1
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2025; 70:323-338. [PMID: 38704087 PMCID: PMC11976431 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Tang Y, Zhang J, Yuan Y, Shen K, Luo Z, Jia L, Long X, Peng C, Xie T, Chen X, Zhang P. Synergistic Gas Therapy and Targeted Interventional Ablation With Size-Controllable Arsenic Sulfide (As 2S 3) Nanoparticles for Effective Elimination of Localized Cancer Pain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407197. [PMID: 39358955 DOI: 10.1002/smll.202407197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/20/2024] [Indexed: 10/04/2024]
Abstract
The elimination of localized cancer pain remains a globally neglected challenge. A potential solution lies in combining gas therapy with targeted interventional ablation therapy. In this study, HA-As2S3 nanoparticles with controlled sizes are synthesized using different molecular weights of sodium hyaluronate (HA) as a supramolecular scaffold. Initially, HA co-assembles with arsenic ions (As3+) via coordinate bonds, forming HA-As3+ scaffold intermediates. These intermediates, varying in size, then react with sulfur ions to produce size-controlled HA-As2S3 particles. This approach demonstrates that different molecular weights of HA enable precise control over the particle size of arsenic sulfide, offering a straightforward and environmentally friendly method for synthesizing metal sulfide particles. In an acidic environment, HA-As2S3 nanoparticles release hydrogen sulfide(H2S) gas and As3+. The released As3+ directly damage tumor mitochondria, leading to substantial reactive oxygen species (ROS) production from mitochondria. Concurrently, the H2S gas inhibits the activity of catalase (CAT) and complex IV, preventing the beneficial decomposition of ROS and disrupting electron transfer in the mitochondrial respiratory chain. Consequently, it is found that H2S gas significantly enhances the mitochondrial damage induced by arsenic nanodrugs, effectively killing local tumors and ultimately eliminating cancer pain in mice.
Collapse
Affiliation(s)
- Yu Tang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Jiyun Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Yuan Yuan
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Kele Shen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Zhiyuan Luo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Luyu Jia
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaofeng Long
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Chi Peng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 310000, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Pengfei Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| |
Collapse
|
3
|
Xu S, Liao J, Liu B, Zhang C, Xu X. Aerobic glycolysis of vascular endothelial cells: a novel perspective in cancer therapy. Mol Biol Rep 2024; 51:717. [PMID: 38824197 PMCID: PMC11144152 DOI: 10.1007/s11033-024-09588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 06/03/2024]
Abstract
Vascular endothelial cells (ECs) are monolayers of cells arranged in the inner walls of blood vessels. Under normal physiological conditions, ECs play an essential role in angiogenesis, homeostasis and immune response. Emerging evidence suggests that abnormalities in EC metabolism, especially aerobic glycolysis, are associated with the initiation and progression of various diseases, including multiple cancers. In this review, we discuss the differences in aerobic glycolysis of vascular ECs under normal and pathological conditions, focusing on the recent research progress of aerobic glycolysis in tumor vascular ECs and potential strategies for cancer therapy.
Collapse
Affiliation(s)
- Shenhao Xu
- Department of urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiahao Liao
- Department of urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Bing Liu
- Department of urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Cheng Zhang
- Department of urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Xin Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
4
|
Zheng J, Wang Q, Chen J, Cai G, Zhang Z, Zou H, Zou JX, Liu Q, Ji S, Shao G, Li H, Li S, Chen HW, Lu L, Yuan Y, Liu P, Wang J. Tumor mitochondrial oxidative phosphorylation stimulated by the nuclear receptor RORγ represents an effective therapeutic opportunity in osteosarcoma. Cell Rep Med 2024; 5:101519. [PMID: 38692271 PMCID: PMC11148566 DOI: 10.1016/j.xcrm.2024.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/12/2023] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor with a poor prognosis. Here, we show that the nuclear receptor RORγ may serve as a potential therapeutic target in OS. OS exhibits a hyperactivated oxidative phosphorylation (OXPHOS) program, which fuels the carbon source to promote tumor progression. We found that RORγ is overexpressed in OS tumors and is linked to hyperactivated OXPHOS. RORγ induces the expression of PGC-1β and physically interacts with it to activate the OXPHOS program by upregulating the expression of respiratory chain component genes. Inhibition of RORγ strongly inhibits OXPHOS activation, downregulates mitochondrial functions, and increases ROS production, which results in OS cell apoptosis and ferroptosis. RORγ inverse agonists strongly suppressed OS tumor growth and progression and sensitized OS tumors to chemotherapy. Taken together, our results indicate that RORγ is a critical regulator of the OXPHOS program in OS and provides an effective therapeutic strategy for this deadly disease.
Collapse
Affiliation(s)
- Jianwei Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Qianqian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jianghe Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Guodi Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Hongye Zou
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - June X Zou
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Qianqian Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Shufeng Ji
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Guoli Shao
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Hong Li
- Biomedical Laboratory, Guangzhou Jingke Life Science Institute, Guangzhou, Guangdong 510145, P.R. China
| | - Sheng Li
- Biomedical Laboratory, Guangzhou Jingke Life Science Institute, Guangzhou, Guangdong 510145, P.R. China
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - LinLin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China; National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China.
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China; National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China.
| |
Collapse
|
5
|
Zhao Y, Zhao X, Duan L, Hou R, Gu Y, Liu Z, Chen J, Wu F, Yang L, Le XC, Wang Q, Yan X. Reinvent Aliphatic Arsenicals as Reversible Covalent Warheads toward Targeted Kinase Inhibition and Non-acute Promyelocytic Leukemia Cancer Treatment. J Med Chem 2024; 67:5458-5472. [PMID: 38556750 DOI: 10.1021/acs.jmedchem.3c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The success of arsenic in acute promyelocytic leukemia (APL) treatment is hardly transferred to non-APL cancers, mainly due to the low selectivity and weak binding affinity of traditional arsenicals to oncoproteins critical for cancer survival. We present herein the reinvention of aliphatic trivalent arsenicals (As) as reversible covalent warheads of As-based targeting inhibitors toward Bruton's tyrosine kinase (BTK). The effects of As warheads' valency, thiol protection, methylation, spacer length, and size on inhibitors' activity were studied. We found that, in contrast to the bulky and rigid aromatic As warhead, the flexible aliphatic As warheads were well compatible with the well-optimized guiding group to achieve nanomolar inhibition against BTK. The optimized As inhibitors effectively blocked the BTK-mediated oncogenic signaling pathway, leading to elevated antiproliferative activities toward lymphoma cells and xenograft tumor. Our study provides a promising strategy enabling rational design of new aliphatic arsenic-based reversible covalent inhibitors toward non-APL cancer treatment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinyue Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lewei Duan
- Laboratory of Epigenetics at Institutes of Biomedical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai 200032, China
| | - Ruxue Hou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuxin Gu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianbin Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feizhen Wu
- Laboratory of Epigenetics at Institutes of Biomedical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai 200032, China
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
6
|
Seneviratne JA, Carter DR, Mittra R, Gifford A, Kim PY, Luo J, Mayoh C, Salib A, Rahmanto AS, Murray J, Cheng NC, Nagy Z, Wang Q, Kleynhans A, Tan O, Sutton SK, Xue C, Chung SA, Zhang Y, Sun C, Zhang L, Haber M, Norris MD, Fletcher JI, Liu T, Dilda PJ, Hogg PJ, Cheung BB, Marshall GM. Inhibition of mitochondrial translocase SLC25A5 and histone deacetylation is an effective combination therapy in neuroblastoma. Int J Cancer 2023; 152:1399-1413. [PMID: 36346110 PMCID: PMC10953412 DOI: 10.1002/ijc.34349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
The mitochondrion is a gatekeeper of apoptotic processes, and mediates drug resistance to several chemotherapy agents used to treat cancer. Neuroblastoma is a common solid cancer in young children with poor clinical outcomes following conventional chemotherapy. We sought druggable mitochondrial protein targets in neuroblastoma cells. Among mitochondria-associated gene targets, we found that high expression of the mitochondrial adenine nucleotide translocase 2 (SLC25A5/ANT2), was a strong predictor of poor neuroblastoma patient prognosis and contributed to a more malignant phenotype in pre-clinical models. Inhibiting this transporter with PENAO reduced cell viability in a panel of neuroblastoma cell lines in a TP53-status-dependant manner. We identified the histone deacetylase inhibitor, suberanilohydroxamic acid (SAHA), as the most effective drug in clinical use against mutant TP53 neuroblastoma cells. SAHA and PENAO synergistically reduced cell viability, and induced apoptosis, in neuroblastoma cells independent of TP53-status. The SAHA and PENAO drug combination significantly delayed tumour progression in pre-clinical neuroblastoma mouse models, suggesting that these clinically advanced inhibitors may be effective in treating the disease.
