (mRNA)-based therapy has revolutionized cancer research by enabling versatile delivery systems for therapeutic applications. The future of mRNA-based cancer therapies shows promise amidst challenges such as delivery efficiency, immunogenicity, and tumor heterogeneity. Recent progress has adapted various strategies such as design flexibility, scalable production, and targeted delivery capabilities to enhance the potential in personalized cancer therapy. Further research to optimize delivery for enhanced outcomes and efficacy in solid tumors is warranted. Therefore, we aim to explore the current landscape and future prospects of mRNA technology across various therapeutic platforms.
Collapse
Affiliation(s)
- Ali Afzal
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| | | | - Shaaf Ahmad
- King Edward Medical University/Mayo Hospital, Lahore, Punjab 54000, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology,
University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| |
Collapse
|
2
|
Qiao X, Wang C, Ma J. The role and function validation of P2RX4 as a novel cancer biomarker in pan-cancer analysis. Sci Rep 2025; 15:11507. [PMID: 40181033 PMCID: PMC11968906 DOI: 10.1038/s41598-025-95247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
Purinergic Receptor P2X4 (P2RX4) is implicated in the carcinogenesis of several cancers, but no extensive study on its role in different forms of cancer. Expression level, gene mutation, immune infiltration, pathway enrichment, and prognostic value analysis of P2RX4 were performed based on multiple publicly available databases such as TCGA, GTEx, GEO, TIMER2, cBioportal, and Metascape databases. Western blot and RT-qPCR were used to identify P2RX4 expression in liver hepatocellular carcinoma (LIHC) and paracancer samples. P2RX4 was knocked in glioblastoma cell line (U251) and prostate cancer cell line (PC3), and its effects on cell viability, apoptosis, migration and invasion were investigated through cell counting kit-8 assay, flow cytometry, wound healing and trasnwell assays, respectively. P2RX4 expression was elevated in most cancers, which predicted poor overall survival and disease-free survival. Mutations in P2RX4 were predominantly found in Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (> 4%). P2RX4 expression showed a positive correlation with the infiltration levels of cancer-associated fibroblasts and CD8 + cells in multiple tumor types. Functional enrichment analysis indicated that P2RX4 is closely related to autophagy, protein modification or intracellular trafficking. P2RX4 was highly expressed in LIHC compared to paracancerous tissues. Knockdown of P2RX4 suppressed cell viability, migration, invasion, and promoted cell apoptosis of U251 and PC3 cells. Overexpression of P2RX4 occurred in multi cancers, and was connected to an unfavorable prognosis. This pan-cancer analysis highlighted the predictive value and tumorigenic role of P2RX4.
Collapse
Affiliation(s)
- Xiaoyuan Qiao
- Department of Comprehensive Medicine, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, China
| | - Chunyan Wang
- Department of Laboratory Medicine, Cancer Hospital, Shanxi Cancer Hospital, Shanxi Medical University, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, China
| | - Jun Ma
- Department of General Surgery, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
3
|
Wang LH, Jiang Y, Sun CH, Chen PT, Ding YN. Advancements in the application of ablative therapy and its combination with immunotherapy in anti-cancer therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189285. [PMID: 39938664 DOI: 10.1016/j.bbcan.2025.189285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer is a significant health issue impacting humans. Currently, systemic therapies such as chemotherapy have significantly increased the life expectancy of cancer patients. However, some patients are unable to endure systemic treatment due to its significant adverse effects, leading to an increased focus on local therapies including radiation and ablation therapy. Ablation therapy is a precise, low-toxicity, and minimally invasive localized therapy that is increasingly acknowledged by clinicians and cancer patients. Many cancer patients have benefited from it, with some achieving full recovery. Currently, numerous studies have shown that ablation therapy is effective due to its ability to kill cancer cells efficiently and activate the body's anti-cancer immunity. It can also convert "cold cancers" into "hot cancers" and enhance the effectiveness of immunotherapy when used in combination. In this article, we categorize ablation therapy into thermal ablation, cryoablation, photodynamic therapy (PDT), irreversible electroporation (IRE), etc. Thermal ablation is further divided into Radiofrequency ablation (RFA), microwave ablation (WMA), high-frequency focused ultrasound (HIFU), photothermal therapy (PTT), magnetic heat therapy (MHT), etc. We systematically review the most recent advancements in these ablation therapies that are either currently used in clinic or are anticipated to be used in clinic. Then, we also review the latest development of various ablative therapies combined with immunotherapy, and its future development. CLINICAL RELEVANCE STATEMENT: Ablation therapy, an invasive localized treatment, offers an alternative to systemic therapies for cancer patients who cannot tolerate their adverse effects. Its ability to kill cancer cells efficiently and activate anti-cancer immunity. This article reviews recent advancements in ablation therapies, including thermal, cryoablation, PDT, and IRE, and their potential clinical applications, both standalone and in combination with immunotherapy.
Collapse
Affiliation(s)
- Lu-Hong Wang
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Center of Interventional Radiology & Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; State Key Laboratory of Digital Medical Engineering, National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Yi Jiang
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Chen-Hang Sun
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Peng-Tao Chen
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yi-Nan Ding
- Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| |
Collapse
|
4
|
Tarannum M, Ding X, Barisa M, Hu S, Anderson J, Romee R, Zhang J. Engineering innate immune cells for cancer immunotherapy. Nat Biotechnol 2025; 43:516-533. [PMID: 40229380 DOI: 10.1038/s41587-025-02629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
Innate immune cells, including natural killer cells, macrophages and γδ T cells, are gaining prominence as promising candidates for cancer immunotherapy. Unlike conventional T cells, these cells possess attributes such as inherent antitumor activity, rapid immune responses, favorable safety profiles and the ability to target diverse malignancies without requiring prior antigen sensitization. In this Review, we examine the engineering strategies used to enhance their anticancer potential. We discuss challenges associated with each cell type and summarize insights from preclinical and clinical work. We propose strategies to address existing barriers, providing a perspective on the advancement of innate immune engineering as a powerful modality in anticancer treatment.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xizhong Ding
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sabrina Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Zhang H, Pang Y, Yi L, Wang X, Wei P, Wang H, Lin S. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics 2025; 17:51. [PMID: 40119465 PMCID: PMC11929245 DOI: 10.1186/s13148-025-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor therapy, has demonstrated clinical benefits in solid tumours. Despite its satisfactory clinical efficacy, it still faces several issues, such as limited eligibility, low response rates and cytotoxicity. Cancer epigenetics implies that tumour cells exhibit unique phenotypes because of their unique characteristics, thus reprogramming of the epigenome holds promise for cancer therapy. Epigenetic regulation plays an important role in regulating gene expression during tumour development and maintenance. Epigenetic regulators induce cancer cell cycle arrest, apoptosis and differentiation of cancer cells, thereby exerting anti-tumour effects. Recent studies have revealed a significant correlation between epigenetic regulatory factors and immune checkpoint therapy. Epigenetics can modulate various aspects of the tumour immune microenvironment and immune response to enhance the sensitivity of immunotherapy, such as lowering the concentration required and mitigating cytotoxicity. This review primarily discusses DNA methyltransferase inhibitors, histone deacetylase inhibitors, enhancer of zeste homolog 2 inhibitors and lysine-specific demethylase 1 inhibitors, which are associated with transcriptional repression. This repression alters the expression of genes involved in the immune checkpoint, thereby enhancing the effectiveness of immunotherapy. We also discuss the potential and challenges of tumour immunotherapy and highlight its advantages, application challenges and clinical research on integrating epigenetic regulatory factors with tumour immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yutong Pang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Shuye Lin
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
6
|
Chen M, Zhou X, Fan Y, Wang C. Identification and validation of prognostic biomarkers related to tumor immune invasion in pancreatic cancer. Front Genet 2025; 16:1556544. [PMID: 40129606 PMCID: PMC11931078 DOI: 10.3389/fgene.2025.1556544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Background The diagnosis and treatment of pancreatic adenocarcinoma (PAAD) remain clinically challenging, and new molecular markers for prognostic assessment and targeted therapy are urgently needed. The tumor microenvironment (TME) and immune invasion play an important role in pancreatic cancer development and progression. Therefore, immunotherapeutic strategies based on the TME and immune invasion may have important clinical value. Methods In this study, we extracted transcriptome and clinicopathological data for 179 PAAD samples from the TCGA database and evaluated the immune composition, stromal composition, and infiltrating immune cell landscape in the tumor samples. Then, we identified relevant differentially expressed genes (DEGs) and performed functional annotation and prognostic correlation analysis to identify prognostic biomarkers for pancreatic cancer, the correlation between biomarkers and tumor immune invasion was analyzed to reveal the molecular immune mechanism of pancreatic cancer. Finally, GEO databases (GES71729), GEPIA, TISIDB, TIMER databases and RT-PCR were used for further analysis. Results CXCL10 and CXCL11 were highly expressed in pancreatic cancer and associated with poor prognosis of patients through cell adhesion molecules chemokine signaling, cytokine-cytokine receptor interaction, natural killer cell-mediated cytotoxicity, and Toll-like receptor signaling pathways. Finally, the correlation between CXCL10 and CXCL11 and tumor immune invasion was analyzed. The results confirmed that the expression levels of CXCL10 and CXCL11 were positively correlated with the contents of CD8+ T cells. Activated memory CD4+ T cells, M1 macrophages and resting mast cells. The levels of CXCL10 and CXCL11 were related to but negatively correlated with the contents of memory B cells, Tregs and M0 macrophages. Conclusion Our study demonstrates that CXCL10 and CXCL11 are novel biomarkers of TME and immune cell infiltration in pancreatic cancer by affecting the distribution of immune cells. CXCL10 and CXCL11 may be new targets for molecular targeted therapy and immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Chen Wang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
7
|
Chen Q, Sun J, Ling S, Yang H, Li T, Yang X, Li M, Du M, Zhang Y, Li C, Wang Q. Tumor Microenvironment-Responsive Nano-Immunomodulators for Enhancing Chimeric Antigen Receptor-T Cell Therapy in Lung Cancer. ACS NANO 2025; 19:8212-8226. [PMID: 39988897 DOI: 10.1021/acsnano.4c17899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Chimeric antigen receptor (CAR)-T cells have shown unparalleled efficacy in treating hematologic cancers, but their application in solid tumor treatment remains challenging due to the immunosuppressive tumor microenvironment (TME). It is highly significant to develop safe and efficient TME regulatory strategies for the adoptive cellular immunotherapy of tumors. Herein, a TME-responsive nanoimmunomodulator (FMANAC) is designed using a multicomponent coordination self-assembly method to reconstruct the immune chemokine gradient and overcome the suppression of CAR-T cell immunoactivity, thereby improving the infiltration and killing efficiency of CAR-T cells within tumors. The acidic TME induces the disassembly of FMANAC, followed by the drug release, in which C-C chemokine ligand 5 (CCL5) improves the disrupted chemotactic gradient within tumors, increasing CAR-T cell recruitment and infiltration into deep tissue; and NLG919 reverses indoleamine 2,3-dioxygenase (IDO)-mediated immunosuppression in TME to create a favorable environment for CAR-T cells to exert their killing function. In the H460 lung cancer animal model, this nanoregulatory strategy combined with engineered CD276 CAR-T cells, guided by multiplexed near-infrared-II fluorescence imaging for programmed administration, achieved significantly enhanced tumor treatment efficacy.
