1
|
Masetti M, Al-Batran SE, Goetze TO, Thuss-Patience P, Knorrenschild JR, Goekkurt E, Folprecht G, Ettrich TJ, Lindig U, Luley KB, Pink D, Dechow T, Sookthai D, Junge S, Loose M, Pauligk C, Lorenzen S. Efficacy of ramucirumab combination chemotherapy as second-line treatment in patients with advanced adenocarcinoma of the stomach or gastroesophageal junction after exposure to checkpoint inhibitors and chemotherapy as first-line therapy. Int J Cancer 2024; 154:2142-2150. [PMID: 38447003 DOI: 10.1002/ijc.34894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
FOLFOX plus nivolumab represents a standard of care for first-line therapy of advanced gastroesophageal cancer (aGEC) with positive PD-L1 expression. The efficacy of second-line VEGFR-2 inhibition with ramucirumab (RAM) plus chemotherapy after progression to immunochemotherapy remains unclear. Medical records of patients with aGEC enrolled in the randomized phase II AIO-STO-0417 trial after treatment failure to first-line FOLFOX plus nivolumab and ipilimumab were retrospectively analyzed. Patients were divided into two groups based on second-line therapy: RAM plus chemotherapy (RAM group) or treatment without RAM (control group). Eighty three patients were included. In the overall population, progression-free survival (PFS) in the RAM group was superior to the control (4.5 vs 2.9 months). Responders (CR/PR) to first-line immunochemotherapy receiving RAM containing second-line therapy had prolonged OS from start of first-line therapy (28.9 vs 16.5 months), as well as second-line OS (9.6 vs 7.5 months), PFS (5.6 vs 2.9 months) and DCR (53% vs 29%) compared to the control. PD-L1 CPS ≥1 was 42% and 44% for the RAM and the control, respectively. Patients with CPS ≥1 in the RAM group showed better tumor control (ORR 25% vs 10%) and improved survival (total OS 11.5 vs 8.0 months; second-line OS 6.5 vs 3.9 months; PFS 4.5 vs 1.6 months) compared to the control. Prior exposure to first-line FOLFOX plus dual checkpoint inhibition followed by RAM plus chemotherapy shows favorable response and survival rates especially in patients with initial response and positive PD-L1 expression and has the potential to advance the treatment paradigm in aGEC.
Collapse
Affiliation(s)
- Michael Masetti
- Klinikum rechts der Isar, Technische Universität München, Klinik für Innere Medizin III, Munich, Germany
| | - Salah-Eddin Al-Batran
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany and Krankenhaus Nordwest, University Cancer Center Frankfurt, Frankfurt, Germany
| | - Thorsten O Goetze
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany and Krankenhaus Nordwest, University Cancer Center Frankfurt, Frankfurt, Germany
| | - Peter Thuss-Patience
- Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Eray Goekkurt
- Haematologisch-Onkologische Praxis Eppendorf, Universitäres Cancer Center Hamburg (UCCH), Hamburg, Germany
| | - Gunnar Folprecht
- Medizinische Klinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | | | - Udo Lindig
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Kim Barbara Luley
- UKSH Campus Lübeck, Klinik für Hämatologie und Onkologie, Lübeck, Germany
| | - Daniel Pink
- Klinik und Poliklinik für Innere Medizin C, Hämatologie und Onkologie, Transplantationszentrum, Palliativmedizin, Universität Greifswald and Klinik für Hämatologie, Onkologie und Palliativmedizin-Sarkomzentrum, HELIOS Klinikum Bad Saarow, Bad Saarow, Germany
| | | | - Disorn Sookthai
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Sabine Junge
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Maria Loose
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Claudia Pauligk
- Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Sylvie Lorenzen
- Klinikum rechts der Isar, Technische Universität München, Klinik für Innere Medizin III, Munich, Germany
| |
Collapse
|
2
|
Revilla G, Al Qtaish N, Caruana P, Sainz-Ramos M, Lopez-Mendez T, Rodriguez F, Paez-Espinosa V, Li C, Vallverdú NF, Edwards M, Moral A, Pérez JI, Escolà-Gil JC, Pedraz JL, Gallego I, Corcoy R, Céspedes MV, Puras G, Mato E. Lenvatinib-Loaded Poly(lactic-co-glycolic acid) Nanoparticles with Epidermal Growth Factor Receptor Antibody Conjugation as a Preclinical Approach to Therapeutically Improve Thyroid Cancer with Aggressive Behavior. Biomolecules 2023; 13:1647. [PMID: 38002329 PMCID: PMC10668968 DOI: 10.3390/biom13111647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Lenvatinib, a tyrosine kinase inhibitor (TKI) approved for the treatment of progressive and radioactive iodine (RAI)-refractory differentiated thyroid cancer (DTC), is associated with significant adverse effects that can be partially mitigated through the development of novel drug formulations. The utilization of nanoparticles presents a viable option, as it allows for targeted drug delivery, reducing certain side effects and enhancing the overall quality of life for patients. This study aimed to produce and assess, both in vitro and in vivo, the cytotoxicity, biodistribution, and therapeutic efficacy of lenvatinib-loaded PLGA nanoparticles (NPs), both with and without decoration using antibody conjugation (cetuximab), as a novel therapeutic approach for managing aggressive thyroid tumors. METHODS Poly(lactic-co-glycolic acid) nanoparticles (NPs), decorated with or without anti-EGFR, were employed as a lenvatinib delivery system. These NPs