Collapse
Affiliation(s)
- Janith A. Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Daniel R. Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
- School of Biomedical EngineeringUniversity of Technology SydneyNew South WalesAustralia
| | - Rituparna Mittra
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Andrew Gifford
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- Kids Cancer CentreSydney Children's HospitalRandwickNew South WalesAustralia
| | - Patrick Y. Kim
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Jie‐Si Luo
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- Department of PaediatricsThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Chelsea Mayoh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Alice Salib
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Aldwin S. Rahmanto
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Jayne Murray
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Ngan C. Cheng
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Zsuzsanna Nagy
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Qian Wang
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Ane Kleynhans
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Owen Tan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Selina K. Sutton
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Chengyuan Xue
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Sylvia A. Chung
- Adult Cancer Program, Lowy Cancer Research CentreUNSW SydneyNew South WalesAustralia
| | - Yizhuo Zhang
- Department of PaediatricsThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Paediatric OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongChina
| | - Chengtao Sun
- Department of PaediatricsThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Paediatric OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongChina
| | - Li Zhang
- Department of PaediatricsThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Paediatric OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongChina
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Murray D. Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- University of New South WalesCentre for Childhood Cancer ResearchRandwickNew South WalesAustralia
| | - Jamie I. Fletcher
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Pierre J. Dilda
- Adult Cancer Program, Lowy Cancer Research CentreUNSW SydneyNew South WalesAustralia
| | - Philip J. Hogg
- Australian Cancer Research Foundation (ACRF), Centenary Cancer Research Centre, Charles Perkins CentreUniversity of SydneyNew South WalesAustralia
| | - Belamy B. Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
- Department of PaediatricsThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Glenn M. Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
- Kids Cancer CentreSydney Children's HospitalRandwickNew South WalesAustralia
| |
Collapse
|
7
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Hyroššová P, Milošević M, Škoda J, Vachtenheim Jr J, Rohlena J, Rohlenová K. Effects of metabolic cancer therapy on tumor microenvironment. Front Oncol 2022; 12:1046630. [PMID: 36582801 PMCID: PMC9793001 DOI: 10.3389/fonc.2022.1046630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Targeting tumor metabolism for cancer therapy is an old strategy. In fact, historically the first effective cancer therapeutics were directed at nucleotide metabolism. The spectrum of metabolic drugs considered in cancer increases rapidly - clinical trials are in progress for agents directed at glycolysis, oxidative phosphorylation, glutaminolysis and several others. These pathways are essential for cancer cell proliferation and redox homeostasis, but are also required, to various degrees, in other cell types present in the tumor microenvironment, including immune cells, endothelial cells and fibroblasts. How metabolism-targeted treatments impact these tumor-associated cell types is not fully understood, even though their response may co-determine the overall effectivity of therapy. Indeed, the metabolic dependencies of stromal cells have been overlooked for a long time. Therefore, it is important that metabolic therapy is considered in the context of tumor microenvironment, as understanding the metabolic vulnerabilities of both cancer and stromal cells can guide new treatment concepts and help better understand treatment resistance. In this review we discuss recent findings covering the impact of metabolic interventions on cellular components of the tumor microenvironment and their implications for metabolic cancer therapy.
Collapse
Affiliation(s)
- Petra Hyroššová
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Mirko Milošević
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Josef Škoda
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Vachtenheim Jr
- 3rd Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Rohlenová
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
9
|
Metabolic Reprogramming in Tumor Endothelial Cells. Int J Mol Sci 2022; 23:ijms231911052. [PMID: 36232355 PMCID: PMC9570383 DOI: 10.3390/ijms231911052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic crosstalk between the different components of the tumor microenvironment is critical to determine cancer progression, metastatic dissemination, tumor immunity, and therapeutic responses. Angiogenesis is critical for tumor growth, and abnormal blood vessels contribute to hypoxia and acidosis in the tumor microenvironment. In this hostile environment, cancer and stromal cells have the ability to alter their metabolism in order to support the high energetic demands and favor rapid tumor proliferation. Recent advances have shown that tumor endothelial cell metabolism is reprogrammed, and that targeting endothelial metabolic pathways impacts developmental and pathological vessel sprouting. Therefore, the use of metabolic antiangiogenic therapies to normalize the blood vasculature, in combination with immunotherapies, offers a clinical niche to treat cancer.
Collapse
|
10
|
Kubik J, Humeniuk E, Adamczuk G, Madej-Czerwonka B, Korga-Plewko A. Targeting Energy Metabolism in Cancer Treatment. Int J Mol Sci 2022; 23:ijms23105572. [PMID: 35628385 PMCID: PMC9146201 DOI: 10.3390/ijms23105572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second most common cause of death worldwide after cardiovascular diseases. The development of molecular and biochemical techniques has expanded the knowledge of changes occurring in specific metabolic pathways of cancer cells. Increased aerobic glycolysis, the promotion of anaplerotic responses, and especially the dependence of cells on glutamine and fatty acid metabolism have become subjects of study. Despite many cancer treatment strategies, many patients with neoplastic diseases cannot be completely cured due to the development of resistance in cancer cells to currently used therapeutic approaches. It is now becoming a priority to develop new treatment strategies that are highly effective and have few side effects. In this review, we present the current knowledge of the enzymes involved in the different steps of glycolysis, the Krebs cycle, and the pentose phosphate pathway, and possible targeted therapies. The review also focuses on presenting the differences between cancer cells and normal cells in terms of metabolic phenotype. Knowledge of cancer cell metabolism is constantly evolving, and further research is needed to develop new strategies for anti-cancer therapies.
Collapse
Affiliation(s)
- Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
- Correspondence: ; Tel.: +48-81-448-65-20
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Barbara Madej-Czerwonka
- Human Anatomy Department, Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| |
Collapse
|
11
|
Mitochondrial Toxicity of Organic Arsenicals. Methods Mol Biol 2022; 2497:173-184. [PMID: 35771442 DOI: 10.1007/978-1-0716-2309-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Arsenic is either notorious toxicant or miracle cure for acute promyelocytic leukemia and several other diseases. It interacts with mitochondria directly or indirectly, by interacting with mitochondrial enzymes, such as respiratory chain complexes and tricarboxylic acid cycle proteins, or affecting mitochondrial homeostasis via ROS or mitochondrial outer membrane permeabilization. Given the ubiquitous presence of mitochondria and indispensable role in cellular metabolism, arsenical-mitochondrial interactions may manifest clinical importance by revealing mechanism of disease curation, preventing severe side effects, and foreseeing potential health issues. Here, we described the interaction between isolated mitochondria and arsenicals.
Collapse
|
12
|
Song ZL, Zhang J, Xu Q, Shi D, Yao X, Fang J. Structural Modification of Aminophenylarsenoxides Generates Candidates for Leukemia Treatment via Thioredoxin Reductase Inhibition. J Med Chem 2021; 64:16132-16146. [PMID: 34704769 DOI: 10.1021/acs.jmedchem.1c01441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Upregulation of the selenoprotein thioredoxin reductase (TrxR) is of pathological significance in maintaining tumor phenotypes. Thus, TrxR inhibitors are promising cancer therapeutic agents. We prepared different amino-substituted phenylarsine oxides and evaluated their cytotoxicity and inhibition of TrxR. Compared with our reported p-substituted molecule (8), the o-substituted molecule (10) shows improved efficacy (nearly a fourfold increase) to kill leukemia HL-60 cells. Although the compounds 8 and 10 display similar potency to inhibit the purified TrxR, the o-substitution 10 exhibits higher potency than the p-substitution 8 to inhibit the cellular TrxR activity. Molecular docking results demonstrate the favorable weak interactions of the o-amino group with the TrxR C-terminal active site. Efficient inhibition of TrxR consequently induces the oxidative stress-mediated apoptosis of cancer cells. Silence of the TrxR expression sensitizes the cells to the arsenic compound treatment, further supporting the critical involvement of TrxR in the cellular actions of compound 10.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
14
|
Garcia-Ruiz C, Conde de la Rosa L, Ribas V, Fernandez-Checa JC. MITOCHONDRIAL CHOLESTEROL AND CANCER. Semin Cancer Biol 2021; 73:76-85. [PMID: 32805396 PMCID: PMC7882000 DOI: 10.1016/j.semcancer.2020.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Cholesterol is a crucial component of membrane bilayers that determines their physical and functional properties. Cells largely satisfy their need for cholesterol through the novo synthesis from acetyl-CoA and this demand is particularly critical for cancer cells to sustain dysregulated cell proliferation. However, the association between serum or tissue cholesterol levels and cancer development is not well established as epidemiologic data do not consistently support this link. While most preclinical studies focused on the role of total celular cholesterol, the specific contribution of the mitochondrial cholesterol pool to alterations in cancer cell biology has been less explored. Although low compared to other bilayers, the mitochondrial cholesterol content plays an important physiological function in the synthesis of steroid hormones in steroidogenic tissues or bile acids in the liver and controls mitochondrial function. In addition, mitochondrial cholesterol metabolism generates oxysterols, which in turn, regulate multiple pathways, including cholesterol and lipid metabolism as well as cell proliferation. In the present review, we summarize the regulation of mitochondrial cholesterol, including its role in mitochondrial routine performance, cell death and chemotherapy resistance, highlighting its potential contribution to cancer. Of particular relevance is hepatocellular carcinoma, whose incidence in Western countries had tripled in the past decades due to the obesity and type II diabetes epidemic. A better understanding of the role of mitochondrial cholesterol in cancer development may open up novel opportunities for cancer therapy.