Collapse
Affiliation(s)
- Qian Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Jie Sun
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215031, China
| | - Sisi Ling
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaohu Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Meng Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mingming Du
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
8
|
Zhang-Zhou J, Movilla Meno N, Oñate Salafranca C, Gomez-Benito MJ, Guerrero PE, Pardo Jimeno J, García-Aznar JM. CAR-T cells are more affected than T lymphocytes by mechanical constraints: A microfluidic-based approach. Life Sci 2025; 363:123335. [PMID: 39732363 DOI: 10.1016/j.lfs.2024.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
AIMS CAR-T cell therapy has attracted considerable attention in recent years owing to its well-known efficacy against haematopoietic malignancies. Nevertheless, this immunotherapy fails against solid tumours due to hostile conditions found in the tumour microenvironment. In this context, many relevant biochemical factors have been thoroughly studied, but crucial mechanical cues have been underestimated. MAIN METHODS We developed an innovative approach using microfluidic devices, which recreate the biomechanical aspects of solid tumours. Using these platforms, we quantified immune cell migration (T and CAR-T cells) under different confinement conditions. KEY FINDINGS We found that both CAR-T cell and T cell velocities are affected by the biomechanical and chemical cues studied, which are closely related to those found in solid tumours. Under biochemical stimulus-free conditions, the velocity of T cells is independent of the width of the microchannel, whereas the velocity of CAR-T cells is greatly reduced in the highest confinement channels. When chemoattractants or tumour cells are added, immune cells display increased confined migration velocity. However, in the presence of immunosuppressive chemokines, T cells become slower, whereas CAR-T cells significantly increase their velocity via a chimeric cytokine receptor. SIGNIFICANCE Our approach contributes to a better understanding of immune cell migration and the influence of mechanical constraints, which will allow the testing of new ways to improve CAR-T cell trafficking into solid tumours. Therefore, our study revealed that the migratory behaviour of CAR-T cells differs from that of T cells under confined conditions and that biomechanical cues, such as cell deformability caused by confinement, can influence the correct infiltration of immune cells into solid tumours during the immune response.
Collapse
Affiliation(s)
- Jack Zhang-Zhou
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain.
| | - Nieves Movilla Meno
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain.
| | | | - Maria Jose Gomez-Benito
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain; Aragón Institute of Healthcare Research (IIS Aragón), Zaragoza, Spain.
| | - Pedro Enrique Guerrero
- Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain; Aragón Institute of Healthcare Research (IIS Aragón), Zaragoza, Spain.
| | - Julian Pardo Jimeno
- Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain; CIBER of Infectious diseases, IS Carlos III, Madrid, Spain; Aragón Institute of Healthcare Research (IIS Aragón), Zaragoza, Spain.
| | - Jose Manuel García-Aznar
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain; Aragón Institute of Healthcare Research (IIS Aragón), Zaragoza, Spain.
| |
Collapse
|
9
|
Chen Z, Hu Y, Mei H. Harmonizing the symphony of chimeric antigen receptor T cell immunotherapy with the elegance of biomaterials. Trends Biotechnol 2025; 43:333-347. [PMID: 39181760 DOI: 10.1016/j.tibtech.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) immunotherapy has become a heated field of cancer research, demonstrating revolutionary efficacy in refractory and relapsed hematologic malignancies. However, CAR-T therapy has still encountered tough challenges, including complicated and lengthy manufacturing procedures, mediocre targeted delivery, limited therapeutic effect against solid tumors and difficulties in real-time in vivo monitoring. To overcome these limitations, various versatile biomaterials have been used in the above aspects and have improved CAR-T therapy impressively. This review mainly summarizes the latest research progress of biomaterials promoting CAR-T therapy in manufacturing, enhancing targeted delivery and tumor infiltration, and dramatic in vivo tracking to provide new insights and inspiration for clinical treatment.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
10
|
Zhang N, He Z, Qin X, Han K, Zhu Z, Zhong F. Pan-cancer analysis and single-cell analysis identifies the CENPN as a biomarker for survival prognosis and immunotherapy. Discov Oncol 2025; 16:55. [PMID: 39832113 PMCID: PMC11747051 DOI: 10.1007/s12672-025-01801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Centromere protein N (CENPN), located on chromosome 16q23.2, encodes vital nucleosome-associated complexes that are essential for dynamic assembly processes. CENPN plays a pivotal role in regulating cell proliferation and cell cycle progression by influencing mitotic events. Despite its potential importance, the precise functional role and regulatory mechanisms of CENPN in diverse malignancies remain largely unexplored. This study aimed to elucidate the role of CENPN in human cancers and evaluate its prognostic significance. METHODS Investigate the role of CENPN in various malignancies, we leveraged data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. We employed a comprehensive suite of web platforms and software tools for data analysis, including R, Cytoscape, an integrated repository portal for tumor-immune system interactions (TISIDB), CBio Cancer Genomics Portal (cBioPortal), Search Tool for the Retrieval of Interaction Gene/Proteins (STRING), Gene Set Cancer Analysis (GSCALite), and a cancer single-cell state atlas (CancerSEA). RESULTS The findings demonstrated that CENPN expression was elevated in the majority of cancer types and differentially expressed across molecular and immune subtypes. Functional enrichment analysis in multiple tumors also identified possible pathways of CENPN involvement in tumorigenesis. Its expression positively correlated with Th2 and Tcm cells in most cancers. It is also correlated with genetic markers of immunomodulators in various cancers. CONCLUSIONS Overall, CENPN expression is closely related to cancers and has the potential to act as a cancer biomarker.
Collapse
Affiliation(s)
- Nie Zhang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- Graduate School of Anhui Medical University, Hefei, China
- Key Laboratory of Gametes and Abnormal Reproductive Tract of National Health Commission, Anhui Medical University, Hefei, China
| | - Zhuoying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Xuejin Qin
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Ke Han
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Zhengchun Zhu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
- Key Laboratory of Gametes and Abnormal Reproductive Tract of National Health Commission, Anhui Medical University, Hefei, China.
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Lou S, Hu W, Wei P, He D, Fu P, Ding K, Chen Z, Dong Z, Zheng J, Wang K. Artificial Nanovesicles Derived from Cells: A Promising Alternative to Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22-41. [PMID: 39692623 DOI: 10.1021/acsami.4c12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
As naturally secreted vesicles by cells, extracellular vesicles (EVs) play essential roles in modulating cell-cell communication and have significant potential in tissue regeneration, immune regulation, and drug delivery. However, the low yield and uncontrollable heterogeneity of EVs have been obstacles to their widespread translation into clinical practice. Recently, it has been discovered that artificial nanovesicles (NVs) produced by cell processing can inherit the components and functions of the parent cells and possess similar structures and functions to EVs, with significantly higher yields and more flexible functionalization, making them a powerful complement to natural EVs. This review focuses on recent advances in the research of artificial NVs as replacements for natural EVs. We provide an overview comparing natural EVs and artificial NVs and summarize the top-down preparation strategies of NVs. The applications of NVs prepared from stem cells, differentiated cells, and engineered cells are presented, as well as the latest advances in NV engineering. Finally, the main challenges of artificial NVs are discussed.
Collapse
Affiliation(s)
- Saiyun Lou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Wei Hu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Pengyao Wei
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Dongdong He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejian Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhenyi Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Jianping Zheng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Cao Y, Zhao X, Miao Y, Wang X, Deng D. How the Versatile Self-Assembly in Drug Delivery System to Afford Multimodal Cancer Therapy? Adv Healthc Mater 2025; 14:e2403715. [PMID: 39587000 DOI: 10.1002/adhm.202403715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Indexed: 11/27/2024]
Abstract
The rapid development of self-assembly technology during the past few decades has effectively addressed plenty of the issues associated with carrier-based drug delivery systems, such as low loading efficiency, complex fabrication processes, and inherent toxicity of carriers. The integration of nanoscale delivery systems with self-assembly techniques has enabled efficient and targeted self-administration of drugs, enhanced bioavailability, prolonged circulation time, and controllable drug release. Concurrently, the limitations of single-mode cancer treatment, including low bioavailability, poor therapeutic outcomes, and significant side effects, have highlighted the urgent need for multimodal combined antitumor therapies. Set against the backdrop of multimodal cancer therapy, this review summarizes the research progress and applications of a large number of self-assembled drug delivery platforms, including natural small molecule self-assembled, carrier-free self-assembled, amphiphilic polymer-based self-assembled, peptide-based self-assembled, and metal-based self-assembled nano drug delivery systems. This review particularly analyzes the latest advances in the application of self-assembled nano drug delivery platforms in combined antitumor therapies mediated by chemotherapy, phototherapy, radiotherapy, sonodynamic therapy, and immunotherapy, providing innovative research insights for further optimization and expansion of self-assembled nano drug delivery systems in the clinical translation and development of antitumor combined therapy.
Collapse
Affiliation(s)
- Yuqi Cao
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaomin Zhao
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuhang Miao
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Wang
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Dawei Deng
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
13
|
Bertin L, Crepaldi M, Zanconato M, Lorenzon G, Maniero D, de Barba C, Bonazzi E, Facchin S, Scarpa M, Ruffolo C, Angriman I, Buda A, Zingone F, Barberio B, Savarino EV. Advancing therapeutic frontiers: a pipeline of novel drugs for luminal and perianal Crohn's disease management. Therap Adv Gastroenterol 2024; 17:17562848241303651. [PMID: 39711916 PMCID: PMC11660281 DOI: 10.1177/17562848241303651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024] Open
Abstract
Crohn's disease (CD) is a chronic, complex inflammatory disorder of the gastrointestinal tract that presents significant therapeutic challenges. Despite the availability of a wide range of treatments, many patients experience primary non-response, secondary loss of response, or adverse events, limiting the overall effectiveness of current therapies. Clinical trials often report response rates below 60%, partly due to stringent inclusion criteria. Emerging therapies that target novel pathways offer promise in overcoming these limitations. This review explores the latest investigational drugs in phases I, II, and III clinical trials for treating both luminal and perianal CD. We highlight promising therapies that target known mechanisms, including selective Janus kinase inhibitors, anti-adhesion molecules, tumor necrosis factor inhibitors, and IL-23 selective inhibitors. In addition, we delve into novel therapeutic strategies such as sphingosine-1-phosphate receptor modulators, miR-124 upregulators, anti-fractalkine (CX3CL1), anti-TL1A, peroxisome proliferator-activated receptor gamma agonists, TGFBRI/ALK5 inhibitors, anti-CCR9 agents, and other innovative small molecules, as well as combination therapies. These emerging approaches, by addressing new pathways and mechanisms of action, have the potential to surpass the limitations of existing treatments and significantly improve CD management. However, the path to developing new therapies for inflammatory bowel disease (IBD) is fraught with challenges, including complex trial designs, ethical concerns regarding placebo use, recruitment difficulties, and escalating costs. The landscape of IBD clinical trials is shifting toward greater inclusivity, improved patient diversity, and innovative trial designs, such as adaptive and Bayesian approaches, to address these challenges. By overcoming these obstacles, the drug development pipeline can advance more effective, accessible, and timely treatments for CD.
