1
|
Bland DM, Long D, Rosenke R, Hinnebusch BJ. Yersinia pestis can infect the Pawlowsky glands of human body lice and be transmitted by louse bite. PLoS Biol 2024; 22:e3002625. [PMID: 38771885 PMCID: PMC11108126 DOI: 10.1371/journal.pbio.3002625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
Yersinia pestis, the causative agent of plague, is a highly lethal vector-borne pathogen responsible for killing large portions of Europe's population during the Black Death of the Middle Ages. In the wild, Y. pestis cycles between fleas and rodents; occasionally spilling over into humans bitten by infectious fleas. For this reason, fleas and the rats harboring them have been considered the main epidemiological drivers of previous plague pandemics. Human ectoparasites, such as the body louse (Pediculus humanus humanus), have largely been discounted due to their reputation as inefficient vectors of plague bacilli. Using a membrane-feeder adapted strain of body lice, we show that the digestive tract of some body lice become chronically infected with Y. pestis at bacteremia as low as 1 × 105 CFU/ml, and these lice routinely defecate Y. pestis. At higher bacteremia (≥1 × 107 CFU/ml), a subset of the lice develop an infection within the Pawlowsky glands (PGs), a pair of putative accessory salivary glands in the louse head. Lice that developed PG infection transmitted Y. pestis more consistently than those with bacteria only in the digestive tract. These glands are thought to secrete lubricant onto the mouthparts, and we hypothesize that when infected, their secretions contaminate the mouthparts prior to feeding, resulting in bite-based transmission of Y. pestis. The body louse's high level of susceptibility to infection by gram-negative bacteria and their potential to transmit plague bacilli by multiple mechanisms supports the hypothesis that they may have played a role in previous human plague pandemics and local outbreaks.
Collapse
Affiliation(s)
- David M. Bland
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, United States of America
| | - Dan Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, United States of America
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, United States of America
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, United States of America
| |
Collapse
|
2
|
Tufa TB, Margos G, Fingerle V, Hartberger C, Poppert S, Birtles RJ, Kraiczy P, Kempf VAJ, Frickmann H, Feldt T. Evidence for Bartonella quintana in Lice Collected from the Clothes of Ethiopian Homeless Individuals. Pathogens 2023; 12:1299. [PMID: 38003765 PMCID: PMC10675803 DOI: 10.3390/pathogens12111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Human lice, Pediculus humanus, can transmit various pathogens, including Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii. Xenosurveillance is an epidemiological approach to assessing human infection risks performed by screening vectors of infectious disease agents. In the proof-of-principle study reported herein, the DNA of 23 human lice was collected from the clothes of 30 homeless Ethiopian individuals. These samples were assessed using 16S rRNA gene-specific pan-eubacterial PCR for screening, followed by Bartonella genus 16S-23S internal transcribed spacer (ITS) sequence-specific PCR, Bartonella genus gltA gene-specific PCR, and 16S rRNA gene PCR with specificity for relapsing-fever-associated Borrelia spp. with subsequent sequencing of the amplicons. In one sample, the pan-eubacterial 16S rRNA gene-specific screening PCR, the Bartonella genus 16S-23S ITS sequence-specific PCR, and the Bartonella genus gltA gene-specific PCR allowed for the sequencing of B. quintana-specific amplicons. In two additional samples, Bartonella genus gltA gene-specific PCR also provided sequences showing 100% sequence identity with B. quintana. In total, 3/23 (13.0%) of the assessed lice were found to be positive for B. quintana. Correlating clinical data were not available; however, the assessment confirmed the presence of B. quintana in the local louse population and thus an associated infection pressure. Larger-sized cross-sectional studies seem advisable to more reliably quantify the infection risk of lice-infested local individuals. The need for prevention by providing opportunities to maintain standard hygiene for Ethiopian homeless individuals is stressed by the reported findings, especially in light of the ongoing migration of refugees.