Collapse
Affiliation(s)
- Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
15
|
Hogg PJ. Toxicokinetics of the tumour cell mitochondrial toxin, PENAO, in rodents. Invest New Drugs 2021; 39:756-763. [PMID: 33469723 DOI: 10.1007/s10637-021-01065-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
PENAO (4-(N-(S-penicillaminylacetyl)amino)phenylarsonous acid) is a second-generation peptide arsenical that inactivates mitochondria in proliferating tumour cells by covalently reacting with mitochondrial inner-membrane adenine nucleotide transferase. The toxicokinetics of PENAO has been investigated in Sprague-Dawley rats to inform route of administration and dosing for human clinical trials. PENAO was well tolerated at 3.3 mg/kg daily intravenous injections but associated with significant toxicity at 10 mg/kg, primarily in the males. The major target organ for toxic effects was the kidney, with changes observed in tubular dilation, presence of casts, basophilic tubules, lymphoid aggregates and interstitial fibrosis. Kidney function was impaired in males with dose-dependent increase in serum creatinine concentration. The severity of the microscopic lesions was reduced in the females, but not the males, at the completion of the four-week recovery period. The elimination phase half-life of PENAO varied between 0.4 and 1.7 h and volume of distribution ranged from 0.25 to 0.88 L/kg for the different dose groups and treatment days, suggesting that PENAO distributes in the extracellular fluids at the doses tested. The area under the curve and clearance values indicate that male rats had reduced elimination of PENAO compared to females, which may account for the increased toxicity in males. PENAO is significantly better tolerated in rodents than its predecessor, GSAO. As GSAO was generally well tolerated with few side effects in a phase I trial in patients with solid tumours, these findings bode well for the tolerability of intravenous dosing of PENAO in patients.
Collapse
Affiliation(s)
- Philip J Hogg
- The Centenary Institute, Camperdown, NSW, 2050, Australia.
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
16
|
Macasoi I, Mioc A, Mioc M, Racoviceanu R, Soica I, Chevereșan A, Dehelean C, Dumitrașcu V. Targeting Mitochondria through the Use of Mitocans as Emerging Anticancer Agents. Curr Med Chem 2020; 27:5730-5757. [DOI: 10.2174/0929867326666190712150638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
Mitochondria are key players with a multi-functional role in many vital cellular processes,
such as energy metabolism, redox regulation, calcium homeostasis, Reactive Oxygen Species
(ROS) as well as in cell signaling, survival and apoptosis. These functions are mainly regulated
through important enzyme signaling cascades, which if altered may influence the outcome of cell
viability and apoptosis. Therefore some of the key enzymes that are vital for these signaling pathways
are emerging as important targets for new anticancer agent development. Mitocans are compounds
aimed at targeting mitochondria in cancer cells by altering mitochondrial functions thus
causing cell growth inhibition or apoptosis. This review summarizes the till present known classes
of mitocans, their mechanism of action and potential therapeutic use in different forms of cancer.
Collapse
Affiliation(s)
- Ioana Macasoi
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Irina Soica
- Earlscliffe Sixth Form, Earlscliffe, 29 Shorncliffe Road, Folkestone, CT20 2NB, United Kingdom
| | - Adelina Chevereșan
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Victor Dumitrașcu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| |
Collapse
|
17
|
Mitochondrial respiration controls neoangiogenesis during wound healing and tumour growth. Nat Commun 2020; 11:3653. [PMID: 32694534 PMCID: PMC7374592 DOI: 10.1038/s41467-020-17472-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/30/2020] [Indexed: 12/29/2022] Open
Abstract
The vasculature represents a highly plastic compartment, capable of switching from a quiescent to an active proliferative state during angiogenesis. Metabolic reprogramming in endothelial cells (ECs) thereby is crucial to cover the increasing cellular energy demand under growth conditions. Here we assess the impact of mitochondrial bioenergetics on neovascularisation, by deleting cox10 gene encoding an assembly factor of cytochrome c oxidase (COX) specifically in mouse ECs, providing a model for vasculature-restricted respiratory deficiency. We show that EC-specific cox10 ablation results in deficient vascular development causing embryonic lethality. In adult mice induction of EC-specific cox10 gene deletion produces no overt phenotype. However, the angiogenic capacity of COX-deficient ECs is severely compromised under energetically demanding conditions, as revealed by significantly delayed wound-healing and impaired tumour growth. We provide genetic evidence for a requirement of mitochondrial respiration in vascular endothelial cells for neoangiogenesis during development, tissue repair and cancer. During angiogenesis the vasculature switches from a quiescent to a proliferative state. Here the authors show that mitochondrial respiration in endothelial cells controls angiogenesis during development, tumour growth and tissue repair.
Collapse
|
18
|
Liu YJ, Fan XY, Zhang DD, Xia YZ, Hu YJ, Jiang FL, Zhou FL, Liu Y. Dual Inhibition of Pyruvate Dehydrogenase Complex and Respiratory Chain Complex Induces Apoptosis by a Mitochondria-Targeted Fluorescent Organic Arsenical in vitro and in vivo. ChemMedChem 2020; 15:552-558. [PMID: 32101363 DOI: 10.1002/cmdc.201900686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Based on the potential therapeutic value in targeting mitochondria and the fluorophore tracing ability, a fluorescent mitochondria-targeted organic arsenical PDT-PAO-F16 was fabricated, which not only visualized the cellular distribution, but also exerted anti-cancer activity in vitro and in vivo via targeting pyruvate dehydrogenase complex (PDHC) and respiratory chain complexes in mitochondria. In details, PDT-PAO-F16 mainly accumulated into mitochondria within hours and suppressed the activity of PDHC resulting in the inhibition of ATP synthesis and thermogenesis disorder. Moreover, the suppression of respiratory chain complex I and IV accelerated the mitochondrial dysfunction leading to caspase family-dependent apoptosis. In vivo, the acute promyelocytic leukemia was greatly alleviated in the PDT-PAO-F16 treated group in APL mice model. Our results demonstrated the organic arsenical precursor with fluorescence imaging and target-anticancer efficacy is a promising anticancer drug.
Collapse
Affiliation(s)
- Yu-Jiao Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xiao-Yang Fan
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Dong-Dong Zhang
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yin-Zheng Xia
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yan-Jun Hu
- College of Chemistry and Materials Science, Nanning Normal University, Nanning, 530001, China
| | - Feng-Lei Jiang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Fu-Ling Zhou
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yi Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.,College of Chemistry and Materials Science, Nanning Normal University, Nanning, 530001, China.,School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
19
|
Ho Shon I, Kumar D, Sathiakumar C, Berghofer P, Van K, Chicco A, Hogg PJ. Biodistribution and imaging of an hsp90 ligand labelled with 111In and 67Ga for imaging of cell death. EJNMMI Res 2020; 10:4. [PMID: 31960173 PMCID: PMC6971215 DOI: 10.1186/s13550-020-0590-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/09/2020] [Indexed: 01/22/2023] Open
Abstract
Background 4-(N-(S-glutathionylacetyl)amino) phenylarsonous acid (GSAO) when conjugated at the γ-glutamyl residue with fluorophores and radio-isotopes is able to image dead and dying cells in vitro and in vivo by binding to intracellular 90-kDa heat shock proteins (hsp90) when cell membrane integrity is compromised. The ability to image cell death has potential clinical impact especially for early treatment response assessment in oncology. This work aims to assess the biodistribution and tumour uptake of diethylene triamine pentaacetic acid GSAO labelled with 111In ([111In]In-DTPA-GSAO) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid GSAO labelled with 67Ga ([67Ga]Ga-DOTA-GSAO) in a murine subcutaneous tumour xenograft model and estimate dosimetry of [67Ga]Ga-DOTA-GSAO. Results There was good tumour uptake of both [111In]In-DTPA-GSAO and [67Ga]Ga-DOTA-GSAO (2.44 ± 0.26% injected activity per gramme of tissue (%IA/g) and 2.75 ± 0.34 %IA/g, respectively) in Balb c nu/nu mice bearing subcutaneous tumour xenografts of a human metastatic prostate cancer cell line (PC3M-luc-c6). Peak tumour uptake occurred at 2.7 h post injection. [111In]In-DTPA-GSAO and [67Ga]Ga-DOTA-GSAO demonstrated increased uptake in the liver (4.40 ± 0.86 %IA/g and 1.72 ± 0.27 %IA/g, respectively), kidneys (16.54 ± 3.86 %IA/g and 8.16 ± 1.33 %IA/g) and spleen (6.44 ± 1.24 %IA/g and 1.85 ± 0.44 %IA/g); however, uptake in these organs was significantly lower with [67Ga]Ga-DOTA-GSAO (p = 0.006, p = 0.017 and p = 0.003, respectively). Uptake of [67Ga]Ga-DOTA-GSAO into tumour was higher than all organs except the kidneys. There was negligible uptake in the other organs. Excretion of [67Ga]Ga-DOTA-GSAO was more rapid than [111In]In-DTPA-GSAO. Estimated effective dose of [67Ga]Ga-DOTA-GSAO for an adult male human was 1.54 × 10− 2 mSv/MBq. Conclusions [67Ga]Ga-DOTA-GSAO demonstrates higher specific uptake in dead and dying cells within tumours and lower uptake in normal organs than [111In]In-DTPA-GSAO. [67Ga]Ga-DOTA-GSAO may be potentially useful for imaging cell death in vivo. Dosimetry estimates for [67Ga]Ga-DOTA-GSAO are acceptable for future human studies. This work also prepares for development of 68Ga GSAO radiopharmaceuticals.