Collapse
Affiliation(s)
- Luisa Bertin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Martina Crepaldi
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Miriana Zanconato
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Greta Lorenzon
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Daria Maniero
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Caterina de Barba
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Erica Bonazzi
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Sonia Facchin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Marco Scarpa
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padua, Italy
| | - Cesare Ruffolo
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padua, Italy
| | - Imerio Angriman
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padua, Italy
| | - Andrea Buda
- Gastroenterology Unit, Department of Oncological Gastrointestinal Surgery, Santa Maria del Prato Hospital, Feltre, Italy
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Brigida Barberio
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Edoardo Vincenzo Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani, 2, Padua 35128, Italy
| |
Collapse
|
14
|
Xu N, Wu Z, Pan J, Xu X, Wei Q. CAR-T cell therapy: Advances in digestive system malignant tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200872. [PMID: 39377038 PMCID: PMC11456800 DOI: 10.1016/j.omton.2024.200872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Malignant tumors of the digestive system have had a notoriously dismal prognosis throughout history. Immunotherapy, radiotherapy, surgery, and chemotherapy are the primary therapeutic approaches for digestive system cancers. The rate of recurrence and metastasis, nevertheless, remains elevated. As one of the immunotherapies, chimeric antigen receptor T cell (CAR-T) therapy has demonstrated a promising antitumor effect in hematologic cancer. Despite undergoing numerous clinical trials, the ineffective antitumor effect and adverse effects of CAR-T cell therapy in the treatment of digestive system cancers continue to impede its clinical translation. It is necessary to surmount the restricted options for targeting proteins, the obstacles that impede CAR-T cell infiltration into solid tumors, and the limited survival time in vivo. We examined and summarized the developments, obstacles, and countermeasures associated with CAR-T therapy in digestive system cancers. Emphasis was placed on the regulatory functions of potential antigen targets, the tumor microenvironment, and immune evasion in CAR-T therapy. Thus, our analysis has furnished an all-encompassing comprehension of CAR-T cell therapy in digestive system cancers, which will generate tremendous enthusiasm for subsequent in-depth research into CAR-T-based therapies in digestive system cancers.
Collapse
Affiliation(s)
- Nan Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Zhonglin Wu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jun Pan
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
15
|
Hu G, Zhao X, Wang Y, Zhu X, Sun Z, Yu X, Wang J, Liu Q, Zhang J, Zhang Y, Yang J, Chang T, Ruan Z, Lv J, Gao F. Advances in B Cell Targeting for Treating Muscle-Specific Tyrosine Kinase-Associated Myasthenia Gravis. Immunotargets Ther 2024; 13:707-720. [PMID: 39678139 PMCID: PMC11646387 DOI: 10.2147/itt.s492062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024] Open
Abstract
Myasthenia gravis (MG) is a typical autoimmune disease of the nervous system. It is characterized by skeletal muscle weakness and fatigue due to impaired neuromuscular junction transmission mediated by IgG autoantibodies. Muscle-specific receptor tyrosine kinase-associated MG (MuSK-MG), a rare and severe subtype of MG, is distinguished by the presence of anti-MuSK antibodies; it responds poorly to traditional therapies. Recent research on MuSK-MG treatment has focused on specific targeted therapies. Since B cells play a critical pathogenic role in producing autoantibodies and inflammatory mediators, they are often considered the preferred target for treating MuSK-MG. Currently, various B cell-targeted drugs have been developed to treat MuSK-MG; they have shown good therapeutic effects. This review explores the evolving landscape of B cell-targeted therapies in MuSK-MG, focusing on their mechanisms, efficacy, and safety, and the current limitations associated with their use. We discuss current B cell-targeted therapies aimed at depleting or modulating B cells via both direct and indirect approaches. Furthermore, we focus on novel and promising strategies such as Chimeric Autoantibody Receptor T cell therapy, which explicitly targets MuSK-specific B cells without compromising general humoral immunity. Finally, this review provides an outlook on the potential benefits and limitations of B cell-targeted therapy in developing new therapies for MuSK-MG. We conclude by discussing future research efforts needed to optimize these therapies, expand treatment options, and improve long-term outcomes in MuSK-MG management.
Collapse
Affiliation(s)
- Guanlian Hu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xue Zhao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yiren Wang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaoyan Zhu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhan Sun
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaoxiao Yu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jiahui Wang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Qian Liu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yingna Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Junhong Yang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ting Chang
- Department of Neurology, Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zhe Ruan
- Department of Neurology, Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Jie Lv
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
16
|
Wang X, Jiang L, Zhao J, Wu M, Xiong J, Wu X, Weng X. In silico neoantigen screening and HLA multimer-based validation identify immunogenic neopeptide in multifocal lung adenocarcinoma. Front Immunol 2024; 15:1456209. [PMID: 39720721 PMCID: PMC11666526 DOI: 10.3389/fimmu.2024.1456209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 12/26/2024] Open
Abstract
Background Mutations commonly occur in cancer cells, arising neoantigen as potential targets for personalized immunotherapy of lung adenocarcinoma (LUAD). However, the substantial heterogeneity observed among individuals and distinct foci within the same patient presents significant challenges in formulating immunotherapy strategies. The aim of the work is to characterize the mutation pattern and identify neopeptides across different patients and diverse foci within the same patients with LUAD. Methods Seven lung adenocarcinoma samples and matched tissues/blood are collected from 4 patients with LUAD for whole exome sequencing, mutation signature analysis, HLA binding prediction and neoantigen screening. Dimeric HLA-A2 molecules were prepared by Bac-to-Bac baculovirus expression system to establish a T cell stimulation system based on HLA-A2-coated artificial antigen-presenting cells for the validation of immunogenic neopeptides. Results Similar mutation pattern with predominant missense mutation and high tumor mutation burden was observed across individuals with lung adenocarcinomas and between non-invasive and invasive foci. We screened and identified 3 consistent mutated genes among 100 top genes with highest mutation scores contributed across 4 patients, and 3 mutated peptides among 30 with highest HLA-A2 binding affinity distributed in at least 2 out of 4 foci in the same patient. Notably, LUAD-7-MT peptide encoded by NANOGNB demonstrated higher immunogenicity in promoting CD8+ T cells proliferation and IFN-γ secretion than the corresponding wildtype peptide. Conclusions This study provides an in-depth analysis of mutation characteristics of LUAD and establishes a neoantigen screening and validation system for identifying immunogenicity neopeptide across individual patients and diverse foci in the same patient with multifocal LUAD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lang Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Zhao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Xiong
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwen Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Li B, Liu J, Huang L, Cai J, Guo L, Xu L, Xu Q, Liu J, Huang J, Hu W, Tang X, Liu Z, Liu T. SNRPB2 in the pan-cancer landscape: A bioinformatics exploration and validation in hepatocellular carcinoma. Cell Signal 2024; 124:111445. [PMID: 39366532 DOI: 10.1016/j.cellsig.2024.111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Aberrant splicing is a significant contributor to gene expression abnormalities in cancer. SNRPB2, a component of U2 small nuclear ribonucleoprotein particles (snRNPs), contributes to the assembly of the spliceosome, the molecular machinery responsible for splicing. To date, few studies have investigated the role of SNRPB2 in tumorigenesis. We examined data sourced from various public databases, such as The Cancer Genome Atlas(TCGA), the Clinical Proteomic Tumor Analysis Consortium(CPTAC), and Gene Expression Omnibus(GEO). Our investigation included gene expression, genomic and epigenomic scrutiny, gene set enrichment assessment(GSEA), and immune cell infiltration evaluation. Furthermore, we performed empirical validation to ascertain the impact of SNRPB2 suppression on the proliferation and migration of liver cancer cells. Analysis of gene expression revealed widespread upregulation of SNRPB2 across a spectrum of cancer types, with heightened levels of SNRPB2 expression in numerous tumors linked to unfavorable prognosis. Genomic and epigenomic assessments revealed connections between SNRPB2 expression and variations in SNRPB2 copy number, DNA methylation patterns, and RNA modifications. Through gene set enrichment analysis, the involvement of SNRPB2 in vital biological processes and pathways related to cancer was identified. Furthermore, scrutiny of immune cell infiltration suggested a potential relationship between SNRPB2 and the tumor microenvironment, which was reinforced by multiple single-cell sequencing profiles. Subsequent experimental validation revealed that silencing SNRPB2 effectively impeded the proliferation and migration of liver cancer cells. Taken together, these findings underscore the prospective utility of SNRPB2 as a prognostic biomarker and a promising candidate for immunotherapy in cancer. It is necessary to engage in additional exploration into its underlying mechanisms and clinical treatment potential.
Collapse
Affiliation(s)
- Bowen Li
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi Province, China; Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jiang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Ling Huang
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi Province, China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Liangyun Guo
- Department of Ultrasonography, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Liangzhi Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Qi Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jinghang Liu
- Department of General Surgery, The First People's Hospital of Nanyang, Nanyang 473000, Henan Province, China
| | - Jian Huang
- Department of General Surgery, The Second Hospital of Longyan, Longyan 364000, Fujian Province, China
| | - Wei Hu
- Department of General Surgery, The Central Hospital of Xiaogan, Xiaogan 432003, Hubei Province, China
| | - Xinguo Tang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Zhaohui Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Tiande Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China.
| |
Collapse
|
18
|
Liang D, Tang J, Sun B, He S, Yang D, Ma H, Yun Y, Zhu Y, Wei W, Chen H, Zhao X. Novel CAR-T cells targeting TRKB for the treatment of solid cancer. Apoptosis 2024; 29:2183-2196. [PMID: 38498249 DOI: 10.1007/s10495-024-01936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating blood cancers such as B-cell malignancies, however, its effectiveness as an approach to treat solid tumors remains to be further explored. Here, we focused on the development of CAR-T cell therapies targeting tropomyosin-related kinase receptor B (TRKB), a highly expressed protein that is significantly associated with tumor progression, malignancy, and drug resistance in multiple forms of aggressive solid tumors. To achieve this, we screened brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NTF4) ligand-based CAR-T cells for their efficiency in targeting the TRKB receptor in the context of solid tumors, particularly hepatocellular carcinoma and pancreatic cancer. We demonstrated that TRKB is overexpressed not only in hepatocellular carcinoma and pancreatic carcinoma cell lines but also in cancer stem-like cells (CSCs). Notably, BDNF-CAR T and NTF4-CAR T cells could not only effectively target and kill TRKB-expressing pan-cancer cell lines in a dose-dependent manner but also effectively kill CSCs. We also performed in vivo studies to show that NTF4-CAR T cells have a better potential to inhibit the tumor growth of hepatocellular carcinoma xenografts in mice, compared with BDNF-CAR T cells. Taken together, our findings suggest that CAR-T targeting TRKB may be a promising approach for developing novel therapies to treat solid cancers.
