1
|
He K, Li B, Wang J, Wang Y, You Z, Chen X, Chen H, Li J, Huang Q, Guo Q, Huang YH, Guan Y, Chen K, Zhao J, Deng Y, Xie F. APOE ε4 is associated with decreased synaptic density in cognitively impaired participants. Alzheimers Dement 2024; 20:3157-3166. [PMID: 38477490 PMCID: PMC11095422 DOI: 10.1002/alz.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aβ) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.
Collapse
Affiliation(s)
- Kun He
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Wang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Ying Wang
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhiwen You
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xing Chen
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Haijuan Chen
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junpeng Li
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yiyun Henry Huang
- PET CenterDepartment of Radiology and Biomedical ImagingYale University School of MedicineNew HavenUSA
| | - Yihui Guan
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Kewei Chen
- Banner Alzheimer InstituteArizona State University, University of Arizona and Arizona Alzheimer's ConsortiumPhoenixUSA
| | - Jun Zhao
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Fessel J. Does synaptic hypometabolism or synaptic dysfunction, originate cognitive loss? Analysis of the evidence. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12177. [PMID: 34027027 PMCID: PMC8129845 DOI: 10.1002/trc2.12177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/31/2021] [Indexed: 11/25/2022]
Abstract
Elderly persons with currently normal cognition who have cerebral hypometabolism as shown by low uptake of 18fluorine-fluorodeoxyglucose (18F-FDG), are at risk of future loss of cognition and, thus, of future Alzheimer's dementia (AD). Reduction of either 18F-FDG or cognition is assumed to reflect synaptic dysfunction, since synapses account for the majority of glucose use by the brain and cognition depends upon accurate synaptic function. The chronology of the connection between reduced cerebral synaptic function and hypometabolism is, therefore, a critical question, because if synaptic dysfunction came first, then correcting the hypometabolism would likely not benefit synaptic function; but if hypometabolism came first, then correcting the hypometabolism probably would benefit synaptic function. That correction might prevent initiation of the cognitive loss that eventuates in AD and, thereby, would benefit the vast numbers of persons in their eighth to tenth decades of life who are at risk for AD. Among the many citations reviewed in this presentation, seven show hypometabolism that precedes synaptic dysfunction, and two show the reverse. Thus the preponderance of evidence, 78%, suggests that the initiating event is synaptic hypometabolism and that it is 3.5-fold less likely that synaptic dysfunction is the initiator. In addition, it is inherently unlikely that synaptic dysfunction causes hypometabolism. This conclusion could be tested by a clinical trial whose primary objective would be to assess the benefit to cognition of improving synaptic metabolism in patients who are at risk for cognitive loss.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
3
|
Brain imaging measurements of fibrillar amyloid-β burden, paired helical filament tau burden, and atrophy in cognitively unimpaired persons with two, one, and no copies of the APOE ε4 allele. Alzheimers Dement 2020; 16:598-609. [PMID: 31831374 PMCID: PMC7187298 DOI: 10.1016/j.jalz.2019.08.195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION We previously characterized associations between brain imaging measurements of amyloid-β (Aβ) plaque burden and apolipoprotein E (APOE) ε4 gene dose in a small number of cognitively unimpaired late-middle-aged APOE ε4 homozygotes (HMs), heterozygotes (HTs), and noncarriers (NCs). We now characterize cross-sectional Aβ plaque, tau tangle, and cortical atrophy (neurodegeneration) measurements, classifications, and associations with age in a larger number of unimpaired HMs, HTs, and NCs over a wider age range. METHODS We analyzed 11 C Pittsburgh compound B (Aβ) positron emission tomography (PET), flortaucipir (tau) PET, and volumetric magnetic resonance imaging data from 164 study participants of age 47-86 years, including 26 APOE ε4 HMs, 48 HTs, and 90 NCs matched for age and sex. RESULTS Aβ PET measurements rose, plateaued at the respective ages of 68 and 76, and then declined with age in unimpaired HM and HT groups. Compared with NCs, these two groups began to have significantly higher Aβ PET measurements at ages 62 and 70, respectively, and no longer had significantly higher measurements by ages 71 and 78, respectively. They began to have significantly higher entorhinal cortex tau PET measurements at ages 66 and 70, respectively, and no longer had significantly higher measurements by ages 74 and 78, respectively. Brain atrophy measurements tended to decline slowly with age in all three genetic groups. Their elevated tau PET measurements were attributable to those with positive Aβ PET scans. 41.0%, 18.0%, and 5.0% of the 47- to 70-year-old HMs, HTs, and NCs and 25.0%, 79.0%, and 38.0% of the 71- to 86-year-old HMs, HTs, and NCs had positive Aβ PET scans, and the long-term recall memory scores are significantly higher in the older HMs than in HT and NC groups, suggesting resistance to Aβ deposition in those HMs who remained unimpaired at older ages. CONCLUSIONS This study provides information about Aβ plaque burden, tau tangle burden, and neurodegeneration in cognitively unimpaired persons at three levels of genetic risk for AD. Unimpaired APOE ε4 HMs can be studied before their 70s to evaluate the understanding of factors, processes, and interventions involved in the predisposition to and prevention of AD, and after their 70s, to discover factors, processes, and interventions involved in the resilience or resistance to and prevention of AD.