Collapse
Affiliation(s)
- Tafese Beyene Tufa
- Asella Teaching and Referral Hospital, College of Health Sciences, Arsi University, Asella P.O. Box 04, Ethiopia;
- Hirsch Institute of Tropical Medicine (HITM), Heinrich-Heine University, Asella P.O. Box 04, Ethiopia
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority (LGL), Branch Oberschleißheim, 85764 Oberschleißheim, Germany; (G.M.); (V.F.); (C.H.)
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority (LGL), Branch Oberschleißheim, 85764 Oberschleißheim, Germany; (G.M.); (V.F.); (C.H.)
| | - Christine Hartberger
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority (LGL), Branch Oberschleißheim, 85764 Oberschleißheim, Germany; (G.M.); (V.F.); (C.H.)
| | - Sven Poppert
- Diagnostic Department, Bernhard Nocht Institute for Tropical Medicine Hamburg, 20239 Hamburg, Germany;
| | - Richard J. Birtles
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK;
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control and Consiliary Laboratory for Bartonella Infections (Appointed by the Robert Koch Institute), University Hospital, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (P.K.); (V.A.J.K.)
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control and Consiliary Laboratory for Bartonella Infections (Appointed by the Robert Koch Institute), University Hospital, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (P.K.); (V.A.J.K.)
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Torsten Feldt
- Hirsch Institute of Tropical Medicine (HITM), Heinrich-Heine University, Asella P.O. Box 04, Ethiopia
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Deng YP, Fu YT, Yao C, Shao R, Zhang XL, Duan DY, Liu GH. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel Med Infect Dis 2023; 55:102630. [PMID: 37567429 DOI: 10.1016/j.tmaid.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Paleiron N, Karkowski L, Bronstein AR, Amabile JC, Delarbre D, Mullot JU, Cazoulat A, Entine F, le Floch Brocquevieille H, Dorandeu F. [The role of the pulmonologist in an armed conflict]. Rev Mal Respir 2023; 40:156-168. [PMID: 36690507 DOI: 10.1016/j.rmr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Recent news points to the eventuality of an armed conflict on the national territory. STATE OF THE ART In this situation, pulmonologists will in all likelihood have a major role to assume in caring for the injured, especially insofar as chest damage is a major cause of patient death. PERSPECTIVES The main injuries that pulmonologists may be called upon to treat stem not only from explosions, but also from chemical, biological and nuclear hazards. In this article, relevant organizational and pedagogical aspects are addressed. Since exhaustiveness on this subject is unattainable, we are proposing training on specific subjects for interested practitioners. CONCLUSION The resilience of the French health system in a situation of armed conflict depends on the active participation of all concerned parties. With this in mind, it is of prime importance that the pneumological community be sensitized to the potential predictable severity of war-related injuries.
Collapse
Affiliation(s)
- N Paleiron
- HIA Sainte-Anne, service de pneumologie, Toulon, France.
| | - L Karkowski
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - A-R Bronstein
- HIA Sainte-Anne, service de pneumologie, Toulon, France
| | - J-C Amabile
- Service de protection radiologique des armées, Paris, France
| | - D Delarbre
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - J-U Mullot
- Service de santé des armées, Paris, France
| | - A Cazoulat
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | - F Entine
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | | | - F Dorandeu
- Service de santé des armées, Institut de recherche biomédicale des armées, Brétigny, France
| |
Collapse
|
5
|
van der Kuyl AC. Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens. EPIDEMIOLOGIA 2022; 3:443-464. [PMID: 36547255 PMCID: PMC9778136 DOI: 10.3390/epidemiologia3040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Since life on earth developed, parasitic microbes have thrived. Increases in host numbers, or the conquest of a new species, provide an opportunity for such a pathogen to enjoy, before host defense systems kick in, a similar upsurge in reproduction. Outbreaks, caused by "endemic" pathogens, and epidemics, caused by "novel" pathogens, have thus been creating chaos and destruction since prehistorical times. To study such (pre)historic epidemics, recent advances in the ancient DNA field, applied to both archeological and historical remains, have helped tremendously to elucidate the evolutionary trajectory of pathogens. These studies have offered new and unexpected insights into the evolution of, for instance, smallpox virus, hepatitis B virus, and the plague-causing bacterium Yersinia pestis. Furthermore, burial patterns and historical publications can help in tracking down ancient pathogens. Another source of information is our genome, where selective sweeps in immune-related genes relate to past pathogen attacks, while multiple viruses have left their genomes behind for us to study. This review will discuss the sources available to investigate (pre)historic diseases, as molecular knowledge of historic and prehistoric pathogens may help us understand the past and the present, and prepare us for future epidemics.