Collapse
MESH Headings
- Humans
- Animals
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Mice
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Xenograft Model Antitumor Assays
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Pancreatic Neoplasms/therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
Collapse
Affiliation(s)
- Dandan Liang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Tang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Sun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuai He
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyan Ma
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuncang Yun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Wei
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Lei T, Wang Y, Zhang Y, Yang Y, Cao J, Huang J, Chen J, Chen H, Zhang J, Wang L, Xu X, Gale RP, Wang L. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy. Leukemia 2024; 38:2517-2543. [PMID: 39455854 PMCID: PMC11588664 DOI: 10.1038/s41375-024-02444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Chimeric Antigen Receptor (CAR)-T-cell therapy has revolutionized cancer immune therapy. However, challenges remain including increasing efficacy, reducing adverse events and increasing accessibility. Use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology can effectively perform various functions such as precise integration, multi-gene editing, and genome-wide functional regulation. Additionally, CRISPR screening using large-scale guide RNA (gRNA) genetic perturbation provides an unbiased approach to understanding mechanisms underlying anti-cancer efficacy of CAR T-cells. Several emerging CRISPR tools with high specificity, controllability and efficiency are useful to modify CAR T-cells and identify new targets. In this review we summarize potential uses of the CRISPR system to improve results of CAR T-cells therapy including optimizing efficacy and safety and, developing universal CAR T-cells. We discuss challenges facing CRISPR gene editing and propose solutions highlighting future research directions in CAR T-cell therapy.
Collapse
Affiliation(s)
- Tao Lei
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yazhuo Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiaying Cao
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiansong Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiali Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Huajing Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Luzheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
20
|
Aquilanti E, Herrity E, Nayak L. Novel Therapies for Primary Central Nervous System Lymphomas. Curr Neurol Neurosci Rep 2024; 24:621-629. [PMID: 39390309 DOI: 10.1007/s11910-024-01376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE OF REVIEW Primary Central Nervous System Lymphoma (PCNSL) is an aggressive form of lymphoma that can involve the brain, spinal cord, leptomeninges and eyes. PCNSL prognosis continues to be poor, with 5-year survival rates of 30-40%. Therapeutic options are especially limited for relapsed/refractory (r/r) PCNSL. In recent years, studies shed light on the pathogenesis and oncogenic pathways driving PCNSL, leading to the development of novel therapeutics. In this review, we discuss the evidence supporting these novel agents and present ongoing clinical studies. RECENT FINDINGS Key oncogenic drivers of PCNSL include activation of the NFkB pathway, cell cycle dysregulation, somatic hypermutation and immune evasion, leading to the investigation of targeted therapeutics and immunotherapeutics to inhibit these pathways. Such approaches include BTK inhibitors, mTOR/PI3K inhibitors, immunomodulatory agents (IMIDs), immune checkpoint inhibitors and CD19-based CAR T-cells. The therapeutic repertoire for PCNSL is rapidly evolving, and a multi-modality approach including intensive chemotherapy regimens and novel therapies will likely be utilized in the future.
Collapse
Affiliation(s)
- Elisa Aquilanti
- Center for Neuro Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Elizabeth Herrity
- Department of Medical Oncology and Hematology, Hans Messner Allogeneic Blood and Marrow Transplantation Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Lakshmi Nayak
- Center for Neuro Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
21
|
Zhu H, Xiong H, Guo X, Liao H, Zhang S. SLITRK2 as a prognostic and immunological biomarker in gastric cancer. Discov Oncol 2024; 15:667. [PMID: 39550447 PMCID: PMC11569313 DOI: 10.1007/s12672-024-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND SLIT and NTRK-like protein 2 (SLITRK2) encodes a transmembrane protein that regulates neurite outgrowth. Some studies have demonstrated that SLITRK2 overexpressed in glioma. But the expression pattern, prognostic value and immunologic function of SLITRK2 in tumors remains unknown. METHODS The expression pattern of SLITRK2 among pan-cancers was examined through the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). We analyzed the association between SLITRK2 expression level and tumor stage among pan-cancers. Kaplan-Meier survival analysis was utilized to investigate the prognostic relevance of SLITRK2 across 33 different types of cancers. Moreover, the correlations among SLITRK2 expression, immune cell infiltration, immunomodulatory related genes, tumor mutation burden (TMB), microsatellite instability (MSI) were evaluated. The relationship between SLITRK2 expression and crucial genes mutations was also illustrated. By using tissue microarray (TMA), the expression of SLITRK2 in 89 paired gastric cancer (GC) tissues was investigated. RESULTS Our study indicated that SLITRK2 expression varied across cancers. Elevated SLITRK2 expression was positively related to advanced tumor stage, poor overall survival (OS) and reduced disease-free survival (DFS). Bioinformatic analyses underscore SLITRK2's role in immune response, with its expression significantly tied to immune cell infiltration and marker expression. Based on TMA data, SLITRK2 expression level was positively associated with differentiation, lymph node metastasis, AJCC stage, TNM stage, and poor survival outcome in GC patients. CONCLUSION Our findings provided that SLITRK2 may function as a biomarker by regulating immune cell infiltration. In addition, we verified that high SLITRK2 expression was correlated with poor prognosis in GC.
Collapse
Affiliation(s)
- Huiqiong Zhu
- Department of Oncology, Huizhou Central People's Hospital, Huizhou, 516000, Guangdong Province, China
| | - Hailin Xiong
- Department of Oncology, Huizhou Central People's Hospital, Huizhou, 516000, Guangdong Province, China
| | - Xuli Guo
- Department of Oncology, Huizhou Central People's Hospital, Huizhou, 516000, Guangdong Province, China
| | - Haojie Liao
- Department of Oncology, Huizhou Central People's Hospital, Huizhou, 516000, Guangdong Province, China
| | - Shuyi Zhang
- Department of Oncology, Huizhou Central People's Hospital, Huizhou, 516000, Guangdong Province, China.
| |
Collapse
|
22
|
Jain MD, Spiegel JY, Nastoupil LJ, Tamaresis J, Ghobadi A, Lin Y, Lekakis L, Reagan P, Oluwole O, McGuirk J, Deol A, Dorritie KA, Sehgal AR, Goy A, Hill BT, Andreadis C, Munoz J, Ulrickson M, Westin J, Chavez JC, Patel D, Jacobs MT, Bansal R, Bennani NN, Patel VG, Rapoport AP, Vose JM, Miklos DB, Neelapu SS, Locke FL, Lunning M, Dahiya S. Five-Year Follow-Up of Standard-of-Care Axicabtagene Ciloleucel for Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. J Clin Oncol 2024; 42:3581-3592. [PMID: 39094076 PMCID: PMC11483191 DOI: 10.1200/jco.23.02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE Axicabtagene ciloleucel (axi-cel) is an autologous CD19 chimeric antigen receptor (CAR) T-cell therapy that is approved for the treatment of relapsed or refractory large B-cell lymphoma. Little is known about the long-term survivorship after CAR T-cell therapy. METHODS We previously reported the results of 298 patients who were leukapheresed with the intent to receive standard-of-care axi-cel (n = 275 infused) after two or more previous lines of therapy at a median follow-up of 12.9 months. Here, we report extended follow-up of this cohort to a median of 58 months, with a focus on late survivorship events. RESULTS Among axi-cel-infused patients, progression-free survival at 5 years was 29% and overall survival (OS) at 5 years was 40%. The 5-year lymphoma-specific survival was 53% with infrequent late relapses. However, the 5-year nonrelapse mortality (NRM) was 16.2%, with over half of NRM events occurring beyond 2 years. Patients who were 60 years and older had a lower risk of relapse (P = .02), but a higher risk of NRM compared with patients younger than 60 years (NRM odds ratio, 4.5 [95% CI, 2.1 to 10.8]; P < .001). Late NRM was mainly due to infections and subsequent malignant neoplasms (SMNs). In total, SMNs occurred in 24 patients (9%), including therapy-related myeloid neoplasms (n = 15), solid tumors (n = 7), and unrelated lymphoid malignancies (n = 2). CONCLUSION In the standard-of-care setting, axi-cel exhibits outcomes consistent with those reported in clinical trials, with sustained, durable responses observed at the 5-year time point. However, late infections and the development of SMN are key survivorship issues that reduce long-term survival after CAR T-cell therapy, particularly in the elderly.
Collapse
MESH Headings
- Humans
- Middle Aged
- Male
- Female
- Biological Products/therapeutic use
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/mortality
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Aged
- Antigens, CD19/immunology
- Antigens, CD19/therapeutic use
- Adult
- Follow-Up Studies
- United States
- Young Adult
- Aged, 80 and over
- Standard of Care
- Receptors, Chimeric Antigen/therapeutic use
- Receptors, Chimeric Antigen/immunology
Collapse
Affiliation(s)
| | - Jay Y Spiegel
- University of Miami Miller School of Medicine, Miami, FL
| | | | | | - Armin Ghobadi
- Washington University School of Medicine and Siteman Cancer Center, St Louis, MO
| | - Yi Lin
- Mayo Clinic, Rochester, MN
| | | | | | | | | | - Abhinav Deol
- Karmanos Center Institute/Wayne State University, Detroit, MI
| | | | | | - Andre Goy
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ
| | | | | | | | | | - Jason Westin
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Dilan Patel
- Washington University School of Medicine and Siteman Cancer Center, St Louis, MO
| | - Miriam T Jacobs
- Washington University School of Medicine and Siteman Cancer Center, St Louis, MO
| | | | | | | | - Aaron P Rapoport
- University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Julie M Vose
- University of Nebraska Medical Center, Omaha, NE
| | | | | | | | | | - Saurabh Dahiya
- Stanford University Medical Center, Stanford, CA
- University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, MD
| |
Collapse
|
23
|
Ren Y, Bao X, Feng M, Xing B, Lian W, Yao Y, Wang R. CD87-targeted BiTE and CAR-T cells potently inhibit invasive nonfunctional pituitary adenomas. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2169-2185. [PMID: 38987430 DOI: 10.1007/s11427-024-2591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/12/2024] [Indexed: 07/12/2024]
Abstract
Recently, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor-modified T cells (CAR-Ts) have been shown to have high therapeutic efficacy in hematological tumors. CD87 is highly expressed in solid tumors with an oncogenic function. To assess their cytotoxic effects on invasive nonfunctioning pituitary adenomas (iNFPAs), we first examined CD87 expression and its effects on the metabolism of iNFPA cells. We generated CD87-specific BiTE and CAR/IL-12 T cells, and their cytotoxic effects on iNFPAs cells and in mouse models were determined. CD87 had high expression in iNFPA tissue and cell samples but was undetected in noncancerous brain samples. CD87×CD3 BiTE and CD87 CAR/IL-12 T-cells showed antigenic specificity and exerted satisfactory cytotoxic effects, decreasing tumor cell proliferation in vitro and reducing existing tumors in experimental mice. Overall, the above findings suggest that CD87 is a promising target for the immunotherapeutic management of iNFPAs using anti-CD87 BiTE and CD87-specific CAR/IL-12 T cells.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
24
|
Zhao W, Yao Y, Li Q, Xue Y, Gao X, Liu X, Zhang Q, Zheng J, Sun S. Molecular mechanism of co-stimulatory domains in promoting CAR-T cell anti-tumor efficacy. Biochem Pharmacol 2024; 227:116439. [PMID: 39032532 DOI: 10.1016/j.bcp.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have been defined as 'living drug'. Adding a co-stimulatory domain (CSD) has enhanced the anti-hematological effects of CAR-T cells, thereby elevating their viability for medicinal applications. Various CSDs have helped prepare CAR-T cells to study anti-tumor efficacy. Previous studies have described and summarized the anti-tumor efficacy of CAR-T cells obtained from different CSDs. However, the underlying molecular mechanisms by which different CSDs affect CAR-T function have been rarely reported. The role of CSDs in T cells has been significantly studied, but whether they can play a unique role as a part of the CAR structure remains undetermined. Here, we summarized the effects of CSDs on CAR-T signaling pathways based on the limited references and speculated the possible mechanism depending on the specific characteristics of CAR-T cells. This review will help understand the molecular mechanism of CSDs in CAR-T cells that exert different anti-tumor effects while providing potential guidance for further interventions to enhance anti-tumor efficacy in immunotherapy.