Collapse
|
4
|
Siegel G, Mockenhaupt FHME, Behnke AL, Ermilov E, Winkler K, Pries AR, Malmsten M, Hetzer R, Saunders R, Lindman B. Lipoprotein binding to anionic biopolyelectrolytes and the effect of glucose on nanoplaque formation in arteriosclerosis and Alzheimer's disease. Adv Colloid Interface Sci 2016; 232:25-35. [PMID: 26969281 DOI: 10.1016/j.cis.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 11/30/2022]
Abstract
Arteriosclerosis with its clinical sequelae (cardiac infarction, stroke, peripheral arterial occlusive disease) and vascular/Alzheimer dementia not only result in far more than half of all deaths but also represent dramatic economic problems. The reason is, among others, that diabetes mellitus is an independent risk factor for both disorders, and the number of diabetics strongly increases worldwide. More than one-half of infants in the first 6months of life have already small collections of macrophages and macrophages filled with lipid droplets in susceptible segments of the coronary arteries. On the other hand, the authors of the Bogalusa Heart Study found a strong increase in the prevalence of obesity in childhood that is paralleled by an increase in blood pressure, blood lipid concentration, and type 2 diabetes mellitus. Thus, there is a clear linkage between arteriosclerosis/Alzheimer's disease on the one hand and diabetes mellitus on the other hand. Furthermore, it has been demonstrated that distinct apoE isoforms on the blood lipids further both arteriosclerotic and Alzheimer nanoplaque formation and therefore impair flow-mediated vascular reactivity as well. Nanoplaque build-up seems to be the starting point for arteriosclerosis and Alzheimer's disease in their later full clinical manifestation. In earlier work, we could portray the anionic biopolyelectrolytes syndecan/perlecan as blood flow sensors and lipoprotein receptors in cell membrane and vascular matrix. We described extensively molecular composition, conformation, form and function of the macromolecule heparan sulfate proteoglycan (HS-PG). In two supplementary experimental settings (ellipsometry, myography), we utilized isolated HS-PG for in vitro nanoplaque investigations and isolated human coronary artery segments for in vivo tension measurements. With the ellipsometry-based approach, we were successful in establishing a direct connection on a molecular level between diabetes mellitus on the one side and arteriosclerosis/Alzheimer's disease on the other side. Application of glucose at a concentration representative for diabetics and leading to glycation of proteins and lipids, entailed a significant increase in arteriosclerotic and Alzheimer nanoplaque formation. IDLapoE4/E4 was by far superior to IDLapoE3/E3 in plaque build-up, both in diabetic and non-diabetic patients. Recording vascular tension of flow-dependent reactivity in blood substitute solution and under application of different IDLapoE isoforms showed an impaired vasorelaxation for pooled IDL and IDLapoE4/E4, thus confirming the ellipsometric investigations. Incubation in IDLapoE0/E0 (apoE "knockout man"), however, resulted in a massive flow-mediated contraction, also complemented by strongly aggregated nanoplaques. In contrast, HDL was shown to present a powerful protection against nanoplaque formation on principle, both in the in vitro model and the in vivo scenario on the endothelial cell membrane. The competitive interplay with LDL is highlighted through the flow experiment, where flow-mediated, HDL-induced vasodilatation remains untouched by additional incubation with LDL. This is due to the four times higher affinity for the proteoglycan receptor of HDL as compared to LDL. Taken together, the studies demonstrate that while simplistic, the ellipsometry approach and the endothelial-mimicking proteoglycan-modified surfaces provide information on the initial steps of lipoprotein-related plaque formation, which correlates with findings on endothelial cells and blood vessels, and afford insight into the role of lipoprotein deposition and exchange phenomena at the onset of these pathophysiologies.