Collapse
Affiliation(s)
- Antoinette C. van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; ; Tel.: +31-205-666-778
- Amsterdam Institute for Infection and Immunity, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
6
|
Fu YT, Yao C, Deng YP, Elsheikha HM, Shao R, Zhu XQ, Liu GH. Human pediculosis, a global public health problem. Infect Dis Poverty 2022; 11:58. [PMID: 35619191 PMCID: PMC9134731 DOI: 10.1186/s40249-022-00986-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Human pediculosis is caused by hematophagous lice, which are transmitted between individuals via direct and/or indirect contact. Despite the public health importance of louse infestation, information concerning the global burden of pediculosis and the epidemiological landscape of louse-borne diseases is limited. The aim of this review was to summarize the biology, epidemiology, diagnosis, and control of lice infestation in humans. We also discussed the latest advances in molecular taxonomy and molecular genetics of lice. METHODS We searched five electronic bibliographic databases (PubMed, ScienceDirect, CNKI, VIP Chinese Journal Database, and Wanfang Data) and followed a standard approach for conducting scoping reviews to identify studies on various aspects of human lice. Relevant information reported in the identified studies were collated, categorized, and summarized. RESULTS A total of 282 studies were eligible for the final review. Human pediculosis remains a public health issue affecting millions of people worldwide. Emerging evidence suggests that head lice and body lice should be considered conspecific, with different genotypes and ecotypes. Phylogenetic analysis based on mitochondrial (mt) cytb gene sequences identified six distinct clades of lice worldwide. In addition to the direct effect on human health, lice can serve as vectors of disease-causing pathogens. The use of insecticides plays a crucial role in the treatment and prevention of louse infestation. Genome sequencing has advanced our knowledge of the genetic structure and evolutionary biology of human lice. CONCLUSIONS Human pediculosis is a public health problem affecting millions of people worldwide, particularly in developing countries. More progress can be made if emphasis is placed on the use of emerging omics technologies to elucidate the mechanisms that underpin the physiological, ecological, and evolutionary aspects of lice.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Yuan-Ping Deng
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD UK
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi China
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201 People’s Republic of China
| | - Guo-Hua Liu
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan China
| |
Collapse
|
7
|
Hammoud A, Louni M, Missé D, Cortaredona S, Fenollar F, Mediannikov O. Phylogenetic relationship between the endosymbiont "Candidatus Riesia pediculicola" and its human louse host. Parasit Vectors 2022; 15:73. [PMID: 35248159 PMCID: PMC8898481 DOI: 10.1186/s13071-022-05203-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background The human louse (Pediculus humanus) is a haematophagous ectoparasite that is intimately related to its host. It has been of great public health concern throughout human history. This louse has been classified into six divergent mitochondrial clades (A, D, B, F, C and E). As with all haematophagous lice, P. humanus directly depends on the presence of a bacterial symbiont, known as “Candidatus Riesia pediculicola”, to complement their unbalanced diet. In this study, we evaluated the codivergence of human lice around the world and their endosymbiotic bacteria. Using molecular approaches, we targeted lice mitochondrial genes from the six diverged clades and Candidatus Riesia pediculicola housekeeping genes. Methods The mitochondrial cytochrome b gene (cytb) of lice was selected for molecular analysis, with the aim to identify louse clade. In parallel, we developed four PCR primer pairs targeting three housekeeping genes of Candidatus Riesia pediculicola: ftsZ, groEL and two regions of the rpoB gene (rpoB-1 and rpoB-2). Results The endosymbiont phylogeny perfectly mirrored the host insect phylogeny using the ftsZ and rpoB-2 genes, in addition to showing a significant co-phylogenetic congruence, suggesting a strict vertical transmission and a host–symbiont co-speciation following the evolutionary course of the human louse. Conclusion Our results unequivocally indicate that louse endosymbionts have experienced a similar co-evolutionary history and that the human louse clade can be determined by their endosymbiotic bacteria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05203-z.