Collapse
Affiliation(s)
- Wanxin Zhao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qihong Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Xue
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoge Gao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shishuo Sun
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
25
|
Zhang W, Xu C, Yang Z, Zhou J, Peng W, Zhang X, Li H, Qu S, Tao K. Circular RNAs in tumor immunity and immunotherapy. Mol Cancer 2024; 23:171. [PMID: 39169354 PMCID: PMC11337656 DOI: 10.1186/s12943-024-02082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Circular RNAs (circRNAs) are unique noncoding RNAs that have a closed and stable loop structure generated through backsplicing. Due to their conservation, stability and tissue specificity, circRNAs can potentially be used as diagnostic indicators and therapeutic targets for certain tumors. Many studies have shown that circRNAs can act as microRNA (miRNA) sponges, and engage in interactions with proteins and translation templates to regulate gene expression and signal transduction, thereby participating in the occurrence and development of a variety of malignant tumors. Immunotherapy has revolutionized the treatment of cancer. Early researches have indicated that circRNAs are involved in regulating tumor immune microenvironment and antitumor immunity. CircRNAs may have the potential to be important targets for increasing sensitivity to immunotherapy and expanding the population of patients who benefit from cancer immunotherapy. However, few studies have investigated the correlation between circRNAs and tumor immunity. In this review, we summarize the current researches on circRNAs involved in antitumor immune regulation through different mechanisms and their potential value in increasing immunotherapy efficacy with the goal of providing new targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhipeng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jingshi Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Haimin Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
26
|
Pensato U, Pondrelli F, de Philippis C, Asioli GM, Crespi A, Buizza A, Mannina D, Casadei B, Maffini E, Straffi L, Marcheselli S, Zinzani PL, Bonifazi F, Guarino M, Bramanti S. Primary vs. pre-emptive anti-seizure medication prophylaxis in anti-CD19 CAR T-cell therapy. Neurol Sci 2024; 45:4007-4014. [PMID: 38512531 PMCID: PMC11255041 DOI: 10.1007/s10072-024-07481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Seizures may occur in up to 30% of non-Hodgkin lymphoma patients who received anti-CD19 CAR T-cell therapy, yet the optimal anti-seizure medication (ASM) prevention strategy has not been thoroughly investigated. METHODS Consecutive patients affected by refractory non-Hodgkin lymphoma who received anti-CD19 CAR T-cells were included. Patients were selected and assessed using similar internal protocols. ASM was started either as a primary prophylaxis (PP-group) before CAR T-cells infusion or as a pre-emptive therapy (PET-group) only upon the onset of neurotoxicity development. RESULTS One hundred fifty-six patients were included (PP-group = 88, PET-group = 66). Overall, neurotoxicity and severe neurotoxicity occurred in 45 (29%) and 20 (13%) patients, respectively, equally distributed between the two groups. Five patients experienced epileptic events (PET-group = 3 [4%]; PP-group = 2 [2%]). For all the PET-group patients, seizure/status epilepticus occurred in the absence of overt CAR-T-related neurotoxicity, whereas patients in the PP-group experienced brief seizures only in the context of critical neurotoxicity with progressive severe encephalopathy. ASMs were well-tolerated by all patients, even without titration. No patients developed epilepsy or required long-term ASMs. CONCLUSION Our data suggest that both primary and pre-emptive anti-seizure prophylaxis are safe and effective in anti-CD19 CAR T-cell recipients. Clinical rationale suggests a possible more favourable profile of primary prophylaxis, yet no definitive conclusion of superiority between the two ASM strategies can be drawn from our study.
Collapse
Affiliation(s)
- Umberto Pensato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Federica Pondrelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Chiara de Philippis
- BMT and Cell Therapy Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gian Maria Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Alessandra Crespi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Alessandro Buizza
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Daniele Mannina
- BMT and Cell Therapy Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
| | - Enrico Maffini
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
| | - Laura Straffi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Simona Marcheselli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche, Università Di Bologna, Bologna, Italy
| | - Francesca Bonifazi
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
| | - Maria Guarino
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Stefania Bramanti
- BMT and Cell Therapy Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
27
|
Shilts J, Wright GJ. Mapping the Human Cell Surface Interactome: A Key to Decode Cell-to-Cell Communication. Annu Rev Biomed Data Sci 2024; 7:155-177. [PMID: 38723658 DOI: 10.1146/annurev-biodatasci-102523-103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Proteins on the surfaces of cells serve as physical connection points to bridge one cell with another, enabling direct communication between cells and cohesive structure. As biomedical research makes the leap from characterizing individual cells toward understanding the multicellular organization of the human body, the binding interactions between molecules on the surfaces of cells are foundational both for computational models and for clinical efforts to exploit these influential receptor pathways. To achieve this grander vision, we must assemble the full interactome of ways surface proteins can link together. This review investigates how close we are to knowing the human cell surface protein interactome. We summarize the current state of databases and systematic technologies to assemble surface protein interactomes, while highlighting substantial gaps that remain. We aim for this to serve as a road map for eventually building a more robust picture of the human cell surface protein interactome.
Collapse
Affiliation(s)
- Jarrod Shilts
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom;
- School of the Biological Sciences, University of Cambridge, Cambridge, United Kingdom;
| | - Gavin J Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom;
| |
Collapse
|
28
|
Zhang J, Du B, Wang Y, Cui Y, Wang S, Zhao Y, Li Y, Li X. The role of CD8 PET imaging in guiding cancer immunotherapy. Front Immunol 2024; 15:1428541. [PMID: 39072335 PMCID: PMC11272484 DOI: 10.3389/fimmu.2024.1428541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Currently, immunotherapy is being widely used for treating cancers. However, the significant heterogeneity in patient responses is a major challenge for its successful application. CD8-positive T cells (CD8+ T cells) play a critical role in immunotherapy. Both their infiltration and functional status in tumors contribute to treatment outcomes. Therefore, accurate monitoring of CD8+ T cells, a potential biomarker, may improve therapeutic strategy. Positron emission tomography (PET) is an optimal option which can provide molecular imaging with enhanced specificity. This review summarizes the mechanism of action of CD8+ T cells in immunotherapy, and highlights the recent advancements in PET-based tracers that can visualize CD8+ T cells and discusses their clinical applications to elucidate their potential role in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
29
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
30
|
Cui Z, Liu C, Wang X, Xiang Y. A pan-cancer analysis of EphA family gene expression and its association with prognosis, tumor microenvironment, and therapeutic targets. Front Oncol 2024; 14:1378087. [PMID: 38952552 PMCID: PMC11215048 DOI: 10.3389/fonc.2024.1378087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Background Erythropoietin-producing human hepatocellular (Eph) receptors stand out as the most expansive group of receptor tyrosine kinases (RTKs). Accumulating evidence suggests that within this expansive family, the EphA subset is implicated in driving cancer cell progression, proliferation, invasion, and metastasis, making it a promising target for anticancer treatment. Nonetheless, the extent of EphA family involvement across diverse cancers, along with its intricate interplay with immunity and the tumor microenvironment (TME), remains to be fully illuminated. Methods The relationships between EphA gene expression and patient survival, immunological subtypes, and TME characteristics were investigated based on The Cancer Genome Atlas (TCGA) database. The analyses employed various R packages. Results A significant difference in expression was identified for most EphA genes when comparing cancer tissues and non-cancer tissues. These genes independently functioned as prognostic factors spanning multiple cancer types. Moreover, a significant correlation surfaced between EphA gene expression and immune subtypes, except for EphA5, EphA6, and EphA8. EphA3 independently influenced the prognosis of papillary renal cell carcinoma (KIRP). This particular gene exhibited links with immune infiltration subtypes and clinicopathologic parameters, holding promise as a valuable biomarker for predicting prognosis and responsiveness to immunotherapy in patients with KIRP. Conclusion By meticulously scrutinizing the panorama of EphA genes in a spectrum of cancers, this study supplemented a complete map of the effect of EphA family in Pan-cancer and suggested that EphA family may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zhe Cui
- Division of Hematology and Transfusion Medicine, Tianjin Baodi Hospital, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Chengwang Liu
- Department of Laboratory Medicine, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Xuechao Wang
- Department of Laboratory Medicine, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Yiping Xiang
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
31
|
Shu J, Xie W, Chen Z, Offringa R, Hu Y, Mei H. The enchanting canvas of CAR technology: Unveiling its wonders in non-neoplastic diseases. MED 2024; 5:495-529. [PMID: 38608709 DOI: 10.1016/j.medj.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have made a groundbreaking advancement in personalized immunotherapy and achieved widespread success in hematological malignancies. As CAR technology continues to evolve, numerous studies have unveiled its potential far beyond the realm of oncology. This review focuses on the current applications of CAR-based cellular platforms in non-neoplastic indications, such as autoimmune, infectious, fibrotic, and cellular senescence-associated diseases. Furthermore, we delve into the utilization of CARs in non-T cell populations such as natural killer (NK) cells and macrophages, highlighting their therapeutic potential in non-neoplastic conditions and offering the potential for targeted, personalized therapies to improve patient outcomes and enhanced quality of life.
Collapse
Affiliation(s)
- Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Wei Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Rienk Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
32
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
33
|
Huang M, Liu Y, Yan Q, Peng M, Ge J, Mo Y, Wang Y, Wang F, Zeng Z, Li Y, Fan C, Xiong W. NK cells as powerful therapeutic tool in cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:733-757. [PMID: 38170381 DOI: 10.1007/s13402-023-00909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.
Collapse
Affiliation(s)
- Mao Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yixuan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center, Baylor College of Medicine, Alkek Building, RM N720, Houston, TX, USA
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, 410013, Changsha, Hunan Province, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Dessaux C, Ganier L, Guiraud L, Borg JP. Recent insights into the therapeutic strategies targeting the pseudokinase PTK7 in cancer. Oncogene 2024; 43:1973-1984. [PMID: 38773263 PMCID: PMC11196218 DOI: 10.1038/s41388-024-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
The generation of drugs counteracting deregulated protein kinases has been a major focus in cancer therapy development. Breakthroughs in this effort have produced many therapeutic agents to the benefit of patients, mostly through the development of chemical or antibody-based drugs targeting active kinases. These strategies are challenged when considering catalytically inactive protein kinases (or pseudokinases), which represent 10% of the human kinome with many of relevance in cancer. Among the so-called pseudotyrosine kinases, the PTK7 receptor tyrosine kinase (RTK) stands as a bona fide target overexpressed in several solid tumors and hematological malignancies and linked to metastasis, poor prognosis, and resistance to treatment. Despite the lack of catalytic activity, PTK7 has signaling capacities through heterodimerization with active RTKs and offers pharmacological targeting opportunities through its inactive kinase domain. Moreover, PTK7-targeting strategies based on antibody-drug conjugates, aptamers, and CAR-T cell-based therapies have demonstrated encouraging results in preclinical and clinical settings. We review the most recent data assigning to PTK7 a prominent role in cancer progression as well as current preclinical and clinical targeting strategies against RTK family pseudokinases including PTK7.
