1
|
Kratochvílová L, Sláma P. Overview of Bovine Dendritic Cells. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2018. [DOI: 10.11118/actaun201866030815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
2
|
Serrano I, Luque A, Aran JM. Exploring the Immunomodulatory Moonlighting Activities of Acute Phase Proteins for Tolerogenic Dendritic Cell Generation. Front Immunol 2018; 9:892. [PMID: 29760704 PMCID: PMC5936965 DOI: 10.3389/fimmu.2018.00892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
The acute phase response is generated by an overwhelming immune-inflammatory process against infection or tissue damage, and represents the initial response of the organism in an attempt to return to homeostasis. It is mediated by acute phase proteins (APPs), an assortment of highly conserved plasma reactants of seemingly different functions that, however, share a common protective role from injury. Recent studies have suggested a crosstalk between several APPs and the mononuclear phagocyte system (MPS) in the resolution of inflammation, to restore tissue integrity and function. In fact, monocyte-derived dendritic cells (Mo-DCs), an integral component of the MPS, play a fundamental role both in the regulation of antigen-specific adaptive responses and in the development of immunologic memory and tolerance, particularly in inflammatory settings. Due to their high plasticity, Mo-DCs can be modeled in vitro toward a tolerogenic phenotype for the treatment of aberrant immune-inflammatory conditions such as autoimmune diseases and allotransplantation, with the phenotypic outcome of these cells depending on the immunomodulatory agent employed. Yet, recent immunotherapy trials have emphasized the drawbacks and challenges facing tolerogenic Mo-DC generation for clinical use, such as reduced therapeutic efficacy and limited in vivo stability of the tolerogenic activity. In this review, we will underline the potential relevance and advantages of APPs for tolerogenic DC production with respect to currently employed immunomodulatory/immunosuppressant compounds. A further understanding of the mechanisms of action underlying the moonlighting immunomodulatory activities exhibited by several APPs over DCs could lead to more efficacious, safe, and stable protocols for precision tolerogenic immunotherapy.
Collapse
Affiliation(s)
- Inmaculada Serrano
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Luque
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Shankar SP, Griffith M, Forrester JV, Kuffová L. Dendritic cells and the extracellular matrix: A challenge for maintaining tolerance/homeostasis. World J Immunol 2015; 5:113-130. [DOI: 10.5411/wji.v5.i3.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/18/2015] [Accepted: 11/11/2015] [Indexed: 02/05/2023] Open
Abstract
The importance of the extracellular matrix (ECM) in contributing to structural, mechanical, functional and tissue-specific features in the body is well appreciated. While the ECM was previously considered to be a passive bystander, it is now evident that it plays active, dynamic and flexible roles in shaping cell survival, differentiation, migration and death to varying extents depending on the specific site in the body. Dendritic cells (DCs) are recognized as potent antigen presenting cells present in many tissues and in blood, continuously scrutinizing the microenvironment for antigens and mounting local and systemic host responses against harmful agents. DCs also play pivotal roles in maintaining homeostasis to harmless self-antigens, critical for preventing autoimmunity. What is less understood are the complex interactions between DCs and the ECM in maintaining this balance between steady-state tissue residence and DC activation during inflammation. DCs are finely tuned to inflammation-induced variations in fragment length, accessible epitopes and post-translational modifications of individual ECM components and correspondingly interpret these changes appropriately by adjusting their profiles of cognate binding receptors and downstream immune activation. The successful design and composition of novel ECM-based mimetics in regenerative medicine and other applications rely on our improved understanding of DC-ECM interplay in homeostasis and the challenges involved in maintaining it.
