1
|
Chen H, Li Y, Shen Q, Guo G, Wang Z, Pan H, Wu M, Yan X, Yang G. Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes. Mol Med 2024; 30:284. [PMID: 39736508 DOI: 10.1186/s10020-024-01037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them. METHODS In mouse breast cancer models, we compared the anti-tumor effects of RTRT and conventional radiotherapy (CNRT) by assessing tumor growth, metastasis, and survival rates. Additionally, we evaluated the peritumoral tissue damage and the immune microenvironment. The maturation of dendritic cells (DCs) and DNA damage induced by irradiated tumor cells were also assessed in vitro. RESULTS In pre-clinical models, both RTRT and CNRT significantly inhibited primary tumor growth when compared to non-irradiated controls, with no significant difference between RTRT and CNRT. However, RTRT significantly extended survival times in mice, and increased the likelihood of inducing abscopal effects, thereby providing potential for better control of distant metastases. Further investigations revealed that the enhanced efficacy of RTRT may be attributed to the preservation of lymphocytes within the peritumoral tissue, as well as reduced damage to the surrounding skin and circulating lymphocytes. In vitro assays demonstrated that RTRT induced DNA damage and dsDNA in tumor cells, activating the cGAS-STING pathway. RTRT also triggered the release of damage-associated molecular patterns (DAMPs), which synergistically amplified the anti-tumor immune response. CONCLUSIONS Our findings suggested that appropriately narrowing the irradiation target volume effectively killed tumor cells while reducing damage to surrounding tissues, and preserving peritumoral lymphocytes. This approach improved the safety of radiotherapy while maintaining its efficacy in tumor control and provided an opportunity for combining high-dose radiotherapy with immunotherapy.
Collapse
Affiliation(s)
- Huiqin Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, 325014, China
| | - Yuan Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Qiaofeng Shen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guanqun Guo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Zhigang Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanyu Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Xueqing Yan
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325003, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Kim K, Kim MM, Skoufos G, Diffenderfer ES, Motlagh SAO, Kokkorakis M, Koliaki I, Morcos G, Shoniyozov K, Griffin J, Hatzigeorgiou AG, Metz JM, Lin A, Feigenberg SJ, Cengel KA, Ky B, Koumenis C, Verginadis II. FLASH Proton Radiation Therapy Mitigates Inflammatory and Fibrotic Pathways and Preserves Cardiac Function in a Preclinical Mouse Model of Radiation-Induced Heart Disease. Int J Radiat Oncol Biol Phys 2024; 119:1234-1247. [PMID: 38364948 PMCID: PMC11209795 DOI: 10.1016/j.ijrobp.2024.01.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE Studies during the past 9 years suggest that delivering radiation at dose rates exceeding 40 Gy/s, known as "FLASH" radiation therapy, enhances the therapeutic index of radiation therapy (RT) by decreasing normal tissue damage while maintaining tumor response compared with conventional (or standard) RT. This study demonstrates the cardioprotective benefits of FLASH proton RT (F-PRT) compared with standard (conventional) proton RT (S-PRT), as evidenced by reduced acute and chronic cardiac toxicities. METHODS AND MATERIALS Mice were imaged using cone beam computed tomography to precisely determine the heart's apex as the beam isocenter. Irradiation was conducted using a shoot-through technique with a 5-mm diameter circular collimator. Bulk RNA-sequencing was performed on nonirradiated samples, as well as apexes treated with F-PRT or S-PRT, at 2 weeks after a single 40 Gy dose. Inflammatory responses were assessed through multiplex cytokine/chemokine microbead assay and immunofluorescence analyses. Levels of perivascular fibrosis were quantified using Masson's Trichrome and Picrosirius red staining. Additionally, cardiac tissue functionality was evaluated by 2-dimensional echocardiograms at 8- and 30-weeks post-PRT. RESULTS Radiation damage was specifically localized to the heart's apex. RNA profiling of cardiac tissues treated with PRT revealed that S-PRT uniquely upregulated pathways associated with DNA damage response, induction of tumor necrosis factor superfamily, and inflammatory response, and F-PRT primarily affected cytoplasmic translation, mitochondrion organization, and adenosine triphosphate synthesis. Notably, F-PRT led to a milder inflammatory response, accompanied by significantly attenuated changes in transforming growth factor β1 and α smooth muscle actin levels. Critically, F-PRT decreased collagen deposition and better preserved cardiac functionality compared with S-PRT. CONCLUSIONS This study demonstrated that F-PRT reduces the induction of an inflammatory environment with lower expression of inflammatory cytokines and profibrotic factors. Importantly, the results indicate that F-PRT better preserves cardiac functionality, as confirmed by echocardiography analysis, while also mitigating the development of long-term fibrosis.