Collapse
Affiliation(s)
- Charlotte Dessaux
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Laetitia Ganier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
- adMare BioInnovations, Vancouver, BC, Canada
| | - Louis Guiraud
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
35
|
Nikolouzakis TK, Chrysos E, Docea AO, Fragkiadaki P, Souglakos J, Tsiaoussis J, Tsatsakis A. Current and Future Trends of Colorectal Cancer Treatment: Exploring Advances in Immunotherapy. Cancers (Basel) 2024; 16:1995. [PMID: 38893120 PMCID: PMC11171065 DOI: 10.3390/cancers16111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer of the colon and rectum (CRC) has been identified among the three most prevalent types of cancer and cancer-related deaths for both sexes. Even though significant progress in surgical and chemotherapeutic techniques has markedly improved disease-free and overall survival rates in contrast to those three decades ago, recent years have seen a stagnation in these improvements. This underscores the need for new therapies aiming to augment patient outcomes. A number of emerging strategies, such as immune checkpoint inhibitors (ICIs) and adoptive cell therapy (ACT), have exhibited promising outcomes not only in preclinical but also in clinical settings. Additionally, a thorough appreciation of the underlying biology has expanded the scope of research into potential therapeutic interventions. For instance, the pivotal role of altered telomere length in early CRC carcinogenesis, leading to chromosomal instability and telomere dysfunction, presents a promising avenue for future treatments. Thus, this review explores the advancements in CRC immunotherapy and telomere-targeted therapies, examining potential synergies and how these novel treatment modalities intersect to potentially enhance each other's efficacy, paving the way for promising future therapeutic advancements.
Collapse
Affiliation(s)
| | - Emmanuel Chrysos
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Greece; (T.K.N.); (E.C.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Persefoni Fragkiadaki
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| |
Collapse
|
36
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
37
|
Shen KY, Zhu Y, Xie SZ, Qin LX. Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: current status and prospectives. J Hematol Oncol 2024; 17:25. [PMID: 38679698 PMCID: PMC11057182 DOI: 10.1186/s13045-024-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide, with limited therapeutic options and poor prognosis. In recent years, immunotherapies such as immune checkpoint inhibitors (ICIs) have made great progress in the systemic treatment of HCC. The combination treatments based on ICIs have been the major trend in this area. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective treatment for advanced HCC. However, the majority of HCC patients obtain limited benefits. Understanding the immunological rationale and exploring novel ways to improve the efficacy of immunotherapy has drawn much attention. In this review, we summarize the latest progress in this area, the ongoing clinical trials of immune-based combination therapies, as well as novel immunotherapy strategies such as chimeric antigen receptor T cells, personalized neoantigen vaccines, oncolytic viruses, and bispecific antibodies.
Collapse
Affiliation(s)
- Ke-Yu Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Sun-Zhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lun-Xiu Qin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Li X, Zhu Y, Yi J, Deng Y, Lei B, Ren H. Adoptive cell immunotherapy for breast cancer: harnessing the power of immune cells. J Leukoc Biol 2024; 115:866-881. [PMID: 37949484 DOI: 10.1093/jleuko/qiad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Breast cancer is the most prevalent malignant neoplasm worldwide, necessitating the development of novel therapeutic strategies owing to the limitations posed by conventional treatment modalities. Immunotherapy is an innovative approach that has demonstrated significant efficacy in modulating a patient's innate immune system to combat tumor cells. In the era of precision medicine, adoptive immunotherapy for breast cancer has garnered widespread attention as an emerging treatment strategy, primarily encompassing cellular therapies such as tumor-infiltrating lymphocyte therapy, chimeric antigen receptor T/natural killer/M cell therapy, T cell receptor gene-engineered T cell therapy, lymphokine-activated killer cell therapy, cytokine-induced killer cell therapy, natural killer cell therapy, and γδ T cell therapy, among others. This treatment paradigm is based on the principles of immune memory and antigen specificity, involving the collection, processing, and expansion of the patient's immune cells, followed by their reintroduction into the patient's body to activate the immune system and prevent tumor recurrence and metastasis. Currently, multiple clinical trials are assessing the feasibility, effectiveness, and safety of adoptive immunotherapy in breast cancer. However, this therapeutic approach faces challenges associated with tumor heterogeneity, immune evasion, and treatment safety. This review comprehensively summarizes the latest advancements in adoptive immunotherapy for breast cancer and discusses future research directions and prospects, offering valuable guidance and insights into breast cancer immunotherapy.
Collapse
Affiliation(s)
- Xue Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Yunan Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Jinfeng Yi
- Department of Pathology, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Yuhan Deng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| |
Collapse
|
39
|
Guo Z, Ye J, Cheng X, Wang T, Zhang Y, Yang K, Du S, Li P. Nanodrug Delivery Systems in Antitumor Immunotherapy. Biomater Res 2024; 28:0015. [PMID: 38840653 PMCID: PMC11045275 DOI: 10.34133/bmr.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/26/2024] [Indexed: 06/07/2024] Open
Abstract
Cancer has become one of the most important factors threatening human health, and the global cancer burden has been increasing rapidly. Immunotherapy has become another clinical research hotspot after surgery, chemotherapy, and radiotherapy because of its high efficiency and tumor metastasis prevention. However, problems such as lower immune response rate and immune-related adverse reaction in the clinical application of immunotherapy need to be urgently solved. With the development of nanodrug delivery systems, various nanocarrier materials have been used in the research of antitumor immunotherapy with encouraging therapeutic results. In this review, we mainly summarized the combination of nanodrug delivery systems and immunotherapy from the following 4 aspects: (a) nanodrug delivery systems combined with cytokine therapy to improve cytokines delivery in vivo; (b) nanodrug delivery systems provided a suitable platform for the combination of immune checkpoint blockade therapy with other tumor treatments; (c) nanodrug delivery systems helped deliver antigens and adjuvants for tumor vaccines to enhance immune effects; and (d) nanodrug delivery systems improved tumor treatment efficiency and reduced toxicity for adoptive cell therapy. Nanomaterials chosen by researchers to construct nanodrug delivery systems and their function were also introduced in detail. Finally, we discussed the current challenges and future prospects in combining nanodrug delivery systems with immunotherapy.
Collapse
Affiliation(s)
- Zishuo Guo
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuehao Cheng
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- YiDu Central Hospital of Weifang, Weifang, Shandong 262500, China
| | - Kaili Yang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | | | - Pengyue Li
- Address correspondence to: (P.L.); (S.D.)
| |
Collapse
|
40
|
Wang L, Liang Z, Guo Y, Habimana JDD, Ren Y, Amissah OB, Mukama O, Peng S, Ding X, Lv L, Li J, Chen M, Liu Z, Huang R, Zhang Y, Li Y, Li Z, Sun Y. STING agonist diABZI enhances the cytotoxicity of T cell towards cancer cells. Cell Death Dis 2024; 15:265. [PMID: 38615022 PMCID: PMC11016101 DOI: 10.1038/s41419-024-06638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Antigen-specific T cell receptor-engineered T cell (TCR-T) based immunotherapy has proven to be an effective method to combat cancer. In recent years, cross-talk between the innate and adaptive immune systems may be requisite to optimize sustained antigen-specific immunity, and the stimulator of interferon genes (STING) is a promising therapeutic target for cancer immunotherapy. The level of expression or presentation of antigen in tumor cells affects the recognition and killing of tumor cells by TCR-T. This study aimed at investigating the potential of innate immune stimulation of T cells and engineered T cells to enhance immunotherapy for low-expression antigen cancer cells. We systematically investigated the function and mechanism of cross-talk between STING agonist diABZI and adaptive immune systems. We established NY-ESO-1 full knockout Mel526 cells for this research and found that diABZI activated STING media and TCR signaling pathways. In addition, the results of flow cytometry showed that antigens presentation from cancer cells induced by STING agonist diABZI also improved the affinity of TCR-T cells function against tumor cells in vitro and in vivo. Our findings revealed that diABZI enhanced the immunotherapy efficacy of TCR-T by activating STING media and TCR signaling pathways, improving interferon-γ expression, and increasing antigens presentation of tumor cells. This indicates that STING agonist could be used as a strategy to promote TCR-T cancer immunotherapy.
Collapse
Affiliation(s)
- Ling Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhaoduan Liang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, 510005, China
| | - Yunzhuo Guo
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuefei Ren
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, 3900, Rwanda
| | - Siqi Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xuanyan Ding
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Linshuang Lv
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Junyi Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Min Chen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhaoming Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yinchao Zhang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, 130022, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
41
|
Xie J, Zhu L, Yang X, Yu F, Fan B, Wu Y, Zhou Z, Lin W, Yang Y. Combination of theoretical analysis and experiments: Exploring the role of PLA2G7 in human cancers, including renal cancer. Heliyon 2024; 10:e27906. [PMID: 38509948 PMCID: PMC10950723 DOI: 10.1016/j.heliyon.2024.e27906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The pivotal role of phospholipase A2 group VII (PLA2G7) has been identified in specific human cancers, such as prostate cancer, diffuse large B cell lymphoma, and melanoma. Given PLA2G7's significant involvement in established tumors, exploring its role in other cancers is highly relevant. METHODS In this study, we acquired and analyzed data from The Cancer Genome Atlas database, the UCSC XENA website, and other online platforms including Gene Set Cancer Analysis, cBioPortal, Tumor Immune Estimation Resource, and TISIDB to investigate PLA2G7's role in human cancers, including renal cancer. Furthermore, in vitro experiments, including immunofluorescence, western blotting, and CCK-8 assays, were conducted to elucidate PLA2G7's role in renal cancer. Finally, the relationship between PLA2G7 and various drug sensitivity was explored. RESULTS Our findings demonstrate that PLA2G7 is highly expressed and may serve as a valuable candidate biomarker in pan-cancer. PLA2G7 exhibits distinct alteration frequencies across human cancers and is correlated with tumor mutation burden, tumor microenvironment, DNA stemness score, RNA stemness score, tumorigenesis, tumor immunity, and microsatellite instability in pan-cancer. Immunofluorescence and western blotting revealed a relative high level of PLA2G7 protein in renal cancer cell lines (ACHN and 786-O), predominantly localized in the cytoplasm. Treatment with a PLA2G7 gene inhibitor (darapladib) significantly decreased the viability of ACHN and 786-O cell lines. Additionally, we observed an association between PLA2G7 mRNA levels and various drug sensitivity. CONCLUSIONS Our study suggests that PLA2G7 has the potential to serve as a valuable biomarker and therapeutic target for cancer, particularly in the context of renal cancer.