Collapse
Affiliation(s)
- Alissa Hammoud
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, 13005, Marseille, France
| | - Meriem Louni
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005, Marseille, France. .,Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, 13005, Marseille, France. .,Department of Biology, Faculty of Sciences, M'Hamed Bougara University, 35000, Boumerdès, Algeria.
| | - Dorothée Missé
- IRD, CNRS, MIVEGEC, Université Montpellier, 34394, Montpellier, France
| | - Sébastien Cortaredona
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Vectors Infections Tropicales and Mediterranean (VITROME), Aix-Marseille University, 13005, Marseille, France
| | - Florence Fenollar
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Vectors Infections Tropicales and Mediterranean (VITROME), Aix-Marseille University, 13005, Marseille, France
| | - Oleg Mediannikov
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005, Marseille, France. .,Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, 13005, Marseille, France.
| |
Collapse
|
8
|
Barbieri R, Nodari R, Signoli M, Epis S, Raoult D, Drancourt M. Differential word expression analyses highlight plague dynamics during the second pandemic. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210039. [PMID: 35070338 PMCID: PMC8728171 DOI: 10.1098/rsos.210039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Research on the second plague pandemic that swept over Europe from the fourteenth to nineteenth centuries mainly relies on the exegesis of contemporary texts and is prone to interpretive bias. By leveraging certain bioinformatic tools routinely used in biology, we developed a quantitative lexicography of 32 texts describing two major plague outbreaks, using contemporary plague-unrelated texts as negative controls. Nested, network and category analyses of a 207-word pan-lexicome, comprising overrepresented terms in plague-related texts, indicated that 'buboes' and 'carbuncles' are words that were significantly associated with the plague and signalled an ectoparasite-borne plague. Moreover, plague-related words were associated with the terms 'merchandise', 'movable', 'tatters', 'bed' and 'clothes'. Analysing ancient texts using the method reported in this paper can certify plague-related historical records and indicate the particularities of each plague outbreak, which can inform on the potential sources for the causative Yersinia pestis.
Collapse
Affiliation(s)
- Rémi Barbieri
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
- UMR 7268, Anthropologie bioculturelle, Droit, Ethique et Santé, Aix Marseille Univ, 11 CNRS, EFS, ADES, Marseille 13344, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - Riccardo Nodari
- Department of Biosciences and Pediatric Clinical Research Center ‘Romeo and Enrica Invernizzi’, University of Milan, Milan 20133, Italy
| | - Michel Signoli
- UMR 7268, Anthropologie bioculturelle, Droit, Ethique et Santé, Aix Marseille Univ, 11 CNRS, EFS, ADES, Marseille 13344, France
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center ‘Romeo and Enrica Invernizzi’, University of Milan, Milan 20133, Italy
| | - Didier Raoult
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| |
Collapse
|
9
|
Rosario-Acevedo R, Biryukov SS, Bozue JA, Cote CK. Plague Prevention and Therapy: Perspectives on Current and Future Strategies. Biomedicines 2021; 9:1421. [PMID: 34680537 PMCID: PMC8533540 DOI: 10.3390/biomedicines9101421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Plague, caused by the bacterial pathogen Yersinia pestis, is a vector-borne disease that has caused millions of human deaths over several centuries. Presently, human plague infections continue throughout the world. Transmission from one host to another relies mainly on infected flea bites, which can cause enlarged lymph nodes called buboes, followed by septicemic dissemination of the pathogen. Additionally, droplet inhalation after close contact with infected mammals can result in primary pneumonic plague. Here, we review research advances in the areas of vaccines and therapeutics for plague in context of Y. pestis virulence factors and disease pathogenesis. Plague continues to be both a public health threat and a biodefense concern and we highlight research that is important for infection mitigation and disease treatment.