Collapse
Affiliation(s)
- Ivan Ho Shon
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, 2031, NSW, Australia. .,The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia. .,Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, NSW, Australia.
| | - Divesh Kumar
- Department of Nuclear Medicine and PET, Fiona Stanley Hospital, Murdoch, 6150, WA, Australia
| | | | - Paula Berghofer
- LifeSciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, Sydney, NSW, 2234, Australia
| | - Khang Van
- Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, NSW, 2170, Australia
| | - Andrew Chicco
- Department of Medical Physics, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Philip J Hogg
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
20
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
21
|
Wang X, Yeo RX, Hogg PJ, Goldstein D, Crowe P, Dilda PJ, Yang JL. The synergistic inhibitory effect of combining therapies targeting EGFR and mitochondria in sarcomas. Oncotarget 2020; 11:46-61. [PMID: 32002123 PMCID: PMC6967775 DOI: 10.18632/oncotarget.27416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Our group previously demonstrated that sarcoma cell lines were insensitive to epidermal growth factor receptor (EGFR) inhibitor gefitinib monotherapy. PENAO, an anti-tumour metabolic compound created in our laboratory, is currently in clinical trials. Considering the positive regulation of tumour energy production by both the EGFR signalling and tumour metabolism pathways, this study aimed to investigate the effect and mechanisms of combination therapy using gefitinib and PENAO in sarcoma cell lines in vitro and in vivo. PENAO monotherapy reduced proliferation in 12 sarcoma cell lines. Combining gefitinib and PENAO resulted in synergistic inhibition in both a time- and dose-dependent manner in 3 sarcoma cell lines with less prominent monotherapy effects. Combined treatment significantly enhanced cell death and perturbed mitochondrial function. In vivo combination therapy with PENAO and gefitinib was non-toxic to mice and significantly delayed tumour growth and prolonged survival. At 20 days after treatment, tumours from the combination treated mice were significantly smaller than those from untreated and single drug treated mice. The survival curves also showed significant difference across and between groups. The combination of PENAO and gefitinib in vitro and in vivo, shows promise as a treatment pathway in this poor outcome tumour.
Collapse
Affiliation(s)
- Xiaochun Wang
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Surgery, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,These authors contributed equally to this work
| | - Reichelle X Yeo
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, Australia.,These authors contributed equally to this work
| | - Philip J Hogg
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, Australia
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Philip Crowe
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Surgery, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Pierre J Dilda
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Jia-Lin Yang
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Surgery, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Lopes-Coelho F, Martins F, Serpa J. Endothelial Cells (ECs) Metabolism: A Valuable Piece to Disentangle Cancer Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:143-159. [PMID: 32130698 DOI: 10.1007/978-3-030-34025-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective therapies to fight cancer should not be focused specifically on cancer cells, but it should consider the various components of the TME. Non-cancerous cells cooperate with cancer cells by sharing signaling and organic molecules, accounting for cancer progression. Most of the anti-angiogenic therapy clinically approved for the treatment of human diseases relies on targeting vascular endothelial growth factor (VEGF) signaling pathway. Unexpectedly and unfortunately, the results of anti-angiogenic therapies in the treatment of human diseases are not so effective, showing an insufficient efficacy and resistance.This chapter will give some insights on showing that targeting endothelial cell metabolism is a missing piece to revolutionize cancer therapy. Only recently endothelial cell (EC) metabolism has been granted as an important inducer of angiogenesis. Metabolic studies in EC demonstrated that targeting EC metabolism can be an alternative to overcome the failure of anti-angiogenic therapies. Hence, it is urgent to increase the knowledge on how ECs alter their metabolism during human diseases, in order to open new therapeutic perspectives in the treatment of pathophysiological angiogenesis, as in cancer.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
23
|
Abstract
Conjugates of 4-(N-(S-glutathionylacetyl)amino)phenylarsonous acid (GSAO) with optical or radionuclide probes are able to image cell death in vivo. GSAO conjugates are retained in the cytosol of dying and dead cells via the formation of covalent bonds between the As(III) ion and the thiol groups of proximal cysteine residues. Here we describe the method for preparing a NODAGA-GSAO conjugate and its radiolabeling with gallium-68 (68Ga-NODAGA-GSAO) for positron-emission tomography (PET) imaging of cell death.
Collapse
|
24
|
Falkenberg KD, Rohlenova K, Luo Y, Carmeliet P. The metabolic engine of endothelial cells. Nat Metab 2019; 1:937-946. [PMID: 32694836 DOI: 10.1038/s42255-019-0117-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Endothelial cells (ECs) line the quiescent vasculature but can form new blood vessels (a process termed angiogenesis) in disease. Strategies targeting angiogenic growth factors have been clinically developed for the treatment of malignant and ocular diseases. Studies over the past decade have documented that several pathways of central carbon metabolism are necessary for EC homeostasis and growth, and that strategies that stimulate or block EC metabolism can be used to promote or inhibit vessel growth, respectively. In this Review, we provide an updated overview of the growing understanding of central carbon metabolic pathways in ECs and the therapeutic opportunities for targeting EC metabolism.
Collapse
Affiliation(s)
- Kim D Falkenberg
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qindao, Qindao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium.
| |
Collapse
|
25
|
Li X, Sun X, Carmeliet P. Hallmarks of Endothelial Cell Metabolism in Health and Disease. Cell Metab 2019; 30:414-433. [PMID: 31484054 DOI: 10.1016/j.cmet.2019.08.011] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023]
Abstract
In 2009, it was postulated that endothelial cells (ECs) would only be able to execute the orders of growth factors if these cells would accordingly adapt their metabolism. Ten years later, it has become clear that ECs, often differently from other cell types, rely on distinct metabolic pathways to survive and form new blood vessels; that manipulation of EC metabolic pathways alone (even without changing angiogenic signaling) suffices to alter vessel sprouting; and that perturbations of these metabolic pathways can underlie excess formation of new blood vessels (angiogenesis) in cancer and ocular diseases. Initial proof of evidence has been provided that targeting (normalizing) these metabolic perturbations in diseased ECs and delivery of metabolites deserve increasing attention as novel therapeutic approaches for inhibiting or stimulating vessel growth in multiple disorders.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven B-3000, Belgium.
| |
Collapse
|
26
|
Mu YF, Chen YH, Chang MM, Chen YC, Huang BM. Arsenic compounds induce apoptosis through caspase pathway activation in MA-10 Leydig tumor cells. Oncol Lett 2019; 18:944-954. [PMID: 31289573 DOI: 10.3892/ol.2019.10386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
The incidence of testicular cancer is increasing worldwide. Leydig cell tumors represent one type of sex cord-stromal testis malignancy, which tend to respond unfavorably to chemotherapies. Identifying more efficient treatment strategies is therefore crucial for patients. The present study aimed to investigate the apoptotic effects of arsenic compounds and their underlying mechanisms. The results indicated that sodium arsenite and dimethylarsenic acid induced apoptosis of the murine Leydig tumor cell line, MA-10. These apoptotic effects were characterized morphologically by membrane blebbing and cell detachment assays, biochemically using a cell viability assay, and cytologically by flow cytometry analysis. Western blotting demonstrated that caspases-3, -8 and -9, and poly(ADP-ribose) polymerase protein levels were increased compared with untreated MA-10 cells; however, the caspase inhibitor, Z-VAD-fmk, reversed these effects. In conclusion, the present study has shown that sodium arsenite and dimethylarsenic acid may activate the intrinsic and extrinsic caspase pathways, and induce MA-10 cell apoptosis. These results suggest that sodium arsenite and dimethylarsenic acid may represent novel approaches to treat clinically unmanageable forms of testicular cancer.