Collapse
Affiliation(s)
- Jun Xie
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Li Zhu
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xutao Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Fengfei Yu
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Bingfu Fan
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yibo Wu
- Department of Orthopedics, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Zonglang Zhou
- Department of Respiratory and Critical Care Medicine, Center for Respiratory Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Weiqiang Lin
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yi Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
42
|
Wang X, Bai Y, Wang B. Coactosin-Like Protein 1 (COTL1) Could Be an Immunological and Prognostic Biomarker: From Pan-Cancer Analysis to Low-Grade Glioma Validation. J Inflamm Res 2024; 17:1805-1820. [PMID: 38523681 PMCID: PMC10960547 DOI: 10.2147/jir.s453509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Background Cancer represents a widespread global health challenge impacting millions of individuals worldwide. Identifying new targets for cancer treatment is a crucial step in developing more effective therapies. Among these potential targets, Coactosin-like protein 1 (COTL1), a cytoskeleton-associated protein with critical roles in cell migration, adhesion, and signaling, has shown involvement in tumor progression. Methods GSCA, TIMER, SangerBox database were used to explore the COTL1 expression across different tumor types. We employed the TCGA Pan-Atlas Cancer Genomics Dataset, which is available through the cBioportal platform, to explore genetic alterations in COTL1. We conduct a comprehensive analysis of COTL1, encompassing gene expression, clinical prognosis, RNA modification, immunotherapy, and cancer stemness through SangerBox database. Clinical samples were validated using immunohistochemistry. Results Our analysis revealed that COTL1 is highly expressed in most cancers and correlates with decreased survival in Glioma, Glioblastoma multiforme, and pan-kidney cohorts. Furthermore, COTL1 was found to be associated with DNA and RNA stemness in 20 and 22 different tumor types, respectively. Additionally, COTL1 showed positive correlations with immunological checkpoints and immune infiltration cells. It was also linked to tumor mutation burden (TMB), microsatellite instability (MSI), neoantigen (NEO), and programmed death ligand 1 (PD-L1), all of which are potential targets for immunotherapies. Moreover, a favorable relationship was demonstrated between genomic-instability markers such as heterozygosity (LOH), homologous recombination deficiency (HRD), and mutant allele tumor heterogeneity (MATH) with COTL1. Furthermore, our findings confirmed a positive correlation between COTL1 expression, CD8, and PD-L1 in LGG, as well as an association of high COTL1 expression with decreased patient survival in LGG. Conclusion Based on these compelling findings, COTL1 may hold significant clinical implications for the development of novel cancer therapies and serve as a potential target for tumors associated with immunotherapy in the future.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| | - Yuwei Bai
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| | - Bei Wang
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
43
|
Jin W, Wang G, Dong M, Wang X. PDCL3 is a prognostic biomarker associated with immune infiltration in hepatocellular carcinoma. Eur J Med Res 2024; 29:177. [PMID: 38494503 PMCID: PMC10946092 DOI: 10.1186/s40001-024-01787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Phosducin-like 3 (PDCL3) is a member of the photoreceptor family, characterized by a thioredoxin-like structural domain and evolutionary conservation. It plays roles in angiogenesis and apoptosis. Despite its significance, research on the biological role of PDCL3 in liver hepatocellular carcinoma (LIHC) remains limited. This study aims to explore the prognostic value and potential mechanisms of PDCL3 in cancer, particularly in LIHC, through bioinformatics analysis. METHODS RNA-seq data and corresponding clinical information for pan-cancer and LIHC were extracted from the TCGA database to analyze PDCL3 expression and survival prognosis. Differential expression of PDCL3 was analyzed using the HPA database. GO and KEGG enrichment analysis were performed for PDCL3-associated genes. The relationship between PDCL3 expression and various immune cell types was examined using the TIMER website. Clinical samples were collected, and immunohistochemistry and immunofluorescence experiments were conducted to validate the differential expression of PDCL3 in LIHC and normal tissues. In vitro assays, including CCK-8, wound healing, Transwell, and colony formation experiments, were employed to determine the biological functions of PDCL3 in LIHC cells. RESULTS Analysis from TIMER, GEPIA, UALCAN, and HPA databases revealed differential expression of PDCL3 in various tumors. Prognostic analysis from GEPIA and TCGA databases indicated that high PDCL3 expression was associated with poorer clinical staging and prognosis in LIHC. Enrichment analysis of PDCL3-associated genes revealed its involvement in various immune responses. TCGA and TIMER databases showed that high PDCL3 expression in LIHC decreased tumor immune activity by reducing macrophage infiltration. PDCL3 exhibited positive correlations with multiple immune checkpoint genes. Immunohistochemistry (IHC) and immunofluorescence (IF) experiments confirmed elevated PDCL3 expression in LIHC tissues compared to adjacent normal tissues. In vitro experiments demonstrated that PDCL3 promoted LIHC cell proliferation, migration, invasion, and colony-forming ability. CONCLUSION PDCL3 is highly expressed in various cancer types. Our study suggests that elevated PDCL3 expression in hepatocellular carcinoma is associated with poorer prognosis and may serve as a potential diagnostic biomarker for LIHC. PDCL3 may regulate the biological functions of LIHC by modulating immune infiltration. However, the precise regulatory mechanisms of PDCL3 in cancer warrant further investigation.
Collapse
Affiliation(s)
- Wenzhi Jin
- Department of Hepatobiliary Surgery, Pudong Hospital Affiliated to Fudan University, 2800 Gongwei Road Pudong, Shanghai, 201399, People's Republic of China
| | - Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital Affiliated to Fudan University, 2800 Gongwei Road Pudong, Shanghai, 201399, People's Republic of China
| | - Meiyuan Dong
- Department of Endocrinology, Pudong Hospital Affiliated to Fudan University, 2800 Gongwei Road Pudong, Shanghai, 201399, People's Republic of China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital Affiliated to Fudan University, 2800 Gongwei Road Pudong, Shanghai, 201399, People's Republic of China.
| |
Collapse
|
44
|
Wang S, Zhang M, Sun H, Li T, Hao J, Fang M, Dong J, Xu H. Multi-omics analysis of TLCD1 as a promising biomarker in pan-cancer. Front Cell Dev Biol 2024; 11:1305906. [PMID: 38559424 PMCID: PMC10978584 DOI: 10.3389/fcell.2023.1305906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/31/2023] [Indexed: 04/04/2024] Open
Abstract
Background: The TLC Domain Containing 1 (TLCD1) protein, a key regulator of phosphatidylethanolamine (PE) composition, is distributed across several cellular membranes, including mitochondrial plasma membranes. Existing research has revealed the impact of TLCD1 on the development of non-alcoholic fatty liver disease. However, there remains a gap in comprehensive pan-cancer analyses of TLCD1, and the precise role of TLCD1 in cancer patient prognosis and immunological responses remains elusive. This study aims to provide a comprehensive visualization of the prognostic landscape associated with TLCD1 across a spectrum of cancers, while shedding light on the potential links between TLCD1 expression within the tumor microenvironment and immune infiltration characteristics. Methods: TLCD1 expression data were obtained from GTEx, TCGA, and HPA data repositories. Multiple databases including TIMER, HPA, TISIDB, cBioPortal, GEPIA2, STRING, KEGG, GO, and CancerSEA were used to investigate the expression pattern, diagnostic and prognostic significance, mutation status, functional analysis, and functional status of TLCD1. In addition, we evaluated the relationship between TLCD1 expression and immune infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), and immune-related genes in pan-cancer. Furthermore, the association of TLCD1 with drug sensitivity was analyzed using the CellMiner database. Results: We found that TLCD1 is generally highly expressed in pan-cancers and is significantly associated with the staging and prognosis of various cancers. Furthermore, our results also showed that TLCD1 was significantly associated with immune cell infiltration and immune regulatory factor expression. Using CellMiner database analysis, we then found a strong correlation between TLCD1 expression and sensitivity to anticancer drugs, indicating its potential as a therapeutic target. The most exciting finding is that high TLCD1 expression is associated with worse survival and prognosis in GBM and SKCM patients receiving anti-PD1 therapy. These findings highlight the potential of TLCD1 as a predictive biomarker for response to immunotherapy. Conclusion: TLCD1 plays a role in the regulation of immune infiltration and affects the prognosis of patients with various cancers. It serves as both a prognostic and immunologic biomarker in human cancer.
Collapse
Affiliation(s)
- Shengli Wang
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Mingyue Zhang
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Hongyan Sun
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Tao Li
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Meixia Fang
- Department of Laboratory Animal, Institute of Laboratory Animal Science, Jinan University, Guangzhou, Guangdong, China
| | - Jie Dong
- Department of Clinical Laboratory, Guangzhou Twelfth People’s Hospital, Guangzhou, Guangdong, China
| | - Hongbiao Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Collins SL, Chan-Li Y, Shenderov K, Gillich A, Nelson AM, Loube JM, Mitzner WA, Powell JD, Horton MR. Adoptive transfer of CD49a + Tissue resident memory cells reverses pulmonary fibrosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584814. [PMID: 38559095 PMCID: PMC10980005 DOI: 10.1101/2024.03.13.584814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pulmonary fibrosis is a devastating disease with no effective treatments to cure, stop or reverse the unremitting, fatal fibrosis. A critical barrier to treating this disease is the lack of understanding of the pathways leading to fibrosis as well as those regulating the resolution of fibrosis. Fibrosis is the pathologic side of normal tissue repair that results when the normal wound healing programs go awry. Successful resolution of tissue injury requires several highly coordinated pathways, and this research focuses on the interplay between these overlapping pathways: immune effectors, inflammatory mediators and fibroproliferation in the resolution of fibrosis. Previously we have successfully prevented, mitigated, and even reversed established fibrosis using vaccinia vaccination immunotherapy in two models of murine lung fibrosis. The mechanism by which vaccinia reverses fibrosis is by vaccine induced lung specific Th1 skewed tissue resident memory (TRMs) in the lung. In this study, we isolated a population of vaccine induced TRMs - CD49a+ CD4+ T cells - that are both necessary and sufficient to reverse established pulmonary fibrosis. Using adoptive cellular therapy, we demonstrate that intratracheal administration of CD49a+ CD4+ TRMs into established fibrosis, reverses the fibrosis histologically, by promoting a decrease in collagen, and functionally, by improving lung function, without the need for vaccination. Furthermore, co-culture of in vitro derived CD49+ CD4+ human TRMs with human fibroblasts from individuals with idiopathic pulmonary fibrosis (IPF) results in the down regulation of IPF fibroblast collagen production. Lastly, we demonstrate in human IPF lung histologic samples that CD49a+ CD4+ TRMs, which can down regulate human IPF fibroblast function, fail to increase in the IPF lungs, thus potentially failing to promote resolution. Thus, we define a novel unappreciated role for tissue resident memory T cells in regulating established lung fibrosis to promote resolution of fibrosis and re-establish lung homeostasis. We demonstrate that immunotherapy, in the form of adoptive transfer of CD49a+ CD4+ TRMs into the lungs of mice with established fibrosis, not only stops progression of the fibrosis but more importantly reverses the fibrosis. These studies provide the insight and preclinical rationale for a novel paradigm shifting approach of using cellular immunotherapy to treat lung fibrosis.