were characterized for size distribution, surface morphology, surface charge, and drug encapsulation efficiency. Cytotoxicity was evaluated through MTT assays using two cellular models, one representing normal thyroid cells (Nthy-ori 3-1) and the other representing anaplastic thyroid cells (CAL-62). Additionally, an in vivo xenograft mouse model was established to investigate biodistribution and therapeutic efficacy following intragastric administration. RESULTS The NPs demonstrated success in terms of particle size, polydispersity index (PDI), zeta potential, morphology, encapsulation efficiency, and cetuximab distribution across the surface. In vitro analysis revealed cytotoxicity in both cellular models with both formulations, but only the decorated NPs achieved an ID50 value in CAL-62 cells. Biodistribution analysis following intragastric administration in xenografted thyroid mice demonstrated good stability in terms of intestinal barrier function and tumor accumulation. Both formulations were generally well tolerated without inducing pathological effects in the examined organs. Importantly, both formulations increased tumor necrosis; however, decorated NPs exhibited enhanced parameters related to apoptotic/karyolytic forms, mitotic index, and vascularization compared with NPs without decoration. CONCLUSIONS These proof-of-concept findings suggest a promising strategy for administering TKIs in a more targeted and effective manner.
Collapse
Affiliation(s)
- Giovanna Revilla
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
- Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, C/Antoni M. Claret 167, 08025 Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Nuseibah Al Qtaish
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Pharmacy Department, College of Pharmacy, Amman Arab University, P.O. Box 2234, Amman 11953, Jordan
| | - Pablo Caruana
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
| | - Myriam Sainz-Ramos
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Tania Lopez-Mendez
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Francisco Rodriguez
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
| | - Verónica Paez-Espinosa
- Department Clinical Biochemistry, School of Medicine, Pontificia Universidad Católica del Ecuador (PUCE), Av. 12 de Octubre 1076 y Roca, Quito 17012184, Pichincha, Ecuador;
| | - Changda Li
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
- Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, C/Antoni M. Claret 167, 08025 Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Núria Fucui Vallverdú
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
| | - Maria Edwards
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
| | - Antonio Moral
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/Sant Quintí 89, 08041 Barcelona, Spain;
| | - José Ignacio Pérez
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/Sant Quintí 89, 08041 Barcelona, Spain;
| | - Juan Carlos Escolà-Gil
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
- Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, C/Antoni M. Claret 167, 08025 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - José Luis Pedraz
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Rosa Corcoy
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María Virtudes Céspedes
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
| | - Gustavo Puras
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Eugènia Mato
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
| |
Collapse
|
3
|
Salati M, Caputo F, Bocconi A, Cerri S, Baldessari C, Piacentini F, Dominici M, Gelsomino F. Successes and failures of angiogenesis blockade in gastric and gastro-esophageal junction adenocarcinoma. Front Oncol 2022; 12:993573. [PMID: 36212393 PMCID: PMC9540203 DOI: 10.3389/fonc.2022.993573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric and gastro-esophageal junction adenocarcinoma (GEA) remains a considerable major public health problem worldwide, being the fifth most common cancer with a fatality-to-case ratio that stands still at 70%. Angiogenesis, which is a well-established cancer hallmark, exerts a fundamental role in cancer initiation and progression and its targeting has been actively pursued as a promising therapeutic strategy in GEA. A wealth of clinical trials has been conducted, investigating anti-angiogenic agents including VEGF-directed monoclonal antibodies, small molecules tyrosine kinase inhibitors and VEGF-Trap agents both in the resectable and advanced setting, reporting controversial results. While phase III randomized trials testing the anti-VEGFR-2 antibody Ramucirumab and the selective VEGFR-2 tyrosine kinase inhibitor Apatinib demonstrated a significant survival benefit in later lines, the shift of angiogenesis inhibitors in the perioperative and first-line setting failed to improve patients' outcome in GEAs. The molecular landscape of disease, together with novel combinatorial strategies and biomarker-selected approaches are under investigation as key elements to the success of angiogenesis blockade in GEA. In this article, we critically review the existing literature on the biological rationale and clinical development of antiangiogenic agents in GEA, discussing major achievements, limitations and future developments, aiming at fully realizing the potential of this therapeutic approach.