Collapse
Affiliation(s)
- Yi-Fen Mu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Ying-Hui Chen
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yung-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
27
|
Tanaka J, Moriceau G, Cook A, Kerr A, Zhang J, Peltier R, Perrier S, Davis TP, Wilson P. Tuning the Structure, Stability, and Responsivity of Polymeric Arsenical Nanoparticles Using Polythiol Cross-Linkers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL Coventry, United Kingdom
| | - Guillaume Moriceau
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL Coventry, United Kingdom
| | - Alexander Cook
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL Coventry, United Kingdom
| | - Andrew Kerr
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL Coventry, United Kingdom
| | - Junliang Zhang
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL Coventry, United Kingdom
| | - Raoul Peltier
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL Coventry, United Kingdom
| | - Sebastien Perrier
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL Coventry, United Kingdom
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Paul Wilson
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL Coventry, United Kingdom
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
28
|
Fan XY, Liu YJ, Cai YM, Wang AD, Xia YZ, Hu YJ, Jiang FL, Liu Y. A mitochondria-targeted organic arsenical accelerates mitochondrial metabolic disorder and function injury. Bioorg Med Chem 2019; 27:760-768. [PMID: 30665675 DOI: 10.1016/j.bmc.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022]
Abstract
Considering the vital role of mitochondria in the anti-cancer mechanism of organic arsenical, the mitochondria-targeted precursor PDT-PAO-TPP was designed and synthesized. PDT-PAO-TPP, as a delocalization lipophilic cation (DLCs) which mainly accumulated in mitochondria, contributed to improve anti-cancer efficacy and selectivity towards NB4 cells. In detail, PDT-PAO-TPP inhibited the activity of PDHC resulting in the suppression of ATP synthesis and thermogenesis disorder. Additionally, the inhibition of respiratory chain complex I and IV by short-time incubation of PDT-PAO-TPP also accelerated the respiration dysfunction and continuous generation of ROS. These results led to the release of cytochrome c and activation of caspase family-dependent apoptosis. Different from the mechanism of PDT-PAO in HL-60 cells, it mainly induced the mitochondrial metabolic disturbance resulting in the intrinsic apoptosis via inhibiting the activity of PDHC in NB4 cells, which also implied that the efficacy exertion of organic arsenical was a complex process involved in many aspects of cellular function. This study systematically clarifies the anti-cancer mechanism of mitochondria-targeted organic arsenical PDT-PAO-TPP and confirms the new target PDHC of organic arsenicals, which further supports the organic arsenical as a promising anticancer drug.
Collapse
Affiliation(s)
- Xiao-Yang Fan
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yu-Jiao Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yu-Meng Cai
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - An-Dong Wang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yin-Zheng Xia
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yan-Jun Hu
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China; Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
29
|
Zhou Y, Wang H, Tse E, Li H, Sun H. Cell Cycle-Dependent Uptake and Cytotoxicity of Arsenic-Based Drugs in Single Leukemia Cells. Anal Chem 2018; 90:10465-10471. [DOI: 10.1021/acs.analchem.8b02444] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Zhou
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Haibo Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Eric Tse
- Department of Medcine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, P.R. China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
30
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
31
|
Pasalic L, Wing‐Lun E, Lau JK, Campbell H, Pennings GJ, Lau E, Connor D, Liang HP, Muller D, Kritharides L, Hogg PJ, Chen VM. Novel assay demonstrates that coronary artery disease patients have heightened procoagulant platelet response. J Thromb Haemost 2018; 16:1198-1210. [PMID: 29569428 PMCID: PMC6635759 DOI: 10.1111/jth.14008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 01/08/2023]
Abstract
Essentials Procoagulant platelets can be detected using GSAO in human whole blood. Stable coronary artery disease is associated with a heightened procoagulant platelet response. Agonist-induced procoagulant platelet response is not inhibited by aspirin alone. Collagen plus thrombin induced procoagulant platelet response is partially resistant to clopidogrel. SUMMARY Background Procoagulant platelets are a subset of highly activated platelets with a critical role in thrombin generation. Evaluation of their clinical utility in thrombotic disorders, such as coronary artery disease (CAD), has been thwarted by the lack of a sensitive and specific whole blood assay. Objectives We developed a novel assay, utilizing the cell death marker, GSAO [(4-(N-(S-glutathionylacetyl)amino)phenylarsonous acid], and the platelet activation marker, P-selectin, to identify procoagulant platelets in whole blood by flow cytometry. Patients/Methods Using this assay, we characterized the procoagulant platelet population in healthy controls and a cohort of patients undergoing elective coronary angiography. Results In patients with CAD, compared with patients without CAD, there was a heightened procoagulant platelet response to thrombin (25.2% vs. 12.2%), adenosine diphosphate (ADP) (7.8% vs. 2.7%) and thrombin plus collagen (27.2% vs. 18.3%). The heightened procoagulant platelet potential in CAD patients was not associated with other markers of platelet function, including aggregation, dense granule release and activation of α2b β3 integrin. Although dual antiplatelet therapy (DAPT) was associated with partial suppression of procoagulant platelets, this inhibitory effect on a patient level could not be predicted by aggregation response to ADP and was not fully suppressed by clopidogrel. Conclusions We report for the first time that procoagulant platelets can be efficiently detected in a few microliters of whole blood using the cell death marker, GSAO, and the platelet activation marker, P-selectin. A heightened procoagulant platelet response may provide insight into the thrombotic risk of CAD and help identify a novel target for antiplatelet therapies in CAD.
Collapse
Affiliation(s)
- L. Pasalic
- Prince of Wales Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyAustralia
- Departments of Clinical and Laboratory HaematologyInstitute of Clinical Pathology and Medical Research (ICPMR)NSW Health Pathology and Westmead HospitalWestmeadAustralia
- Sydney Centres for Thrombosis and HaemostasisWestmeadAustralia
| | | | - J. K. Lau
- ANZAC Research InstituteUniversity of SydneySydneyAustralia
- Department of CardiologyConcord Repatriation General HospitalSydneyAustralia
| | - H. Campbell
- Prince of Wales Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyAustralia
| | - G. J. Pennings
- ANZAC Research InstituteUniversity of SydneySydneyAustralia
| | - E. Lau
- Departments of Clinical and Laboratory HaematologyInstitute of Clinical Pathology and Medical Research (ICPMR)NSW Health Pathology and Westmead HospitalWestmeadAustralia
- Sydney Centres for Thrombosis and HaemostasisWestmeadAustralia
| | - D. Connor
- Blood, Stem Cell and Cancer Research UnitSt Vincent's Centre for Applied Medical ResearchSydneyAustralia
| | - H. P. Liang
- ANZAC Research InstituteUniversity of SydneySydneyAustralia
| | - D. Muller
- St Vincent's HospitalSydneyAustralia
| | - L. Kritharides
- ANZAC Research InstituteUniversity of SydneySydneyAustralia
- Department of CardiologyConcord Repatriation General HospitalSydneyAustralia
| | - P. J. Hogg
- The Centenary InstituteSydneyAustralia
- Trials CentreNational Health and Medical Research Council Clinical Trials CentreUniversity of SydneySydneyAustralia
| | - V. M. Chen
- Prince of Wales Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyAustralia
- ANZAC Research InstituteUniversity of SydneySydneyAustralia
- Department of HaematologyConcord Repatriation General HospitalSydneyAustralia
| |
Collapse
|
32
|
Tanaka J, Davis TP, Wilson P. Organic Arsenicals as Functional Motifs in Polymer and Biomaterials Science. Macromol Rapid Commun 2018; 39:e1800205. [PMID: 29806240 DOI: 10.1002/marc.201800205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Arsenic (As) exhibits diverse (bio)chemical reactivity and biological activity depending upon its oxidation state. However, this distinctive reactivity has been largely overlooked across many fields owing to concerns regarding the toxicity of arsenic. Recently, a clinical renaissance in the use of arsenicals, including organic arsenicals that are known to be less toxic than inorganic arsenicals, alludes to the possibility of broader acceptance and application in the field of polymer and biomaterials science. Here, current examples of polymeric/macromolecular arsenicals are reported to stimulate interest and highlight their potential as a novel platform for functional, responsive, and bioactive materials.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Thomas P Davis
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria, 3152, Australia
| | - Paul Wilson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria, 3152, Australia
| |
Collapse
|
33
|
Magrì A, Reina S, De Pinto V. VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Front Chem 2018; 6:108. [PMID: 29682501 PMCID: PMC5897536 DOI: 10.3389/fchem.2018.00108] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 01/15/2023] Open
Abstract
Cancer and neurodegeneration are different classes of diseases that share the involvement of mitochondria in their pathogenesis. Whereas the high glycolytic rate (the so-called Warburg metabolism) and the suppression of apoptosis are key elements for the establishment and maintenance of cancer cells, mitochondrial dysfunction and increased cell death mark neurodegeneration. As a main actor in the regulation of cell metabolism and apoptosis, VDAC may represent the common point between these two broad families of pathologies. Located in the outer mitochondrial membrane, VDAC forms channels that control the flux of ions and metabolites across the mitochondrion thus mediating the organelle's cross-talk with the rest of the cell. Furthermore, the interaction with both pro-apoptotic and anti-apoptotic factors makes VDAC a gatekeeper for mitochondria-mediated cell death and survival signaling pathways. Unfortunately, the lack of an evident druggability of this protein, since it has no defined binding or active sites, makes the quest for VDAC interacting molecules a difficult tale. Pharmacologically active molecules of different classes have been proposed to hit cancer and neurodegeneration. In this work, we provide an exhaustive and detailed survey of all the molecules, peptides, and microRNAs that exploit VDAC in the treatment of the two examined classes of pathologies. The mechanism of action and the potential or effectiveness of each compound are discussed.