Collapse
Affiliation(s)
- Samuel L Collins
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Yee Chan-Li
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Kevin Shenderov
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | | | - Andrew M Nelson
- Johns Hopkins University School of Public Health, Department of Environmental Health
| | - Jeffrey M Loube
- Johns Hopkins University School of Public Health, Department of Environmental Health
| | - Wayne A Mitzner
- Johns Hopkins University School of Public Health, Department of Environmental Health
| | | | - Maureen R Horton
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine
| |
Collapse
|
46
|
Ge S, Zhao Y, Liang J, He Z, Li K, Zhang G, Hua B, Zheng H, Guo Q, Qi R, Shi Z. Immune modulation in malignant pleural effusion: from microenvironment to therapeutic implications. Cancer Cell Int 2024; 24:105. [PMID: 38475858 PMCID: PMC10936107 DOI: 10.1186/s12935-024-03211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/03/2024] [Indexed: 03/14/2024] Open
Abstract
Immune microenvironment and immunotherapy have become the focus and frontier of tumor research, and the immune checkpoint inhibitors has provided novel strategies for tumor treatment. Malignant pleural effusion (MPE) is a common end-stage manifestation of lung cancer, malignant pleural mesothelioma and other thoracic malignancies, which is invasive and often accompanied by poor prognosis, affecting the quality of life of affected patients. Currently, clinical therapy for MPE is limited to pleural puncture, pleural fixation, catheter drainage, and other palliative therapies. Immunization is a new direction for rehabilitation and treatment of MPE. The effusion caused by cancer cells establishes its own immune microenvironment during its formation. Immune cells, cytokines, signal pathways of microenvironment affect the MPE progress and prognosis of patients. The interaction between them have been proved. The relevant studies were obtained through a systematic search of PubMed database according to keywords search method. Then through screening and sorting and reading full-text, 300 literatures were screened out. Exclude irrelevant and poor quality articles, 238 literatures were cited in the references. In this study, the mechanism of immune microenvironment affecting malignant pleural effusion was discussed from the perspectives of adaptive immune cells, innate immune cells, cytokines and molecular targets. Meanwhile, this study focused on the clinical value of microenvironmental components in the immunotherapy and prognosis of malignant pleural effusion.
Collapse
Affiliation(s)
- Shan Ge
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China
| | - Yuwei Zhao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Jun Liang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zhongning He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Kai Li
- Beijing Shijitan Hospital, No.10 Yangfangdiantieyilu, Haidian District, Beijing, 100038, China
| | - Guanghui Zhang
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, 100029, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China.
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
47
|
Liang S, Zheng R, Zuo B, Li J, Wang Y, Han Y, Dong H, Zhao X, Zhang Y, Wang P, Meng R, Jia L, Yang A, Yan B. SMAD7 expression in CAR-T cells improves persistence and safety for solid tumors. Cell Mol Immunol 2024; 21:213-226. [PMID: 38177245 PMCID: PMC10901810 DOI: 10.1038/s41423-023-01120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
Despite the tremendous progress of chimeric antigen receptor T (CAR-T) cell therapy in hematological malignancies, their application in solid tumors has been limited largely due to T-cell exhaustion in the tumor microenvironment (TME) and systemic toxicity caused by excessive cytokine release. As a key regulator of the immunosuppressive TME, TGF-β promotes cytokine synthesis via the NF-κB pathway. Here, we coexpressed SMAD7, a suppressor of TGF-β signaling, with a HER2-targeted CAR in engineered T cells. These novel CAR-T cells displayed high cytolytic efficacy and were resistant to TGF-β-triggered exhaustion, which enabled sustained tumoricidal capacity after continuous antigen exposure. Moreover, SMAD7 substantially reduced the production of inflammatory cytokines by antigen-primed CAR-T cells. Mechanistically, SMAD7 downregulated TGF-β receptor I and abrogated the interplay between the TGF-β and NF-κB pathways in CAR-T cells. As a result, these CAR-T cells persistently inhibited tumor growth and promoted the survival of tumor-challenged mice regardless of the hostile tumor microenvironment caused by a high concentration of TGF-β. SMAD7 coexpression also enhanced CAR-T-cell infiltration and persistent activation in patient-derived tumor organoids. Therefore, our study demonstrated the feasibility of SMAD7 coexpression as a novel approach to improve the efficacy and safety of CAR-T-cell therapy for solid tumors.
Collapse
Affiliation(s)
- Sixin Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- School of Medicine Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Rui Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Baile Zuo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- School of Medicine Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jia Li
- Department of Obstetrics and Gynecology, Xijing Hospital of Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yiyi Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yujie Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- School of Medicine Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Hao Dong
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- School of Medicine Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaojuan Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yiting Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Pengju Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ruotong Meng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Science, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Lintao Jia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Angang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Bo Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
48
|
Jancewicz I, Śmiech M, Winiarska M, Zagozdzon R, Wisniewski P. New CEACAM-targeting 2A3 single-domain antibody-based chimeric antigen receptor T-cells produce anticancer effects in vitro and in vivo. Cancer Immunol Immunother 2024; 73:30. [PMID: 38279989 PMCID: PMC10821984 DOI: 10.1007/s00262-023-03602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/20/2023] [Indexed: 01/29/2024]
Abstract
Recently, a breakthrough immunotherapeutic strategy of chimeric antigen receptor (CAR) T-cells has been introduced to hematooncology. However, to apply this novel treatment in solid cancers, one must identify suitable molecular targets in the tumors of choice. CEACAM family proteins are involved in the progression of a range of malignancies, including pancreatic and breast cancers, and pose attractive targets for anticancer therapies. In this work, we used a new CEACAM-targeted 2A3 single-domain antibody-based chimeric antigen receptor T-cells to evaluate their antitumor properties in vitro and in animal models. Originally, 2A3 antibody was reported to target CEACAM6 molecule; however, our in vitro co-incubation experiments showed activation and high cytotoxicity of 2A3-CAR T-cells against CEACAM5 and/or CEACAM6 high human cell lines, suggesting cross-reactivity of this antibody. Moreover, 2A3-CAR T-cells tested in vivo in the BxPC-3 xenograft model demonstrated high efficacy against pancreatic cancer xenografts in both early and late intervention treatment regimens. Our results for the first time show an enhanced targeting toward CEACAM5 and CEACAM6 molecules by the new 2A3 sdAb-based CAR T-cells. The results strongly support the further development of 2A3-CAR T-cells as a potential treatment strategy against CEACAM5/6-overexpressing cancers.
Collapse
Affiliation(s)
- Iga Jancewicz
- 4Cell Therapies S.A., 59C Bojkowska Street, 44-100, Gliwice, Poland
| | - Magdalena Śmiech
- 4Cell Therapies S.A., 59C Bojkowska Street, 44-100, Gliwice, Poland
| | - Magdalena Winiarska
- 4Cell Therapies S.A., 59C Bojkowska Street, 44-100, Gliwice, Poland
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza St., Building F, 02-097, Warsaw, Poland
| | - Radoslaw Zagozdzon
- 4Cell Therapies S.A., 59C Bojkowska Street, 44-100, Gliwice, Poland.
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
- Department of Regenerative Medicine, The Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgena Street, 02-781, Warsaw, Poland.
| | - Pawel Wisniewski
- 4Cell Therapies S.A., 59C Bojkowska Street, 44-100, Gliwice, Poland.
| |
Collapse
|
49
|
Li X, Xiao X, Wang Y, Gu G, Li T, Wang Y, Li C, Zhang P, Ji N, Zhang Y, Zhang L. Expression of Interleukin-13 Receptor Alpha 2 in Brainstem Gliomas. Cancers (Basel) 2024; 16:228. [PMID: 38201655 PMCID: PMC10777982 DOI: 10.3390/cancers16010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The objective of this study was to investigate IL13Ra2 expression in brainstem glioma (BSG) and its correlation with key markers, functions, and prognostic implications, evaluating its therapeutic potential. A total of 80 tumor samples from BSG patients were analyzed. Multiplex immunofluorescence was used to examine six markers-IL13Ra2, H3.3K27M, CD133, Ki67, HLA-1, and CD4-establishing relationships between IL13Ra2 and these markers. Survival analysis, employing Kaplan-Meier and Cox proportional hazard regression models, encompassed 66 patients with complete follow-up. RNA-Seq data from a previously published study involving 98 patients were analyzed using the DESeq2 library to determine differential gene expression between groups. Gene Ontology (GO) enrichment and single-sample gene set enrichment analysis (ssGSEA) via the clusterProfiler library were used to delineate the gene functions of differentially expressed genes (DEGs). Nearly all the BSG patients displayed varying IL13Ra2 expression, with 45.0% (36/80) exhibiting over a 20% increase. Elevated IL13Ra2 levels were notably observed in pontine gliomas, diffuse intrinsic pontine gliomas (DIPGs), H3F3A-mutant gliomas, and WHO IV gliomas. IL13Ra2 expression was strongly correlated with H3.3K27M mutant protein, Ki67, and CD133. Patients with IL13Ra2 expression >20% showed shorter overall survival compared to those with ≤20% IL13Ra2 expression. The Cox proportional hazard regression model identified H3F3A mutations, rather than IL13Ra2 expression, as an independent prognostic factor. Analysis of RNA-Seq data from our prior cohort confirmed IL13Ra2's correlation with H3.3, CD133, and Ki67 levels. Widespread IL13Ra2 expression in BSG, particularly elevated in the H3F3A mutant group, was strongly correlated with H3F3A mutations, increased proliferation, and heightened tumor stemness. IL13Ra2 represents a promising therapeutic target for BSGs, potentially benefiting patients with H3K27M mutations, DIPGs, WHO Grade IV, and pontine location-specific BSGs, particularly those with H3K27M mutations.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
50
|
Yan S, Lin S, Qiu H, Wang X, He Y, Wang C, Huang Y. Regulation of telomerase towards tumor therapy. Cell Biosci 2023; 13:228. [PMID: 38111043 PMCID: PMC10726632 DOI: 10.1186/s13578-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
Cancer is an aging-related disease, while aging plays an important role in the development process of tumor, thus the two are inextricably associated. Telomere attrition is one of the recognized hallmark events of senescence. Hence, targeting telomerase which could extends telomere sequences to treat tumors is widely favored. Cancer cells rely on high activity of telomerase to maintain a strong proliferative potential. By inhibiting the expression or protein function of telomerase, the growth of cancer cells can be significantly suppressed. In addition, the human immune system itself has a defense system against malignant tumors. However, excessive cell division results in dramatic shortening on telomeres and decline in the function of immune organs that facilitates cancer cell evasion. It has been shown that increasing telomerase activity or telomere length of these immune cells can attenuate senescence, improve cellular viability, and enhance the immunosuppressive microenvironment of tumor. In this paper, we review the telomerase-targeting progress using different anti-tumor strategies from the perspectives of cancer cells and immune cells, respectively, as well as tracking the preclinical and clinical studies of some representative drugs for the prevention or treatment of tumors.
Collapse
Affiliation(s)
- Siyu Yan
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Lumiere Therapeutics Co., Ltd., Suzhou, 215000, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hongxin Qiu
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xining Wang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yijun He
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|