Collapse
Affiliation(s)
- G Siegel
- Charité - University Clinic Berlin, 10117 Berlin, Germany; University of Uppsala Biomedical Center, 751 23 Uppsala, Sweden; St. George's University School of Arts & Sciences, True Blue, Grenada.
| | | | - A-L Behnke
- Charité - University Clinic Berlin, 10117 Berlin, Germany
| | - E Ermilov
- Charité - University Clinic Berlin, 10117 Berlin, Germany; Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - K Winkler
- University Clinic Freiburg, 79106 Freiburg, Germany
| | - A R Pries
- Charité - University Clinic Berlin, 10117 Berlin, Germany
| | - M Malmsten
- University of Uppsala Biomedical Center, 751 23 Uppsala, Sweden; Charité - University Clinic Berlin, 10117 Berlin, Germany
| | - R Hetzer
- German Heart Institute Berlin, 13353 Berlin, Germany
| | - R Saunders
- St. George's University School of Arts & Sciences, True Blue, Grenada; Charité - University Clinic Berlin, 10117 Berlin, Germany
| | - B Lindman
- University of Lund, 221 00 Lund, Sweden; University of Coimbra, 3004-535 Coimbra, Portugal; Nanyang Technological University School of Materials Science & Engineering, Singapore
| |
Collapse
|
5
|
Welch A, Mingarelli M, Riedel G, Platt B. Mapping changes in mouse brain metabolism with PET/CT. J Nucl Med 2013; 54:1946-53. [PMID: 24009277 DOI: 10.2967/jnumed.113.121509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Because preclinical imaging offers challenges and opportunities, we set out to investigate and optimize image processing techniques to measure changes in mouse brain metabolism with preclinical (18)F-FDG PET/CT. In particular, we considered the effects of scan length, image registration methods, image quantification methods, and smoothing during statistical parametric mapping (SPM). METHODS A cohort of 12 wild-type mice was scanned on 3 occasions at an average age of 6, 10, and 14 mo. The impact of the scan length (10, 20, 30, or 40 min) was determined, and images were registered to a template based on either the PET or the CT image. Analysis was performed using SPM or predefined regions of interest (ROIs). Data were expressed in units of standardized uptake value or percentage injected dose per gram of tissue for absolute values; images were also normalized to whole-brain activity. RESULTS Significant variability was observed in global brain (18)F-FDG uptake between animals. Normalizing images to the whole-brain activity significantly improved detection of regional changes in metabolism. Registration based on CT images provided greater power for detecting changes in metabolism than did registration based on PET images only. In line with an age-dependent decline in brain metabolism, both ROI and SPM-based methods revealed significant changes; SPM, however, was generally more sensitive and region-specific. For example, small clusters of voxels within an ROI differed significantly between ages even in the absence of significant changes in average uptake over the whole region. Finally, and contrary to expectation, we found little benefit from longer scan times yet a marked reduction in uptake from 45 to 85 min after injection and regional variations in the rate of washout. CONCLUSION With appropriate processing, preclinical PET/CT provides a highly sensitive method for reliable identification of metabolic changes in the mouse brain.