Collapse
Affiliation(s)
- Andrea Magrì
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.,Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.,Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| |
Collapse
|
34
|
Rohlenova K, Veys K, Miranda-Santos I, De Bock K, Carmeliet P. Endothelial Cell Metabolism in Health and Disease. Trends Cell Biol 2018; 28:224-236. [DOI: 10.1016/j.tcb.2017.10.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
|
35
|
Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 2017; 8:23905-23926. [PMID: 28108741 PMCID: PMC5410354 DOI: 10.18632/oncotarget.14733] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/11/2017] [Indexed: 01/17/2023] Open
Abstract
A variety of studies indicated that inorganic arsenic and its methylated metabolites have paradoxical effects, namely, carcinogenic and anticancer effects. Epidemiological studies have shown that long term exposure to arsenic can increase the risk of cancers of lung, skin or bladder in man, which is probably associated with the arsenic metabolism. In fact, the enzymatic conversion of inorganic arsenic by Arsenic (+3 oxidation state) methyltransferase (AS3MT) to mono- and dimethylated arsenic species has long been considered as a major route for detoxification. However, several studies have also indicated that biomethylation of inorganic arsenic, particularly the production of trivalent methylated metabolites, is a process that activates arsenic as a toxin and a carcinogen. On the other hand, arsenic trioxide (As2O3) has recently been recognized as one of the most effective drugs for the treatment of APL. However, elaboration of the cytotoxic mechanisms of arsenic and its methylated metabolites in eradicating cancer is sorely lacking. To provide a deeper understanding of the toxicity and carcinogenicity along with them use of arsenic in chemotherapy, caution is required considering the poor understanding of its various mechanisms of exerting toxicity. Thereby, in this review, we have focused on arsenic metabolic pathway, the roles of the methylated arsenic metabolites in toxicity and in the therapeutic efficacy for the treatments of solid tumors, APL and/or non-APL malignancies.
Collapse
Affiliation(s)
- Islam Khairul
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Qian Qian Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Han Jiang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
- Ocean College, Zhejiang University, Hangzhou, China
| | - Chao Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Hua Naranmandura
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Ocean College, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Abstract
Mitochondrial structural and functional integrity defines the health of a cell by regulating cellular metabolism. Thus, mitochondria play an important role in both cell proliferation and cell death. Cancer cells are metabolically altered compared to normal cells for their ability to survive better and proliferate faster. Resistance to apoptosis is an important characteristic of cancer cells and given the contribution of mitochondria to apoptosis, it is imperative that mitochondria could behave differently in a tumor situation. The other feature associated with cancer cells is the Warburg effect, which engages a shift in metabolism. Although the Warburg effect often occurs in conjunction with dysfunctional mitochondria, the relationship between mitochondria, the Warburg effect, and cancer cell metabolism is not clearly decoded. Other than these changes, several mitochondrial gene mutations occur in cancer cells, mitochondrial biogenesis is affected and mitochondria see structural and functional variations. In cancer pharmacology, targeting mitochondria and mitochondria associated signaling pathways to reduce tumor proliferation is a growing field of interest. This chapter summarizes various changes in mitochondria in relevance to cancer, behavior of mitochondria during tumorigenesis, and the progress on using mitochondria as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
37
|
|
38
|
Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J, Bazhin AV. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J Cell Physiol 2016; 231:2570-81. [PMID: 26895995 DOI: 10.1002/jcp.25349] [Citation(s) in RCA: 450] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Werner Hartwig
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Pavel P Philippov
- Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
39
|
Yan B, Dong L, Neuzil J. Mitochondria: An intriguing target for killing tumour-initiating cells. Mitochondrion 2016; 26:86-93. [DOI: 10.1016/j.mito.2015.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
|
40
|
Necrotic platelets provide a procoagulant surface during thrombosis. Blood 2015; 126:2852-62. [PMID: 26474813 DOI: 10.1182/blood-2015-08-663005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
A subpopulation of platelets fulfills a procoagulant role in hemostasis and thrombosis by enabling the thrombin burst required for fibrin formation and clot stability at the site of vascular injury. Excess procoagulant activity is linked with pathological thrombosis. The identity of the procoagulant platelet has been elusive. The cell death marker 4-[N-(S-glutathionylacetyl)amino]phenylarsonous acid (GSAO) rapidly enters a subpopulation of agonist-stimulated platelets via an organic anion-transporting polypeptide and is retained in the cytosol through covalent reaction with protein dithiols. Labeling with GSAO, together with exposure of P-selectin, distinguishes necrotic from apoptotic platelets and correlates with procoagulant potential. GSAO(+) platelets form in occluding murine thrombi after ferric chloride injury and are attenuated with megakaryocyte-directed deletion of the cyclophilin D gene. These platelets form a procoagulant surface, supporting fibrin formation, and reduction in GSAO(+) platelets is associated with reduction in platelet thrombus size and fibrin formation. Analysis of platelets from human subjects receiving aspirin therapy indicates that these procoagulant platelets form despite aspirin therapy, but are attenuated by inhibition of the necrosis pathway. These findings indicate that the major subpopulation of platelets involved in fibrin formation are formed via regulated necrosis involving cyclophilin D, and that they may be targeted independent of platelet activation.
Collapse
|
41
|
Li WJ, Nie SP, Yao YF, Liu XZ, Shao DY, Gong DM, Cui SW, Phillips GO, He M, Xie MY. Ganoderma atrum Polysaccharide Ameliorates Hyperglycemia-Induced Endothelial Cell Death via a Mitochondria-ROS Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8182-8191. [PMID: 26323486 DOI: 10.1021/acs.jafc.5b03462] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to examine the role of Ganoderma atrum polysaccharide (PSG-1) in reactive oxygen species (ROS) generation and mitochondrial function in hyperglycemia-induced angiopathy. In this work, ROS scavenger, oxidizing agent tert-butylhydroperoxide (tBH), mitochondrial permeability transition pore (mPTP) blockers, and caspase inhibition are used to investigate whether PSG-1 may promote survival of human umbilical vein cells (HUVECs) through preventing the overproduction of ROS and mitochondrial dysfunction. Experimental results show that exposure of HUVECs to 35.5 mmol/L glucose increases the proportion of cells undergoing apoptosis. PSG-1, mPTP blocker, or caspase inhibition can reduce apoptosis and ROS generation. PSG-1 also increases mitochondrial Bcl-2 protein formation and mitochondrial membrane potential (ΔΨm) but inhibits Bax translocation, cytochrome c release, and caspase activation. In summary, vascular protection of PSG-1 can be mediated by a mitochondria-ROS pathway. ROS generation and mPTP induction are critical for high glucose-mediated apoptosis. PSG-1 ameliorates endothelial dysfunction by inhibiting oxidative stress and subsequent mitochondrial dysfunction.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Yu-Fei Yao
- China People's Liberation Army No. 94 Hospital, No. 1028, Jinggangshan Avenue, Nanchang 330000, China
| | - Xiao-Zhen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Deng-Yin Shao
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - De-Ming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
- School of Biological Sciences, The University of Auckland , Auckland, Private Bag 92019, New Zealand
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
- Guelph Food Research Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Glyn O Phillips
- Phillips Hydrocolloids Research Centre, Glyndwr University , Wrexham, LL11 2AW Wales, U.K
| | - Ming He
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
- Departments of Pharmaceutical Science, Nanchang University , Nanchang 330006, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
42
|
A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells. Sci Rep 2015; 5:13543. [PMID: 26337336 PMCID: PMC4559806 DOI: 10.1038/srep13543] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/30/2015] [Indexed: 01/24/2023] Open
Abstract
Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment.