Collapse
Affiliation(s)
- Kyle Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Giorgos Skoufos
- Department of Electrical & Computer Engineering, University of Thessaly, Greece; Hellenic Pasteur Institute, Athens, Greece
| | - Eric S Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Seyyedeh Azar Oliaei Motlagh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michail Kokkorakis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ilektra Koliaki
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - George Morcos
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Khayrullo Shoniyozov
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joanna Griffin
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Artemis G Hatzigeorgiou
- Department of Electrical & Computer Engineering, University of Thessaly, Greece; Hellenic Pasteur Institute, Athens, Greece; DIANA-Laboratory, Department of Computer Science and Biomedical Informatics, University of Thessaly, Thessaly, Greece
| | - James M Metz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Lin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven J Feigenberg
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bonnie Ky
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
3
|
Shukla S, Saha T, Rama N, Acharya A, Le T, Bian F, Donovan J, Tan LA, Vatner R, Kalinichenko V, Mascia A, Perentesis JP, Kalin TV. Ultra-high dose-rate proton FLASH improves tumor control. Radiother Oncol 2023; 186:109741. [PMID: 37315577 PMCID: PMC10527231 DOI: 10.1016/j.radonc.2023.109741] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND PURPOSE Proton radiotherapy (PRT) offers potential benefits over other radiation modalities, including photon and electron radiotherapy. Increasing the rate at which proton radiation is delivered may provide a therapeutic advantage. Here, we compared the efficacy of conventional proton therapy (CONVpr) to ultrahigh dose-rate proton therapy, FLASHpr, in a mouse model of non-small cell lung cancers (NSCLC). MATERIALS AND METHODS Mice bearing orthotopic lung tumors received thoracic radiation therapy using CONVpr (<0.05 Gy/s) and FLASHpr (>60 Gy/s) dose rates. RESULTS Compared to CONVpr, FLASHpr was more effective in reducing tumor burden and decreasing tumor cell proliferation. Furthermore, FLASHpr was more efficient in increasing the infiltration of cytotoxic CD8+ T-lymphocytes inside the tumor while simultaneously reducing the percentage of immunosuppressive regulatory T-cells (Tregs) among T-lymphocytes. Also, compared to CONVpr, FLASHpr was more effective in decreasing pro-tumorigenic M2-like macrophages in lung tumors, while increasing infiltration of anti-tumor M1-like macrophages. Finally, FLASHpr treatment reduced expression of checkpoint inhibitors in lung tumors, indicating reduced immune tolerance. CONCLUSIONS Our results suggest that FLASH dose-rate proton delivery modulates the immune system to improve tumor control and might thus be a promising new alternative to conventional dose rates for NSCLC treatment.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Taniya Saha
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Nihar Rama
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Anusha Acharya
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Fenghua Bian
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Johnny Donovan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Lin Abigail Tan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Ralph Vatner
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Neonatology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John P Perentesis
- Cincinnati Children's Hospital Medical Center, Division of Oncology, Division of Experimental Hematology, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Neonatology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States.