Collapse
|
4
|
Characterization of dendritic cell and regulatory T cell functions against Mycobacterium tuberculosis infection. BIOMED RESEARCH INTERNATIONAL 2013; 2013:402827. [PMID: 23762843 PMCID: PMC3676983 DOI: 10.1155/2013/402827] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/28/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
Abstract
Glutathione (GSH) is a tripeptide that regulates intracellular redox and other vital aspects of cellular functions. GSH plays a major role in enhancing the immune system. Dendritic cells (DCs) are potent antigen presenting cells that participate in both innate and acquired immune responses against microbial infections. Regulatory T cells (Tregs) play a significant role in immune homeostasis. In this study, we investigated the effects of GSH in enhancing the innate and adaptive immune functions of DCs against Mycobacterium tuberculosis (M. tb) infection. We also characterized the functions of the sub-populations of CD4+T cells such as Tregs and non-Tregs in modulating the ability of monocytes to control the intracellular M. tb infection. Our results indicate that GSH by its direct antimycobacterial activity inhibits the growth of intracellular M. tb inside DCs. GSH also increases the expressions of costimulatory molecules such as HLA-DR, CD80 and CD86 on the cell surface of DCs. Furthermore, GSH-enhanced DCs induced a higher level of T-cell proliferation. We also observed that enhancing the levels of GSH in Tregs resulted in downregulation in the levels of IL-10 and TGF- β and reduction in the fold growth of M. tb inside monocytes. Our studies demonstrate novel regulatory mechanisms that favor both innate and adaptive control of M. tb infection.
Collapse
|
5
|
Liu H, Shi D, Wang W, Zhang C, Fu M, Ge J. Panax quinquefolium saponins inhibited immune maturation of human monocyte-derived dendritic cells via blocking nuclear factor-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:982-988. [PMID: 22469770 DOI: 10.1016/j.jep.2012.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/29/2012] [Accepted: 03/18/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax quinquefolium saponins (PQS), a water-soluble antioxidant extracted from a natural herb, radix panacis quinquefolii (American Ginseng), has yielded encouraging results in the treatment of atherosclerotic diseases. However, the underlying mechanisms remain unclear. Here, we tested the hypothesis that the anti-atherosclerotic effect of PQS might be mediated by suppressing human monocyte-derived dendritic cells (DCs) maturation. MATERIALS AND METHODS DCs were derived by incubating purified human monocytes with granulocyte macrophage colony stimulating factor (GM-CSF) and IL-4. DCs were pre-incubated with or without PQS and stimulated by oxidized low density lipoprotein (ox-LDL). Expression of DCs membrane molecules (CD40, CD86, CD1a, HLA-DR) and endocytotic ability were analyzed by FACS, cytokines (IL-12 and TNF-α) were measured by ELISA. Nuclear factor (NF)-κB signaling pathway was determined by Western blotting, and RT-PCR. NF-κB activation was quantified by ELISA. RESULTS PQS reduced ox-LDL induced immunophenotypic expressions (CD40, CD1a, CD86, and HLA-DR) and cytokine secretions (IL-12 and TNF-α), and improved endocytotic ability of DCs. These above phenomena were accompanied by decreased protein expression and binding activity of nuclear localized c-Rel subunit. CONCLUSIONS Our study suggested that PQS inhibited ox-LDL induced immune maturation of DCs in vitro, which might be in part mediated by NF-κB signal transduction pathway.
Collapse
Affiliation(s)
- Hongying Liu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
6
|
Kizjakina K, Bryson JM, Grandinetti G, Reineke TM. Cationic glycopolymers for the delivery of pDNA to human dermal fibroblasts and rat mesenchymal stem cells. Biomaterials 2011; 33:1851-62. [PMID: 22138032 DOI: 10.1016/j.biomaterials.2011.10.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/12/2011] [Indexed: 12/17/2022]
Abstract
Progenitor and pluripotent cell types offer promise as regenerative therapies but transfecting these sensitive cells has proven difficult. Herein, a series of linear trehalose-oligoethyleneamine "click" copolymers were synthesized and examined for their ability to deliver plasmid DNA (pDNA) to two progenitor cell types, human dermal fibroblasts (HDFn) and rat mesenchymal stem cells (RMSC). Seven polymer vehicle analogs were synthesized in which three parameters were systematically varied: the number of secondary amines (4-6) within the polymer repeat unit (Tr4(33), Tr5(30), and Tr6(32)), the end group functionalities [PEG (Tr4(128)PEG-a, Tr4(118)PEG-b), triphenyl (Tr4(107)-c), or azido (Tr4(99)-d)], and the molecular weight (degree of polymerization of about 30 or about 100) and the biological efficacy of these vehicles was compared to three controls: Lipofectamine 2000, JetPEI, and Glycofect. The trehalose polymers were all able to bind and compact pDNA polyplexes, and promote pDNA uptake and gene expression [luciferase and enhanced green fluorescent protein (EGFP)] with these primary cell types and the results varied significantly depending on the polymer structure. Interestingly, in both cell types, Tr4(33) and Tr5(30) yielded the highest luciferase gene expression. However, when comparing the number of cells transfected with a reporter plasmid encoding enhanced green fluorescent protein, Tr4(33) and Tr4(107)-c yielded the highest number of HDFn cells positive for EGFP. Interestingly, with RMSCs, all of the higher molecular weight analogs (Tr4(128)PEG-a, Tr4(118)PEG-b, Tr4(107)-c, Tr4(99)-d) yielded high percentages of cells positive for EGFP (30-40%).