Collapse
|
43
|
Gang BP, Dilda PJ, Hogg PJ, Blackburn AC. Targeting of two aspects of metabolism in breast cancer treatment. Cancer Biol Ther 2015; 15:1533-41. [PMID: 25482950 PMCID: PMC4622508 DOI: 10.4161/15384047.2014.955992] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deregulated metabolism is gaining recognition as a hallmark of cancer cells, and is being explored for therapeutic potential. The Warburg effect is a metabolic phenotype that occurs in 90% of tumors, where glycolysis is favored despite the presence of oxygen. Dichloroacetate (DCA) is a pyruvate dehydrogenase kinase (PDK) inhibitor that can reverse the Warburg effect. PENAO (4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid) is a novel anti-mitochondrial agent that targets the adenine nucleotide transporter in mitochondria and is currently in clinical trials for solid tumors. We have investigated the targeting of two aspects of metabolism, using DCA to promote mitochondrial activity combined with PENAO to inhibit mitochondrial activity, in breast and other carcinoma cell lines. PENAO was effective at low uM concentrations in luminal (T-47D) and triple negative (MDA-MB-231) breast cancer cells, in normoxia and hypoxia. The cytotoxicity of PENAO was enhanced by DCA by a mechanism involving increased reactive oxygen species in both T-47D and MDA-MB-231 cells, however further investigations found it did not always involve PDK2 inhibition or reduction of the mitochondrial membrane potential, which are the accepted mechanisms for DCA induction of apoptosis. Nevertheless, DCA sensitized all cancer cell lines tested toward apoptosis of PENAO. DCA and PENAO are both currently in clinical trials and targeting cancer metabolism with these drugs may offer options for difficult to treat cancers.
Collapse
Key Words
- ANT, adenine nucleotide translocase; DCA, dichloroacetate
- Abbreviations:
- ETC, electron transport chain
- MMP, mitochondrial membrane potential
- MPTP, mitochondrial permeability transition pore
- NAC, N-acetylcysteine
- PDK, pyruvate dehydrogenase kinase
- PDK2-kd, knock down of PDK2
- PENAO
- PENAO, 4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid
- ROS, reactive oxygen species
- adenine nucleotide transporter
- apoptosis
- breast cancer
- cancer biology
- dichloroacetate
- metabolism
- mitochondria
- pyruvate dehydrogenase kinase
- siNC, negative control siRNA
- siPDK, PDK siRNA
- tumor hypoxia
Collapse
Affiliation(s)
- Bevan P Gang
- a Cancer Metabolism and Genetics Group; The John Curtin School of Medical Research ; The Australian National University ; Canberra , Australia
| | | | | | | |
Collapse
|
44
|
Gorlach S, Fichna J, Lewandowska U. Polyphenols as mitochondria-targeted anticancer drugs. Cancer Lett 2015; 366:141-9. [PMID: 26185003 DOI: 10.1016/j.canlet.2015.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 01/02/2023]
Abstract
Mitochondria are the respiratory and energetic centers of the cell where multiple intra- and extracellular signal transduction pathways converge leading to dysfunction of those organelles and, consequently, apoptotic or/and necrotic cell death. Mitochondria-targeted anticancer drugs are referred to as mitocans; they have recently been classified by Neuzil et al. (2013) according to their molecular mode of action into: hexokinase inhibitors; mimickers of the Bcl-2 homology-3 (BH3) domains; thiol redox inhibitors; deregulators of voltage-dependent anionic channel (VDAC)/adenine nucleotide translocase (ANT) complex; electron redox chain-targeting agents; lipophilic cations targeting the mitochondrial inner membrane; tricarboxylic acid cycle-targeting agents; and mitochondrial DNA-targeting agents. Polyphenols of plant origin and their synthetic or semisynthetic derivatives exhibit pleiotropic biological activities, including the above-mentioned modes of action characteristic of mitocans. Some of them have already been tested in clinical trials. Gossypol has served as a lead compound for developing more efficient BH3 mimetics such as ABT-737 and its orally available structural analog ABT-263 (Navitoclax). Furthermore, mitochondriotropic derivatives of phenolic compounds such as quercetin and resveratrol have been synthesized and reported to efficiently induce cancer cell death in vitro.
Collapse
Affiliation(s)
- Sylwia Gorlach
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
45
|
Alterations in the mitochondrial responses to PENAO as a mechanism of resistance in ovarian cancer cells. Gynecol Oncol 2015; 138:363-71. [PMID: 26080289 DOI: 10.1016/j.ygyno.2015.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The purpose of this study was to test PENAO, a promising new organoarsenical that is in phase 1 testing in patients with solid tumours, on a range of ovarian cancer cell lines with different histotypes, and to understand the molecular basis of drug resistance exhibited by the endometrioid ovarian cancer cell line, SKOV-3. METHODS Proliferation arrest and cell death induced by PENAO in serous (OVCAR-3), endometrioid (SKOV-3, TOV112D), clear cell (TOV21G) and mucinous (EFO27) ovarian cancer cells in culture, and anti-tumour efficacy in a murine model of SKOV-3 and OVCAR-3 tumours, were measured. Cells were analysed for cell cycle arrest, cell death mechanisms, reactive oxygen species production, mitochondrial depolarisation, oxygen consumption and acid production. RESULTS PENAO demonstrated promising anti-proliferative activity on the most common (serous, endometrioid) as well as on rare (clear cell, mucinous) subtypes of ovarian cancer cell lines. No cross-resistance with platinum-based drugs was evident. Endometrioid SKOV-3 cells were, however, shown to be resistant to PENAO in vitro and in a xenograft mouse model. This resistance was due to an ability to cope with PENAO-induced oxidative stress, notably through heme oxygenase-1 induction, and a shift in metabolism towards glycolysis. The adaptive glycolytic shift in SKOV-3 was targeted using a mTORC1 inhibitor in combination with PENAO. This strategy was successful with the two drugs acting synergistically to inhibit cell proliferation and to induce cell death via apoptosis and autophagy. CONCLUSION Mitochondria/mTOR dual-targeting therapy may constitute a new approach for the treatment of recurrent/resistant forms of epithelial ovarian cancer.
Collapse
|
46
|
Marcu R, Kotha S, Zhi Z, Qin W, Neeley CK, Wang RK, Zheng Y, Hawkins BJ. The mitochondrial permeability transition pore regulates endothelial bioenergetics and angiogenesis. Circ Res 2015; 116:1336-45. [PMID: 25722455 PMCID: PMC4393786 DOI: 10.1161/circresaha.116.304881] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/26/2015] [Indexed: 01/01/2023]
Abstract
RATIONALE The mitochondrial permeability transition pore is a well-known initiator of cell death that is increasingly recognized as a physiological modulator of cellular metabolism. OBJECTIVE We sought to identify how the genetic deletion of a key regulatory subunit of the mitochondrial permeability transition pore, cyclophilin D (CypD), influenced endothelial metabolism and intracellular signaling. METHODS AND RESULTS In cultured primary human endothelial cells, genetic targeting of CypD using siRNA or shRNA resulted in a constitutive increase in mitochondrial matrix Ca(2+) and reduced nicotinamide adenine dinucleotide (NADH). Elevated matrix NADH, in turn, diminished the cytosolic NAD(+)/NADH ratio and triggered a subsequent downregulation of the NAD(+)-dependent deacetylase sirtuin 1 (SIRT1). Downstream of SIRT1, CypD-deficient endothelial cells exhibited reduced phosphatase and tensin homolog expression and a constitutive rise in the phosphorylation of angiogenic Akt. Similar changes in SIRT1, phosphatase and tensin homolog, and Akt were also noted in the aorta and lungs of CypD knockout mice. Functionally, CypD-deficient endothelial cells and aortic tissue from CypD knockout mice exhibited a dramatic increase in angiogenesis at baseline and when exposed to vascular endothelial growth factor. The NAD(+) precursor nicotinamide mononucleotide restored the cellular NAD(+)/NADH ratio and normalized the CypD-deficient phenotype. CypD knockout mice also presented accelerated wound healing and increased neovascularization on tissue injury as monitored by optical microangiography. CONCLUSIONS Our study reveals the importance of the mitochondrial permeability transition pore in the regulation of endothelial mitochondrial metabolism and vascular function. The mitochondrial regulation of SIRT1 has broad implications in the epigenetic regulation of endothelial phenotype.