Collapse
Affiliation(s)
- Andy Welch
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom; and
| | | | | | | |
Collapse
|
6
|
|
7
|
Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A 2009; 106:6820-5. [PMID: 19346482 DOI: 10.1073/pnas.0900345106] [Citation(s) in RCA: 611] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fibrillar amyloid-beta (Abeta) is found in the brains of many cognitively normal older people. Whether or not this reflects a predisposition to Alzheimer's disease (AD) is unknown. We used Pittsburgh Compound B (PiB) PET to characterize the relationship between fibrillar Abeta burden and this predisposition in cognitively normal older people at 3 mean levels of genetic risk for AD. Dynamic PiB PET scans, the Logan method, statistical parametric mapping, and automatically labeled regions of interest (ROIs) were used to characterize and compare cerebral-to-cerebellar PIB distribution volume ratios, reflecting fibrillar Abeta burden, in 28 cognitively normal persons (mean age, 64 years) with a reported family history of AD and 2 copies, 1 copy, and no copies of the apolipoprotein E (APOE) epsilon4 allele. The 8 epsilon4 homozygotes, 8 heterozygotes, and 12 noncarriers did not differ significantly in terms of age, sex, or cognitive scores. Fibrillar Abeta was significantly associated with APOE epsilon4 carrier status and epsilon4 gene dose in AD-affected mean cortical, frontal, temporal, posterior cingulate-precuneus, parietal, and basal ganglia ROIs, and was highest in an additional homozygote who had recently developed mild cognitive impairment. These findings suggest that fibrillar Abeta burden in cognitively normal older people is associated with APOE epsilon4 gene dose, the major genetic risk factor for AD. Additional studies are needed to track fibrillar Abeta accumulation in persons with different kinds and levels of AD risk; to determine the extent to which fibrillar Abeta, alone or in combination with other biomarkers and risk factors, predicts rates of cognitive decline and conversion to clinical AD; and to establish the role of fibrillar Abeta imaging in primary prevention trials.
Collapse
|
8
|
Abstract
My colleagues and I have been using positron emission tomography (PET) and magnetic resonance imaging (MRI) to detect and track the brain changes associated with Alzheimer's disease (AD) and normal brain aging in cognitively normal persons with two copies, one copy, and no copies of the apolipoprotein E (APOE) epsilon4 allele, a common AD susceptibility gene. In this review article, I consider how brain imaging techniques could be used to evaluate putative AD prevention therapies in cognitively normal APOE epsilon4 carriers and putative age-modifying therapies in cognitively normal APOE epsilon4 noncarriers, how they could help investigate the individual and aggregate effects of putative AD risk modifiers, and how they could help guide the investigation of a molecular mechanism associated with AD vulnerability and normal neurological aging. I suggest how high-resolution genome-wide genetic and transcriptomic studies could further help in the scientific understanding of AD, aging, and other common and genetically complex phenotypes, such as variation in normal human memory performance, and in the discovery and evaluation of promising treatments for these phenotypes. Finally, I illustrate the push-pull relationship between brain imaging, genomics research, and other neuroscientific research in the study of AD and aging.
Collapse
Affiliation(s)
- Eric M Reiman
- Banner Alzheimer's Institute, Department of Psychiatry at the University of Arizona, Arizona Alzheimer's Consortium, Phoenix, Arizona 85006, USA.
| |
Collapse
|
9
|
Trivedi MA, Schmitz TW, Ries ML, Torgerson BM, Sager MA, Hermann BP, Asthana S, Johnson SC. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's disease: a cross-sectional study. BMC Med 2006; 4:1. [PMID: 16412236 PMCID: PMC1373642 DOI: 10.1186/1741-7015-4-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 01/13/2006] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The presence of the apolipoprotein E (APOE) epsilon4 allele is a major risk factor for the development of Alzheimer's disease (AD), and has been associated with metabolic brain changes several years before the onset of typical AD symptoms. Functional MRI (fMRI) is a brain imaging technique that has been used to demonstrate hippocampal activation during measurement of episodic encoding, but the effect of the epsilon4 allele on hippocampal activation has not been firmly established. METHODS The present study examined the effects of APOE genotype on brain activation patterns in the medial temporal lobe (MTL) during an episodic encoding task using a well-characterized novel item versus familiar item contrast in cognitively normal, middle-aged (mean = 54 years) individuals who had at least one parent with AD. RESULTS We found that epsilon3/4 heterozygotes displayed reduced activation in the hippocampus and MTL compared to epsilon3/3 homozygotes. There were no significant differences between the groups in age, education or neuropsychological functioning, suggesting that the altered brain activation seen in epsilon3/4 heterozygotes was not associated with impaired cognitive function. We also found that participants' ability to encode information on a neuropsychological measure of learning was associated with greater activation in the anterior MTL in the epsilon3/3 homozygotes, but not in the epsilon3/4 heterozygotes. CONCLUSION Together with previous studies reporting reduced glucose metabolism and AD-related neuropathology, this study provides convergent validity for the idea that the MTL exhibits functional decline associated with the APOE epsilon4 allele. Importantly, these changes were detected in the absence of meaningful neuropsychological differences between the groups. A focus of ongoing work in this laboratory is to determine if these findings are predictive of subsequent cognitive decline.
