1
|
Paganetti H, Simone CB, Bosch WR, Haas-Kogan D, Kirsch DG, Li H, Liang X, Liu W, Mahajan A, Story MD, Taylor PA, Willers H, Xiao Y, Buchsbaum JC. NRG Oncology White Paper on the Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2025; 121:202-217. [PMID: 39059509 PMCID: PMC11646189 DOI: 10.1016/j.ijrobp.2024.07.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
This position paper, led by the NRG Oncology Particle Therapy Work Group, focuses on the concept of relative biologic effect (RBE) in clinical proton therapy (PT), with the goal of providing recommendations for the next-generation clinical trials with PT on the best practice of investigating and using RBE, which could deviate from the current standard proton RBE value of 1.1 relative to photons. In part 1, current clinical utilization and practice are reviewed, giving the context and history of RBE. Evidence for variation in RBE is presented along with the concept of linear energy transfer (LET). The intertwined nature of tumor radiobiology, normal tissue constraints, and treatment planning with LET and RBE considerations is then reviewed. Part 2 summarizes current and past clinical data and then suggests the next steps to explore and employ tools for improved dynamic models for RBE. In part 3, approaches and methods for the next generation of prospective clinical trials are explored, with the goal of optimizing RBE to be both more reflective of clinical reality and also deployable in trials to allow clinical validation and interpatient comparisons. These concepts provide the foundation for personalized biologic treatments reviewed in part 4. Finally, we conclude with a summary including short- and long-term scientific focus points for clinical PT. The practicalities and capacity to use RBE in treatment planning are reviewed and considered with more biological data in hand. The intermediate step of LET optimization is summarized and proposed as a potential bridge to the ultimate goal of case-specific RBE planning that can be achieved as a hypothesis-generating tool in near-term proton trials.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - David G Kirsch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Buchsbaum
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
2
|
McClurg DP, Sanghera C, Mukherjee S, Fitzgerald RC, Jones CM. A systematic review of circulating predictive and prognostic biomarkers to aid the personalised use of radiotherapy in the radical treatment of patients with oesophageal cancer. Radiother Oncol 2024; 195:110224. [PMID: 38479442 DOI: 10.1016/j.radonc.2024.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The availability of circulating biomarkers that are predictive of treatment response or prognostic of overall outcome could enable the personalised and adaptive use of radiotherapy (RT) in patients with oesophageal adenocarcinoma (OAC) and squamous cell carcinoma (OSCC). METHODS A systematic review was carried out following Preferred Reporting Items for Systematic Reviews guidance. Medline, EMBASE, PubMed, Cochrane Library, CINAHL, Scopus and the Web of Science databases were searched for studies published between January 2005-February 2023 relating to circulating biomarkers evaluated in the context of neoadjuvant or definitive RT delivered for OAC/OSCC. Study quality was assessed using predefined criteria. RESULTS A total of 3012 studies were screened and 57 subsequently included, across which 61 biomarkers were reported. A majority (43/57,75.4%) of studies were of Asian origin and retrospective (40/57, 70.2%), with most (52/57, 91.2%) biomarkers reported in the context of patients with OSCC. There was marked inter-study heterogeneity in patient populations, treatment characteristics, biomarker measurement and the cut points used to define biomarker positivity. Nevertheless, there is evidence for the prognostic and predictive value of circulating tumour DNA and numerous miRNAs in OAC and OSCC, as well as for the prognostic and predictive value of circulating levels of CYFRA21.1 in OSCC. CONCLUSIONS There is consistent evidence for the potential predictive and prognostic value of a small number of biomarkers in OSCC and OAC, though these data are insufficient for translation to current clinical practice. Well-designed prospective studies are now required to validate their role in stratified and personalised RT treatment approaches.
Collapse
Affiliation(s)
- Dylan P McClurg
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Chandan Sanghera
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Somnath Mukherjee
- Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Christopher M Jones
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Limitations of the radiosensitivity index as a direct prognostic marker. Lancet Oncol 2022; 23:1352-1353. [DOI: 10.1016/s1470-2045(22)00553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
|
4
|
Anderson PM, Thomas SM, Sartoski S, Scott JG, Sobilo K, Bewley S, Salvador LK, Salazar-Abshire M. Strategies to Mitigate Chemotherapy and Radiation Toxicities That Affect Eating. Nutrients 2021; 13:nu13124397. [PMID: 34959948 PMCID: PMC8706251 DOI: 10.3390/nu13124397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Cancer and its therapy is commonly associated with a variety of side effects that impact eating behaviors that reduce nutritional intake. This review will outline potential causes of chemotherapy and radiation damage as well as approaches for the amelioration of the side effects of cancer during therapy. Methods: Information for clinicians, patients, and their caregivers about toxicity mitigation including nausea reduction, damage to epithelial structures such as skin and mucosa, organ toxicity, and education is reviewed. Results: How to anticipate, reduce, and prevent some toxicities encountered during chemotherapy and radiation is detailed with the goal to improve eating behaviors. Strategies for health care professionals, caregivers, and patients to consider include (a) the reduction in nausea and vomiting, (b) decreasing damage to the mucosa, (c) avoiding a catabolic state and muscle wasting (sarcopenia), and (d) developing therapeutic alliances with patients, caregivers, and oncologists. Conclusions: Although the reduction of side effects involves anticipatory guidance and proactive team effort (e.g., forward observation, electronic interactions, patient reported outcomes), toxicity reduction can be satisfying for not only the patient, but everyone involved in cancer care.
Collapse
Affiliation(s)
- Peter M. Anderson
- Pediatric Hematology/Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s, Cleveland, OH 44195, USA; (S.M.T.); (S.S.); (K.S.); (S.B.)
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Correspondence: or ; Tel.: +216-445-7140 or +216-308-2706
| | - Stefanie M. Thomas
- Pediatric Hematology/Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s, Cleveland, OH 44195, USA; (S.M.T.); (S.S.); (K.S.); (S.B.)
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Shauna Sartoski
- Pediatric Hematology/Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s, Cleveland, OH 44195, USA; (S.M.T.); (S.S.); (K.S.); (S.B.)
- Department of Nursing, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jacob G. Scott
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of Radiation Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kaitlin Sobilo
- Pediatric Hematology/Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s, Cleveland, OH 44195, USA; (S.M.T.); (S.S.); (K.S.); (S.B.)
- Department of Nursing, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sara Bewley
- Pediatric Hematology/Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s, Cleveland, OH 44195, USA; (S.M.T.); (S.S.); (K.S.); (S.B.)
- Peds Nutritional Services, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Laura K. Salvador
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX 77030, USA; (L.K.S.); (M.S.-A.)
| | - Maritza Salazar-Abshire
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX 77030, USA; (L.K.S.); (M.S.-A.)
- Department of Nursing Education, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|