Collapse
Affiliation(s)
- Raluca Marcu
- From the Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine (R.M., C.K.N., B.J.H.), Bioengineering (R.M., S.K., Z.Z., W.Q., R.K.W.), and Ophthalmology (R.K.W.), University of Washington, Seattle; and Department of General Surgery, University of Michigan, Ann Arbor (C.K.N.).
| | - Surya Kotha
- From the Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine (R.M., C.K.N., B.J.H.), Bioengineering (R.M., S.K., Z.Z., W.Q., R.K.W.), and Ophthalmology (R.K.W.), University of Washington, Seattle; and Department of General Surgery, University of Michigan, Ann Arbor (C.K.N.)
| | - Zhongwei Zhi
- From the Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine (R.M., C.K.N., B.J.H.), Bioengineering (R.M., S.K., Z.Z., W.Q., R.K.W.), and Ophthalmology (R.K.W.), University of Washington, Seattle; and Department of General Surgery, University of Michigan, Ann Arbor (C.K.N.)
| | - Wan Qin
- From the Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine (R.M., C.K.N., B.J.H.), Bioengineering (R.M., S.K., Z.Z., W.Q., R.K.W.), and Ophthalmology (R.K.W.), University of Washington, Seattle; and Department of General Surgery, University of Michigan, Ann Arbor (C.K.N.)
| | - Christopher K Neeley
- From the Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine (R.M., C.K.N., B.J.H.), Bioengineering (R.M., S.K., Z.Z., W.Q., R.K.W.), and Ophthalmology (R.K.W.), University of Washington, Seattle; and Department of General Surgery, University of Michigan, Ann Arbor (C.K.N.)
| | - Ruikang K Wang
- From the Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine (R.M., C.K.N., B.J.H.), Bioengineering (R.M., S.K., Z.Z., W.Q., R.K.W.), and Ophthalmology (R.K.W.), University of Washington, Seattle; and Department of General Surgery, University of Michigan, Ann Arbor (C.K.N.)
| | - Ying Zheng
- From the Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine (R.M., C.K.N., B.J.H.), Bioengineering (R.M., S.K., Z.Z., W.Q., R.K.W.), and Ophthalmology (R.K.W.), University of Washington, Seattle; and Department of General Surgery, University of Michigan, Ann Arbor (C.K.N.)
| | - Brian J Hawkins
- From the Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine (R.M., C.K.N., B.J.H.), Bioengineering (R.M., S.K., Z.Z., W.Q., R.K.W.), and Ophthalmology (R.K.W.), University of Washington, Seattle; and Department of General Surgery, University of Michigan, Ann Arbor (C.K.N.).
| |
Collapse
|
47
|
Wilson P, Anastasaki A, Owen MR, Kempe K, Haddleton DM, Mann SK, Johnston APR, Quinn JF, Whittaker MR, Hogg PJ, Davis TP. Organic Arsenicals As Efficient and Highly Specific Linkers for Protein/Peptide–Polymer Conjugation. J Am Chem Soc 2015; 137:4215-22. [DOI: 10.1021/jacs.5b01140] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Paul Wilson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Athina Anastasaki
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew R. Owen
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Kristian Kempe
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David M. Haddleton
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sarah K. Mann
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Angus P. R. Johnston
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michael R. Whittaker
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Philip J. Hogg
- Lowy
Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Thomas P. Davis
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
48
|
Analytical approaches to investigating metal-containing drugs. J Pharm Biomed Anal 2015; 106:210-7. [DOI: 10.1016/j.jpba.2014.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/22/2022]
|
49
|
Lu D, Arulmozhiraja S, Coote ML, Rae AD, Salem G, Willis AC, Wild SB, Benhenda S, Breitenbach VL, de Thé H, Zhai X, Hogg PJ, Dilda PJ. Sulfur Derivatives of the Natural Polyarsenical Arsenicin A: Biologically Active, Organometallic Arsenic–Sulfur Cages Related to the Minerals Realgar and Uzonite. Organometallics 2015. [DOI: 10.1021/om500829y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Di Lu
- Research
School of Chemistry,
College of Physical Sciences, Australian National University, Canberra ACT 0200, Australia
| | - Sundaram Arulmozhiraja
- Research
School of Chemistry,
College of Physical Sciences, Australian National University, Canberra ACT 0200, Australia
| | - Michelle L. Coote
- Research
School of Chemistry,
College of Physical Sciences, Australian National University, Canberra ACT 0200, Australia
| | - A. David Rae
- Research
School of Chemistry,
College of Physical Sciences, Australian National University, Canberra ACT 0200, Australia
| | - Geoff Salem
- Research
School of Chemistry,
College of Physical Sciences, Australian National University, Canberra ACT 0200, Australia
| | - Anthony C. Willis
- Research
School of Chemistry,
College of Physical Sciences, Australian National University, Canberra ACT 0200, Australia
| | - S. Bruce Wild
- Research
School of Chemistry,
College of Physical Sciences, Australian National University, Canberra ACT 0200, Australia
| | - Shirine Benhenda
- University Paris Diderot, Sorbonne Paris
Cité, Hôpital St Louis
1, Avenue Claude Vellefaux, Paris 75475 Cedex 10, France
| | - Valerie Lallemand Breitenbach
- University Paris Diderot, Sorbonne Paris
Cité, Hôpital St Louis
1, Avenue Claude Vellefaux, Paris 75475 Cedex 10, France
| | - Hugues de Thé
- University Paris Diderot, Sorbonne Paris
Cité, Hôpital St Louis
1, Avenue Claude Vellefaux, Paris 75475 Cedex 10, France
| | - Xiaoyi Zhai
- Tumour Metabolism Group,
Adult Cancer Program, Prince of Wales Clinical School and Lowy Cancer
Research Centre, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Philip J. Hogg
- Tumour Metabolism Group,
Adult Cancer Program, Prince of Wales Clinical School and Lowy Cancer
Research Centre, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Pierre J. Dilda
- Tumour Metabolism Group,
Adult Cancer Program, Prince of Wales Clinical School and Lowy Cancer
Research Centre, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
50
|
Shen H, Decollogne S, Dilda PJ, Hau E, Chung SA, Luk PP, Hogg PJ, McDonald KL. Dual-targeting of aberrant glucose metabolism in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:14. [PMID: 25652202 PMCID: PMC4324653 DOI: 10.1186/s13046-015-0130-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/28/2015] [Indexed: 01/02/2023]
Abstract
Background Glioblastoma (GBM) is the most common and malignant primary brain tumor. In contrast to some other tumor types, aberrant glucose metabolism is an important component of GBM growth and chemoresistance. Recent studies of human orthotopic GBM in mice and in situ demonstrated GBM cells rely on both glycolysis and mitochondrial oxidation for glucose catabolism. These observations suggest that the homeostasis of energy metabolism of GBM cells might be further disturbed by dual-inhibition of glucose metabolism. The present study aimed to evaluate the efficacy and the mechanisms of dual-targeting therapy in GBM cells. Methods Representative GBM cells (immortalized GBM cell lines and patient-derived GBM cells) and non-cancerous cells were treated with 4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid (PENAO), an in-house designed novel arsenic-based mitochondrial toxin, in combination with dichloroacetate (DCA), a pyruvate dehydrogenase kinase inhibitor. The efficacy of this combinatorial therapy was evaluated by MTS assay, clonogenic surviving assay and apoptotic assays. The underlying mechanisms of this dual-targeting treatment were unraveled by using mitochondrial membrane potential measurements, cytosol/mitochondrial ROS detection, western blotting, extracellular flux assay and mass spectrometry. Results As monotherapies, both PENAO and DCA induced proliferation arrest in a panel of GBM cell lines and primary isolates. PENAO inhibited oxygen consumption, induced oxidative stress and depolarized mitochondrial membrane potential, which in turn activated mitochondria-mediated apoptosis. By combining DCA with PENAO, the two drugs worked synergistically to inhibit cell proliferation (but had no significant effect on non-cancerous cells), impair the clonogenicity, and induce mitochondria-mediated apoptosis. An oxidative stress of mitochondrial origin takes a prominent place in the mechanism by which the combination of PENAO and DCA induces cell death. Additionally, PENAO-induced oxidative damage was enhanced by DCA through glycolytic inhibition which in turn diminished acid production induced by PENAO. Moreover, DCA treatment also led to an alteration in the multidrug resistance (MDR) phenotype of GBM cells, thereby leading to an increased cytosolic accumulation of PENAO. Conclusions The findings of this study shed a new light with respect to the dual-targeting of glucose metabolism in GBM cells and the innovative combination of PENAO and DCA shows promise in expanding GBM therapies.
Collapse
Affiliation(s)
- Han Shen
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia.
| | - Stephanie Decollogne
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Pierre J Dilda
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Eric Hau
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia. .,Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
| | - Sylvia A Chung
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia.
| | - Peter P Luk
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Philip J Hogg
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Kerrie L McDonald
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|