Collapse
Affiliation(s)
- Mehul A Trivedi
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Taylor W Schmitz
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Michele L Ries
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Britta M Torgerson
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Mark A Sager
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Bruce P Hermann
- Department of Neurology, University of Wisconsin Medical School, Madison, WI, USA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| |
Collapse
|
10
|
Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J. Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad Sci U S A 2005; 102:8299-302. [PMID: 15932949 PMCID: PMC1149416 DOI: 10.1073/pnas.0500579102] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patients with Alzheimer's disease (AD) have abnormally low positron emission tomography (PET) measurements of the cerebral metabolic rate for glucose (CMRgl) in regions of the precuneus and the posterior cingulate, parietotemporal, and frontal cortex. Apolipoprotein E (APOE) epsilon4 gene dose (i.e., the number of epsilon4 alleles in a person's APOE genotype) is associated with a higher risk of AD and a younger age at dementia onset. We previously found that cognitively normal late-middle-aged APOE epsilon4 carriers have abnormally low CMRgl in the same brain regions as patients with probable Alzheimer's dementia. In a PET study of 160 cognitively normal subjects 47-68 years of age, including 36 epsilon4 homozygotes, 46 heterozygotes, and 78 epsilon4 noncarriers who were individually matched for their gender, age, and educational level, we now find that epsilon4 gene dose is correlated with lower CMRgl in each of these brain regions. This study raises the possibility of using PET as a quantitative presymptomatic endophenotype to help evaluate the individual and aggregate effects of putative genetic and nongenetic modifiers of AD risk.
Collapse
Affiliation(s)
- Eric M Reiman
- Positron Emission Tomography Center, Banner Good Samaritan Medical Center, Phoenix, AZ 85006, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci U S A 2004; 101:284-9. [PMID: 14688411 PMCID: PMC314177 DOI: 10.1073/pnas.2635903100] [Citation(s) in RCA: 733] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 10/29/2003] [Indexed: 11/18/2022] Open
Abstract
Fluorodeoxyglucose positron emission tomography (PET) studies have found that patients with Alzheimer's dementia (AD) have abnormally low rates of cerebral glucose metabolism in posterior cingulate, parietal, temporal, and prefrontal cortex. We previously found that cognitively normal, late-middle-aged carriers of the apolipoprotein E epsilon4 allele, a common susceptibility gene for late-onset Alzheimer's dementia, have abnormally low rates of glucose metabolism in the same brain regions as patients with probable AD. We now consider whether epsilon4 carriers have these regional brain abnormalities as relatively young adults. Apolipoprotein E genotypes were established in normal volunteers 20-39 years of age. Clinical ratings, neuropsychological tests, magnetic resonance imaging, and PET were performed in 12 epsilon4 heterozygotes, all with the epsilon3/epsilon4 genotype, and 15 noncarriers of the epsilon4 allele, 12 of whom were individually matched for sex, age, and educational level. An automated algorithm was used to generate an aggregate surface-projection map that compared regional PET measurements in the two groups. The young adult epsilon4 carriers and noncarriers did not differ significantly in their sex, age, educational level, clinical ratings, or neuropsychological test scores. Like previously studied patients with probable AD and late-middle-aged epsilon4 carriers, the young epsilon4 carriers had abnormally low rates of glucose metabolism bilaterally in the posterior cingulate, parietal, temporal, and prefrontal cortex. Carriers of a common Alzheimer's susceptibility gene have functional brain abnormalities in young adulthood, several decades before the possible onset of dementia.
Collapse
Affiliation(s)
- Eric M Reiman
- Positron Emission Tomography Center, Banner Good Samaritan Medical Center, Phoenix, AZ 85006, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lin L, Chen K, Alexander GE, He J, Valla J, Galons JP, Hauss-Wegrzyniak B, Reiman EM. Construction of mouse brain MRI templates using SPM 99. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1474-6670(17)33484-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|