Collapse
Affiliation(s)
| | | | | | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA; (R.R.-A.); (S.S.B.); (J.A.B.)
| |
Collapse
|
10
|
Bramanti B, Wu Y, Yang R, Cui Y, Stenseth NC. Assessing the origins of the European Plagues following the Black Death: A synthesis of genomic, historical, and ecological information. Proc Natl Acad Sci U S A 2021; 118:e2101940118. [PMID: 34465619 PMCID: PMC8433512 DOI: 10.1073/pnas.2101940118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The second plague pandemic started in Europe with the Black Death in 1346 and lasted until the 19th century. Based on ancient DNA studies, there is a scientific disagreement over whether the bacterium, Yersinia pestis, came into Europe once (Hypothesis 1) or repeatedly over the following four centuries (Hypothesis 2). Here, we synthesize the most updated phylogeny together with historical, archeological, evolutionary, and ecological information. On the basis of this holistic view, we conclude that Hypothesis 2 is the most plausible. We also suggest that Y. pestis lineages might have developed attenuated virulence during transmission, which can explain the convergent evolutionary signals, including pla decay, that appeared at the end of the pandemics.
Collapse
Affiliation(s)
- Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Oumarou Hama H, Barbieri R, Guirou J, Chenal T, Mayer A, Ardagna Y, Signoli M, Aboudharam G, Raoult D, Drancourt M. An outbreak of relapsing fever unmasked by microbial paleoserology, 16th century, France. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:784-789. [PMID: 32959380 DOI: 10.1002/ajpa.24138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Depicting past epidemics currently relies on DNA-based detection of pathogens, an approach limited to pathogens with well-preserved DNA sequences. We used paleoserology as a complementary approach detecting specific antibodies under a mini line-blot format including positive and negative control antigens. METHODS Mini line blot assay incorporated skim milk as negative control, Staphylococcus aureus as positive control, and antigens prepared from lice-borne pathogens Rickettsia prowazekii, Borrelia recurrentis, Bartonella quintana, and Yersinia pestis. Paleoserums were extracted from rehydrated dental pulp recovered from buried individuals. Mini line blots observed with the naked eye, were quantified using a scanner and appropriate software. Paleoserology was applied to the indirect detection of lice-borne pathogens in seven skeletons exhumed from a 16th-17th century suspected military burial site (Auxi-le-Château); and 14 civils exhumed from a 5th-13th century burial site (Saint-Mont). Direct detection of pathogens was performed using quantitative real-time PCR. RESULTS In Auxi-le-Château, paleoserology yielded 7/7 interpretable paleoserums including 7/7 positives for B. recurrentis including one also positive for B. quintana. In Saint-Mont, paleoserology yielded 8/14 interpretable paleoserums and none reacted against any of the four pathogens. Antibodies against R. prowazekii and Y. pestis were not detected. The seroprevalence was significantly higher in the military burial site of Auxi-le-Château than in the civil burial site of Saint-Mont. Real-time PCR detection of B. quintana yielded 5/21 positive (3 at Saint-Mont and 2 at Auxi-le-Château) whereas B. recurrentis was not detected. CONCLUSIONS Paleoserology unmasked an outbreak of relapsing B. recurrentis fever in one 16th - 17th century military garrison, missed by real-time PCR. Paleoserology offers a new tool for investigating past epidemics, in complement to DNA sequence-based approaches.
Collapse
Affiliation(s)
- Hamadou Oumarou Hama
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rémi Barbieri
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., CNRS, EFS, ADES, Marseille, France
| | - Jacqueline Guirou
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | | | - Aurélie Mayer
- Bureau d'études Éveha, Limoges/Ivry-sur-Seine, France
| | - Yann Ardagna
- Aix-Marseille-Univ., CNRS, EFS, ADES, Marseille, France
| | | | - Gérard Aboudharam
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,UFR Odontologie, Aix-Marseille-Univ., Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|