Collapse
Affiliation(s)
- Karina Kizjakina
- Department of Chemistry and Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
7
|
Kong L, Li Y, Yang Y, Li K. Expression of fusion IL2-B7.1(IgV+C) and effects on T lymphocytes. Biochem Cell Biol 2007; 85:685-95. [PMID: 18059527 DOI: 10.1139/o07-136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The search for an effective immunotherapeutic treatment for tumors is an important area of cancer research. To prepare a more effective form of the bifunctional fusion protein IL2-B7.1(IgV+C) and analyze its effect on the stimulation of T lymphocyte proliferation, we used DNAStar 5.03 software to predict the structural diversity and biochemical character of IL2-B7.1(IgV+C). We then prepared fusion protein IL2-B7.1(IgV+C) by establishing its prokaryotic expression system, and tested its effect on the stimulation of T lymphocytes in vitro. The results indicated that IL2-B7.1(IgV+C) correctly formed a secondary structure in which both IL2 and B7.1(IgV+C) maintained their original hydrophilicity and epitopes. Western blot analysis revealed that IL2-B7.1(IgV+C) was efficiently expressed. Our analysis of CTLL-2 and T-cell proliferation showed that recombinant human (rh) IL2-B7.1(IgV+C) exerted the combined stimulating effects of both rhIL2 and rh B7.1(IgV+C) on cell proliferation, and that these effects could be blocked by adding either anti-IL2 or anti-B7.1 monoclonal antibodies. A >2-fold increase in [3H]TdR incorporation compared with that of cells treated with recombinant protein IL2, or B7.1(IgV+C) alone, revealed that rhIL2-B7.1(IgV+C) had dose-dependent synergetic effects on T-cell activation in the presence of anti-CD3 monoclonal antibody. We concluded that the augmented potency of rhIL2-B7.1(IgV+C) resulted in a stronger stimulation of T-cell proliferation than either rhB7.1(IgV+C) or rhIL2 alone.
Collapse
Affiliation(s)
- Linghong Kong
- Department of Biological Science and Engineering, School of Life Science & Technology, Xi'an Jiaotong University, Xi'an, China
| | | | | | | |
Collapse
|
8
|
Guess JC, McCance DJ. Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. J Virol 2006; 79:14852-62. [PMID: 16282485 PMCID: PMC1287574 DOI: 10.1128/jvi.79.23.14852-14862.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infection with high-risk human papillomavirus (HPV) types, particularly types 16 and 18, contributes to 90% of cervical cancer cases. HPV infects cutaneous or mucosal epithelium, tissue that is monitored for microbial infection or damage by Langerhans cells. In lesions produced by HPV type 16, there is a reduction in numbers of immune cells, especially Langerhans cells. Langerhans precursor cells selectively express CCR6, the receptor for macrophage inflammatory protein 3alpha (MIP-3alpha), and function as potent immune responders to inflamed epithelium and initiators of the innate immune response. It has been reported that E6 and E7 of high-risk HPVs interfere with immune mediators in order to suppress the recruitment of immune cells and antiviral activities of infected cells. Here we show that, following proinflammatory stimulus, HPV-16 E6 and E7 inhibit MIP-3alpha transcription, resulting in suppression of the migration of immature Langerhans precursor-like cells. Interestingly, the E6 and E7 proteins from the low-risk HPV types also inhibited MIP-3alpha transcription. These results suggest that one mechanism by which HPV-infected cells suppress the immune response may be through the inhibition of a vital alert signal, thus contributing to the persistence of HPV infection.
