1
|
Dong S, Fu C, Shu C, Xie M, Li Y, Zou J, Meng YZ, Xu P, Shan YH, Tian HM, He J, Yang YG, Hu Z. Development of a humanized mouse model with functional human materno-fetal interface immunity. JCI Insight 2024; 9:e176527. [PMID: 39435662 PMCID: PMC11529984 DOI: 10.1172/jci.insight.176527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Materno-fetal immunity possesses specialized characteristics to ensure pathogen clearance while maintaining tolerance to the semiallogeneic fetus. Most of our understanding on human materno-fetal immunity is based on conventional rodent models that may not precisely represent human immunological processes owing to the huge evolutionary divergence. Herein, we developed a pregnant human immune system (HIS) mouse model through busulfan preconditioning, which hosts multilineage human immune subset reconstitution at the materno-fetal interface. Human materno-fetal immunity exhibits a tolerogenic feature at the midgestation stage (embryonic day [E] 14.5), and human immune regulatory subsets were detected in the decidua. However, the immune system switches to an inflammatory profile at the late gestation stage (E19). A cell-cell interaction network contributing to the alternations in the human materno-fetal immune atmosphere was revealed based on single-cell RNA-Seq analysis, wherein human macrophages played crucial roles by secreting several immune regulatory mediators. Furthermore, depletion of Treg cells at E2.5 and E5.5 resulted in severe inflammation and fetus rejection. Collectively, these results demonstrate that the pregnant HIS mouse model permits the development of functional human materno-fetal immunity and offers a tool for human materno-fetal immunity investigation to facilitate drug discovery for reproductive disorders.
Collapse
Affiliation(s)
- Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Cong Fu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Chang Shu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
| | - Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jun Zou
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yan-Hong Shan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
| | - Hui-Min Tian
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| |
Collapse
|
2
|
Kim TH, Yan JJ, Jang JY, Lee GM, Lee SK, Kim BS, Chung JJ, Kim SH, Jung Y, Yang J. Tissue-engineered vascular microphysiological platform to study immune modulation of xenograft rejection. SCIENCE ADVANCES 2021; 7:7/22/eabg2237. [PMID: 34049875 PMCID: PMC8163083 DOI: 10.1126/sciadv.abg2237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Most of the vascular platforms currently being studied are lab-on-a-chip types that mimic capillary networks and are applied for vascular response analysis in vitro. However, these platforms have a limitation in clearly assessing the physiological phenomena of native blood vessels compared to in vivo evaluation. Here, we developed a simply fabricable tissue-engineered vascular microphysiological platform (TEVMP) with a three-dimensional (3D) vascular structure similar to an artery that can be applied for ex vivo and in vivo evaluation. Furthermore, we applied the TEVMP as ex vivo and in vivo screening systems to evaluate the effect of human CD200 (hCD200) overexpression in porcine endothelial cells (PECs) on vascular xenogeneic immune responses. These screening systems, in contrast to 2D in vitro and cellular xenotransplantation in vivo models, clearly demonstrated that hCD200 overexpression effectively suppressed vascular xenograft rejection. The TEVMP has a high potential as a platform to assess various vascular-related responses.
Collapse
Affiliation(s)
- Tae Hee Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ji-Jing Yan
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Young Jang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gwang-Min Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Kyung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea
| | - Jaeseok Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Transplantation Center, Seoul National University hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Lee HS, Song S, Shin DY, Kim GS, Lee JH, Cho CW, Lee KW, Park H, Ahn C, Yang J, Yang HM, Park JB, Kim SJ. Enhanced effect of human mesenchymal stem cells expressing human TNF-αR-Fc and HO-1 gene on porcine islet xenotransplantation in humanized mice. Xenotransplantation 2017; 25. [DOI: 10.1111/xen.12342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Han-Sin Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Sanghyun Song
- Department of Surgery; Dankook University College of Medicine; Dankook University Hospital; Cheonam Korea
| | - Du Yeon Shin
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
| | - Geun-Soo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Jong-Hyun Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Chan Woo Cho
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Kyo Won Lee
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Hyojun Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Curie Ahn
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Jaeseok Yang
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Heung-Mo Yang
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Medicine; Sungkyunkwan University School of Medicine; Kyunggi Korea
| | - Jae Berm Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sung-Joo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| |
Collapse
|
4
|
Kenney LL, Shultz LD, Greiner DL, Brehm MA. Humanized Mouse Models for Transplant Immunology. Am J Transplant 2016; 16:389-97. [PMID: 26588186 PMCID: PMC5283075 DOI: 10.1111/ajt.13520] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/25/2023]
Abstract
Our understanding of the molecular pathways that control immune responses, particularly immunomodulatory molecules that control the extent and duration of an immune response, have led to new approaches in the field of transplantation immunology to induce allograft survival. These molecular pathways are being defined precisely in murine models and translated into clinical practice; however, many of the newly available drugs are human-specific reagents. Furthermore, many species-specific differences exist between mouse and human immune systems. Recent advances in the development of humanized mice, namely, immunodeficient mice engrafted with functional human immune systems, have led to the availability of a small animal model for the study of human immune responses. Humanized mice represent an important preclinical model system for evaluation of new drugs and identification of the mechanisms underlying human allograft rejection without putting patients at risk. This review highlights recent advances in the development of humanized mice and their use as preclinical models for the study of human allograft responses.
Collapse
Affiliation(s)
- Laurie L Kenney
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605
| | | | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605,Corresponding Author: Dale L. Greiner, PhD, University of Massachusetts Medical School, 368 Plantation Street, AS7-2051, Worcester, MA 01605, Office: 508-856-1911, Fax: 508-856-4093,
| | - Michael A. Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605
| |
Collapse
|
5
|
Nagaraju S, Bottino R, Wijkstrom M, Trucco M, Cooper DKC. Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation 2014; 22:7-19. [DOI: 10.1111/xen.12130] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Santosh Nagaraju
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Rita Bottino
- Division of Immunogenetics; Department of Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Massimo Trucco
- Division of Immunogenetics; Department of Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| |
Collapse
|
6
|
Abstract
Recent developments and improvements of multimodal imaging methods for use in animal research have substantially strengthened the options of in vivo visualization of cancer-related processes over time. Moreover, technological developments in probe synthesis and labelling have resulted in imaging probes with the potential for basic research, as well as for translational and clinical applications. In addition, more sophisticated cancer models are available to address cancer-related research questions. This Review gives an overview of developments in these three fields, with a focus on imaging approaches in animal cancer models and how these can help the translation of new therapies into the clinic.
Collapse
Affiliation(s)
- Marion de Jong
- Departments of Nuclear Medicine and Radiology, Erasmus MC Rotterdam, Room Na-610, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jeroen Essers
- Departments of Genetics (Cancer Genomics Centre), Radiation Oncology and Vascular Surgery, Erasmus MC Rotterdam, P.O Box 2040, 3000CA Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
7
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, November-December 2012. Xenotransplantation 2013; 20:36-8. [PMID: 23384143 DOI: 10.1111/xen.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|