Collapse
Affiliation(s)
- Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
- PhD Program Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Caputo
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Alessandro Bocconi
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Sara Cerri
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Cinzia Baldessari
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Federico Piacentini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Fabio Gelsomino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| |
Collapse
|
4
|
Yu X, He S, Shen J, Huang Q, Yang P, Huang L, Pu D, Wang L, Li L, Liu J, Liu Z, Zhu L. Tumor vessel normalization and immunotherapy in gastric cancer. Ther Adv Med Oncol 2022; 14:17588359221110176. [PMID: 35872968 PMCID: PMC9297465 DOI: 10.1177/17588359221110176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a common malignant tumor, and patients with GC have a low survival rate due to limited effective treatment methods. Angiogenesis and immune evasion are two key processes in GC progression, and they act synergistically to promote tumor progression. Tumor vascular normalization has been shown to improve the efficacy of cancer immunotherapy, which in turn may be improved through enhanced immune stimulation. Therefore, it may be interesting to identify synergies between immunomodulatory agents and anti-angiogenic therapies in GC. This strategy aims to normalize the tumor microenvironment through the action of the anti-vascular endothelial growth factor while stimulating the immune response through immunotherapy and prolonging the survival of GC patients.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Shan He
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Jian Shen
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qiushi Huang
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Peng Yang
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Lin Huang
- West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Pu
- West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Lu Li
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Zelong Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Wuhou District, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
5
|
Li Q, Cao M, Yuan G, Cheng X, Zang M, Chen M, Hu X, Huang J, Li R, Guo Y, Ruan J, Chen J. Lenvatinib Plus Camrelizumab vs. Lenvatinib Monotherapy as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Multicenter Retrospective Cohort Study. Front Oncol 2022; 12:809709. [PMID: 35280760 PMCID: PMC8907842 DOI: 10.3389/fonc.2022.809709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Background Combining an antiangiogenic agent with an anti-PD-1 agent is a promising strategy for unresectable hepatocellular carcinoma (HCC). Aims To explore the effectiveness and tolerability of lenvatinib plus camrelizumab vs. lenvatinib monotherapy as a first-line treatment for unresectable HCC. Methods This multicenter, retrospective cohort study included patients with unresectable HCC treated with oral lenvatinib 8 mg daily and intravenous camrelizumab 200 mg every 3 weeks (L+C group) or lenvatinib 12 mg or 8 mg daily (L group) in four Chinese centers between September 2018 and February 2020. Tumor response was evaluated according to RECIST 1.1 and mRECIST. The outcomes included objective response rate (ORR), overall survival (OS), 1-year OS rate, progression-free survival (PFS), and safety. Results By March 31, 2021, 92 patients were finally included, with 48 and 44 in the L+C and L groups, respectively. ORR was significantly higher in the L+C group than in the L group (RECIST 1.1: 37.5% vs. 13.6%, P=0.009; mRECIST: 41.7% vs. 20.5%, P=0.029). Median OS and 95% confidence interval (CI) was 13.9 (13.3-18.3) months in the L group and not reached in the L+C group (P=0.015). The 1-year survival rate was 79.2% and 56.8% in the L+C and L groups, respectively. Median PFS was 10.3 (6.6-14.0) months and 7.5 (5.7-9.3) months in the L+C and L groups, respectively (P=0.0098). Combined therapy vs. monotherapy was independently associated with a prolonged OS (hazard ratio=0.380, 95% CI=: 0.196-0.739, P=0.004) and a prolonged PFS (hazard ratio=0.454, 95%CI=0.282-0.731, P=0.001). The safety profile was comparable between the two groups. The most common adverse event in the L+C and L groups was loss of appetite (41.7% vs. 40.9%, P=0.941). Three patients in the L+C group and two in the L group terminated treatment owing to adverse events. Conclusion First-line lenvatinib plus camrelizumab showed better effectiveness than lenvatinib alone in patients with unresectable HCC.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengran Cao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Guosheng Yuan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Cheng
- Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengya Zang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Chen
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyun Hu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Huang
- Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yabing Guo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinzhang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Yi C, Chen L, Lin Z, Liu L, Shao W, Zhang R, Lin J, Zhang J, Zhu W, Jia H, Qin L, Lu L, Chen J. Lenvatinib Targets FGF Receptor 4 to Enhance Antitumor Immune Response of Anti-Programmed Cell Death-1 in HCC. Hepatology 2021; 74:2544-2560. [PMID: 34036623 DOI: 10.1002/hep.31921] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Recently, clinical trials of lenvatinib plus pembrolizumab in HCC have displayed an impressive objective response rate. This study aimed to clarify the mechanism for optimal patient selection. APPROACH AND RESULTS First, in patients with HCC, lenvatinib-treated recurrent tumors had lower programmed death ligand 1 (PD-L1) expression and regulatory T cell (Treg) infiltration compared with matched primary tumors. Consistently, in C57BL/6 wild-type mice receiving anti-programmed cell death 1 (PD-1) therapy, PD-L1 expression and Treg infiltration in s.c. tumors were reduced when adding lenvatinib to the scheme. Mechanistically, on the one hand, FGF receptor 4 (FGFR4) was the most pivotal target in PD-L1 down-regulation by lenvatinib in vitro. Furthermore, lenvatinib reinforced the proteasomal degradation of PD-L1 by blocking the FGFR4-glycogen synthase kinase 3β axis and rescued the sensitivity of interferon-γ-pretreated HCC cells to T-cell killing by targeting FGFR4. On the other hand, the level of IL-2 increased after anti-PD-1 treatment, but IL-2-mediated Treg differentiation was blocked by lenvatinib through targeting FGFR4 to restrain signal transducer and activator of transcription 5 (STAT5) phosphorylation. By regulating the variations in the number of Tregs and the tumor FGFR4 level in C57BL/6-forkhead box protein P3 (Foxp3DTR ) mice, we found that high levels of FGFR4 and Treg infiltration sensitized tumors to the combination treatment. Finally, high levels of FGFR4 and Foxp3 conferred immune tolerance but better response to the combined therapy in patient cohorts. CONCLUSIONS Lenvatinib reduced tumor PD-L1 level and Treg differentiation to improve anti-PD-1 efficacy by blocking FGFR4. Levels of FGFR4 expression and Treg infiltration in tumor could serve as biomarkers for screening patients with HCC using lenvatinib plus anti-PD-1 combination therapy.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/administration & dosage
- B7-H1 Antigen/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cohort Studies
- Disease Models, Animal
- Drug Synergism
- Female
- Humans
- Immunity
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle Aged
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/metabolism
- Phenylurea Compounds/administration & dosage
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Protein Kinase Inhibitors/administration & dosage
- Quinolines/administration & dosage
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Chenhe Yi
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhifei Lin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Lu Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Weiqing Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Rui Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Jing Lin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Jubo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| |
Collapse
|
7
|
Guo X, Liang X, Wang Y, Cheng A, Zhang H, Qin C, Wang Z. Significance of Tumor Mutation Burden Combined With Immune Infiltrates in the Progression and Prognosis of Advanced Gastric Cancer. Front Genet 2021; 12:642608. [PMID: 34306002 PMCID: PMC8299211 DOI: 10.3389/fgene.2021.642608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is a serious malignant tumor with high mortality and poor prognosis. The prognosis and survival are much worse for advanced gastric cancer (AGC). Recently, immunotherapy has been widely promoted for AGC patients, and studies have shown that tumor mutation burden (TMB) is closely related to immunotherapy response. Here, RNA-seq data, matched clinical information, and MAF files were downloaded from the cancer genome atlas (TCGA)-STAD project in the TCGA database. The collation and visual analysis of mutation data were implemented by the “maftools” package in R. We calculated the TMB values for AGC patients and divided the patients into high- and low-TMB groups according to the median value of TMB. Then, the correlation between high or low TMB and clinicopathological parameters was calculated. Next, we examined the differences in gene expression patterns between the two groups by using the “limma” R package and identified the immune-related genes among the DEGs. Through univariate Cox regression analysis, 15 genes related to prognosis were obtained. Furthermore, the two hub genes (APOD and SLC22A17) were used to construct a risk model to evaluate the prognosis of AGC patients. ROC and survival curves and GEO data were used as a validation set to verify the reliability of this risk model. In addition, the correlation between TMB and tumor-infiltrating immune cells was examined. In conclusion, our results suggest that AGC patients with high TMB have a better prognosis. By testing the patient’s TMB, we could better guide immunotherapy and understand patient response to immunotherapy.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujun Wang
- Department of Pathology, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Anqi Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Zhang