| |
Collapse
|
4
|
Dreyfuss AD, Velalopoulou A, Avgousti H, Bell BI, Verginadis II. Preclinical models of radiation-induced cardiac toxicity: Potential mechanisms and biomarkers. Front Oncol 2022; 12:920867. [PMID: 36313656 PMCID: PMC9596809 DOI: 10.3389/fonc.2022.920867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) is an important modality in cancer treatment with >50% of cancer patients undergoing RT for curative or palliative intent. In patients with breast, lung, and esophageal cancer, as well as mediastinal malignancies, incidental RT dose to heart or vascular structures has been linked to the development of Radiation-Induced Heart Disease (RIHD) which manifests as ischemic heart disease, cardiomyopathy, cardiac dysfunction, and heart failure. Despite the remarkable progress in the delivery of radiotherapy treatment, off-target cardiac toxicities are unavoidable. One of the best-studied pathological consequences of incidental exposure of the heart to RT is collagen deposition and fibrosis, leading to the development of radiation-induced myocardial fibrosis (RIMF). However, the pathogenesis of RIMF is still largely unknown. Moreover, there are no available clinical approaches to reverse RIMF once it occurs and it continues to impair the quality of life of long-term cancer survivors. Hence, there is an increasing need for more clinically relevant preclinical models to elucidate the molecular and cellular mechanisms involved in the development of RIMF. This review offers an insight into the existing preclinical models to study RIHD and the suggested mechanisms of RIMF, as well as available multi-modality treatments and outcomes. Moreover, we summarize the valuable detection methods of RIHD/RIMF, and the clinical use of sensitive radiographic and circulating biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis I. Verginadis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Volpe S, Piperno G, Colombo F, Biffi A, Comi S, Mastroleo F, Maria Camarda A, Casbarra A, Cattani F, Corrao G, de Marinis F, Spaggiari L, Guckenberger M, Orecchia R, Alterio D, Alicja Jereczek-Fossa B. Hypofractionated proton therapy for non-small cell lung cancer: Ready for prime time? A systematic review and meta-analysis. Cancer Treat Rev 2022; 110:102464. [DOI: 10.1016/j.ctrv.2022.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
6
|
First Report of Proton Beam Therapy in a Patient With a Left Ventricular Assist Device. ASAIO J 2022; 68:e84-e86. [PMID: 35503645 DOI: 10.1097/mat.0000000000001478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A 77 year old man previously implanted with a HeartMate II left ventricular assist device (LVAD) as destination therapy and an implantable cardioverter defibrillator presented with a left upper lobe squamous cell lung cancer. Oncology determined that proton beam therapy was indicated for treatment, and a multidisciplinary team of radiation physicists, radiation oncologists, and LVAD providers developed a protocol to proceed safely. He was successfully treated with combined proton beam radiation therapy and reduced dose chemotherapy. This case demonstrates feasibility and considerations of proton beam therapy for malignancy relevant to patients with implantable cardiac devices including LVADs.
Collapse
|
7
|
Substantial Sparing of Organs at Risk with Modern Proton Therapy in Lung Cancer, but Altered Breathing Patterns Can Jeopardize Target Coverage. Cancers (Basel) 2022; 14:cancers14061365. [PMID: 35326516 PMCID: PMC8945974 DOI: 10.3390/cancers14061365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Treatment of locally advanced non-small cell lung cancer (LA-NSCLC) is a fine balance between toxicity and cure. Modern proton therapy might offer a more gentle radiation treatment compared to state-of-the-art photon radiotherapy, but is also more susceptible to the influence of breathing motion and anatomical changes. In this study, the influence of such uncertainties on treatment delivery was thoroughly investigated. Modern proton therapy did indeed show potential to reduce the risk of toxicity for the heart and lungs. This potential was maintained under the influence of anatomical and delivery uncertainties. However, changes in breathing motion jeopardized the target dose distribution in a subset of patients. We therefore recommend imaging at onset or early in treatment to recognize these patients and adapt the treatment. Abstract Enhancing treatment of locally advanced non-small cell lung cancer (LA-NSCLC) by using pencil beam scanning proton therapy (PBS-PT) is attractive, but little knowledge exists on the effects of uncertainties occurring between the planning (Plan) and the start of treatment (Start). In this prospective simulation study, we investigated the clinical potential for PBS-PT under the influence of such uncertainties. Imaging with 4DCT at Plan and Start was carried out for 15 patients that received state-of-the-art intensity-modulated radiotherapy (IMRT). Three PBS-PT plans were created per patient: 3D robust single-field uniform dose (SFUD), 3D robust intensity-modulated proton therapy (IMPT), and 4D robust IMPT (4DIMPT). These were exposed to setup and range uncertainties and breathing motion at Plan, and changes in breathing motion and anatomy at Start. Target coverage and dose-volume parameters relevant for toxicity were compared. The organ at risk sparing at Plan was greatest with IMPT, followed by 4DIMPT, SFUD and IMRT, and persisted at Start. All plans met the preset criteria for target robustness at Plan. At Start, three patients had a lack of CTV coverage with PBS-PT. In conclusion, the clinical potential for heart and lung toxicity reduction with PBS-PT was substantial and persistent. Altered breathing patterns between Plan and Start jeopardized target coverage for all PBS-PT techniques.
Collapse
|