Collapse
Affiliation(s)
- Jennifer C Guess
- Department of Microbiology and Immunology, University of Rochester, New York 14642, USA
| | | |
Collapse
|
9
|
Syme R, Bajwa R, Robertson L, Stewart D, Glück S. Comparison of CD34 and monocyte-derived dendritic cells from mobilized peripheral blood from cancer patients. Stem Cells 2005; 23:74-81. [PMID: 15625124 DOI: 10.1634/stemcells.2004-0070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that are integral to the initiation of T-cell immunity. Two cell types can be used as a source for generating DCs: monocytes and CD34(+) stem cells. Despite many investigations characterizing DCs, none have performed a direct paired comparison of monocyte and stem cell-derived DCs. Therefore, it is unclear whether one cell source has particular advantages over the other, or whether inherent differences exist between the two populations. We undertook the following study to determine if there were any differences in DCs generated from monocytes or CD34(+) cells from mobilized peripheral blood. DCs were generated by culturing the adherent cells (monocytes) in interleukin-4 and GM-CSF for 7 days, or by culturing nonadherent cells (CD34(+)) in the presence of GM-CSF and tumor necrosis factor alpha for 14 days. The resulting DCs were compared morphologically, phenotypically, functionally, and by yield. We could generate morphologically and phenotypically similar DCs. Differences were encountered when expression levels of some cell surface markers were examined (CD86, HLA-DR). There was no difference in how the DCs performed in a mixed lymphocyte reaction (p = .3). Further, no statistical difference was discovered when we examined cellular (DC) yield (p = .1); however, there was a significant difference when yield was normalized to the starting number of monocytes or CD34(+) cells (p = .016). Together, these data demonstrate that differences do exist between monocyte-derived DCs and CD34-derived DCs from the same cellular product (apheresis) from the same individual.
Collapse
Affiliation(s)
- Rachel Syme
- Clinical Research Program, Department of Oncology, Tom Baker Cancer Centre, 1331 29th Street NW, Calgary, AB, T2N 4N2, Canada.
| | | | | | | | | |
Collapse
|
10
|
Syme R, Bryan T, Duggan P, Bajwa R, Stewart D, Glück S. Priming with Dendritic Cells Can Generate Strong Cytotoxic T Cell Responses to Chronic Myelogenous Leukemia Cells In Vitro. Stem Cells Dev 2004; 13:211-21. [PMID: 15186738 DOI: 10.1089/154732804323046828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can elicit potent antigen-specific responses. Since the development of techniques to cultivate these cells from peripheral blood, there has been a great deal of interest in their use in immunotherapeutic strategies. Here we show that morphologically, phenotypically, and functionally characteristic DC can be generated in vitro from peripheral blood mononuclear cells (PBMC) isolated from frozen apheresis product (AP) of cancer patients. These DC, when pulsed with whole-tumor lysate, protein, or RNA from a chronic myelogenous leukemia (CML) cell line, can induce anti-CML specific cytotoxicity in vitro by autologous cytotoxic T lymphocytes (CTL). RNA and protein-pulsed DC were more effective than lysate-pulsed DC at inducing cytotoxicity at low effector:target (E:T) ratios. These results were comparable to those obtained when fresh healthy peripheral blood was used as the source of PBMC, indicating that neither the malignant state of the patient nor the storage period detrimentally affected the generation or functionality of DC. CML cells were found to increase their level of MHC class I expression after exposure to CTL and pulsed DC thereby becoming better targets. These investigations lend support for the utilization of DC to generate anti-tumor responses in CML.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, Neoplasm/immunology
- Cytotoxicity, Immunologic/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Rachel Syme
- Department of Oncology, Faculty of Medicine, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada T2N 4N2
| | | | | | | | | | | |
Collapse
|