- Department of Digestive Oncology, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Chuan Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal Surgery, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Guo X, Liang X, Wang Y, Cheng A, Zhang H, Qin C, Wang Z. Significance of Tumor Mutation Burden Combined With Immune Infiltrates in the Progression and Prognosis of Advanced Gastric Cancer. Front Genet 2021. [DOI: 10.3389/fgene.2021.642608
expr 881161437 + 993839471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Gastric cancer (GC) is a serious malignant tumor with high mortality and poor prognosis. The prognosis and survival are much worse for advanced gastric cancer (AGC). Recently, immunotherapy has been widely promoted for AGC patients, and studies have shown that tumor mutation burden (TMB) is closely related to immunotherapy response. Here, RNA-seq data, matched clinical information, and MAF files were downloaded from the cancer genome atlas (TCGA)-STAD project in the TCGA database. The collation and visual analysis of mutation data were implemented by the “maftools” package in R. We calculated the TMB values for AGC patients and divided the patients into high- and low-TMB groups according to the median value of TMB. Then, the correlation between high or low TMB and clinicopathological parameters was calculated. Next, we examined the differences in gene expression patterns between the two groups by using the “limma” R package and identified the immune-related genes among the DEGs. Through univariate Cox regression analysis, 15 genes related to prognosis were obtained. Furthermore, the two hub genes (APOD and SLC22A17) were used to construct a risk model to evaluate the prognosis of AGC patients. ROC and survival curves and GEO data were used as a validation set to verify the reliability of this risk model. In addition, the correlation between TMB and tumor-infiltrating immune cells was examined. In conclusion, our results suggest that AGC patients with high TMB have a better prognosis. By testing the patient’s TMB, we could better guide immunotherapy and understand patient response to immunotherapy.
Collapse
|
9
|
Wang Y, Jiang M, Zhu J, Qu J, Qin K, Zhao D, Wang L, Dong L, Zhang X. The safety and efficacy of lenvatinib combined with immune checkpoint inhibitors therapy for advanced hepatocellular carcinoma. Biomed Pharmacother 2020; 132:110797. [PMID: 33068935 DOI: 10.1016/j.biopha.2020.110797] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
China has one of the highest incidence rates of hepatocellular carcinoma (HCC) in the world. As most patients are diagnosed with advanced or unretractable HCC, systematic therapy is still the main treatment method for HCC. Currently, tyrosine kinase inhibitors (TKIs) and Immune checkpoint inhibitors (ICIs) are both the chief systematic therapy. And some studies have shown that the combination of TKIs and ICIs is more effective than monotherapy. The purpose of this review is to outline the rationale for the combination between lenvatinib and anti-PD-1(programmed cell death 1) and clinical trials to support this "golden combination". We also discuss the commonly treatment-emergent adverse events (AEs) and solutions for the patients with HCC who received the combination between lenvatinib and anti-PD-1 antibodies. Finally, we focus on the novel approaches, future perspectives and potential challenges about the combination of TKIs and ICIs.
Collapse
Affiliation(s)
- Yun Wang
- Hospital of Qingdao University, Qingdao, China
| | - Man Jiang
- Hospital of Qingdao University, Qingdao, China
| | | | - Jialin Qu
- Hospital of Qingdao University, Qingdao, China
| | - Kang Qin
- Hospital of Qingdao University, Qingdao, China
| | - Deze Zhao
- Hospital of Qingdao University, Qingdao, China
| | - Li Wang
- Hospital of Qingdao University, Qingdao, China
| | - Lina Dong
- Hospital of Qingdao University, Qingdao, China
| | | |
Collapse
|
10
|
Precision Medicine to Treat Advanced Gastroesophageal Adenocarcinoma: A Work in Progress. J Clin Med 2020; 9:jcm9093049. [PMID: 32971757 PMCID: PMC7564841 DOI: 10.3390/jcm9093049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Gastroesophageal adenocarcinoma (GEA) represents a heterogeneous disease and, when diagnosed as locally advanced or metastatic, it is characterized by poor prognosis. During the last few years, several molecular classifications have been proposed to try to personalize treatment for those patients diagnosed with advanced disease. Nevertheless, despite the great effort, precision medicine is still far from being a reality. The improvement in the molecular analysis due to the application of high throughput technologies based on DNA and RNA sequencing has opened a novel scenario leading to the personalization of treatment. The possibility to target epidermal growth factor receptor (HER)2, Claudine, Fibroblast Growth Factor Receptors (FGFR), and other alterations with a molecular matched therapy could significantly improve clinical outcomes over advanced gastric cancer patients. On the other hand, the development of immunotherapy could also represent a promising strategy in a selected population. In this review, we sought to describe the novel pathways implicated in GEA progression and the results of the molecular matched therapies.
Collapse
|