1
|
Dominguez CX, Amezquita RA, Guan T, Marshall HD, Joshi NS, Kleinstein SH, Kaech SM. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J Exp Med 2015; 212:2041-56. [PMID: 26503446 PMCID: PMC4647261 DOI: 10.1084/jem.20150186] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022] Open
Abstract
The transcription factor T-bet is critical for cytotoxic T lymphocyte (CTL) differentiation, but it is unclear how it operates in a graded manner in the formation of both terminal effector and memory precursor cells during viral infection. We find that, at high concentrations, T-bet induced expression of Zeb2 mRNA, which then triggered CTLs to adopt terminally differentiated states. ZEB2 and T-bet cooperate to switch on a terminal CTL differentiation program, while simultaneously repressing genes necessary for central memory CTL development. Chromatin immunoprecipitation sequencing showed that a large proportion of these genes were bound by T-bet, and this binding was altered by ZEB2 deficiency. Furthermore, T-bet overexpression could not fully bypass ZEB2 function. Thus, the coordinated actions of T-bet and ZEB2 outline a novel genetic pathway that forces commitment of CTLs to terminal differentiation, thereby restricting their memory cell potential.
Collapse
Affiliation(s)
- Claudia X Dominguez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Heather D Marshall
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT 06520 Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
2
|
Pirinen E, Soini Y. A survey of zeb1, twist and claudin 1 and 4 expression during placental development and disease. APMIS 2013; 122:530-8. [DOI: 10.1111/apm.12187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/14/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Elina Pirinen
- Imaging Center; Clinical Pathology; Kuopio University Hospital; Kuopio Finland
| | - Ylermi Soini
- Imaging Center; Clinical Pathology; Kuopio University Hospital; Kuopio Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
3
|
Sensiate LA, Sobreira DR, Da Veiga FC, Peterlini DJ, Pedrosa AV, Rirsch T, Joazeiro PP, Schubert FR, Collares-Buzato CB, Xavier-Neto J, Dietrich S, Alvares LE. Dact gene expression profiles suggest a role for this gene family in integrating Wnt and TGF-β signaling pathways during chicken limb development. Dev Dyn 2013; 243:428-39. [DOI: 10.1002/dvdy.23948] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/20/2012] [Accepted: 01/27/2013] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Débora R. Sobreira
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
- Institute of Biomedical and Biomolecular Science, University of Portsmouth; Portsmouth United Kingdom
| | | | | | | | - Thaís Rirsch
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
| | - Paulo Pinto Joazeiro
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
| | - Frank R. Schubert
- Institute of Biomedical and Biomolecular Science, University of Portsmouth; Portsmouth United Kingdom
| | | | | | - Susanne Dietrich
- Institute of Biomedical and Biomolecular Science, University of Portsmouth; Portsmouth United Kingdom
| | - Lúcia Elvira Alvares
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
| |
Collapse
|
4
|
Fujimori S, Novak H, Weissenböck M, Jussila M, Gonçalves A, Zeller R, Galloway J, Thesleff I, Hartmann C. Wnt/β-catenin signaling in the dental mesenchyme regulates incisor development by regulating Bmp4. Dev Biol 2010; 348:97-106. [PMID: 20883686 PMCID: PMC2997430 DOI: 10.1016/j.ydbio.2010.09.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 11/25/2022]
Abstract
Loss- and gain-of function approaches modulating canonical Wnt/β-catenin activity have established a role for the Wnt/β-catenin pathway during tooth development. Here we show that Wnt/β-catenin signaling is required in the dental mesenchyme for normal incisor development, as locally restricted genetic inactivation of β-catenin results in a splitting of the incisor placode, giving rise to two incisors. Molecularly this is first associated with down-regulation of Bmp4 and subsequent splitting of the Shh domain at a subsequent stage. The latter phenotype can be mimicked by ectopic application of the BMP antagonist Noggin. Conditional genetic inactivation of Bmp4 in the mesenchyme reveals that mesenchymal BMP4 activity is required for maintenance of Shh expression in the dental ectoderm. Taken together our results indicate that β-catenin together with Lef1 and Tcf1 are required to activate Bmp4 expression in order to maintain Shh expression in the dental ectoderm. This provides a mechanism whereby the number of incisors arising from one placode can be varied through local alterations of a mesenchymal signaling circuit involving β-catenin, Lef1, Tcf1 and Bmp4.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
FGF dependent regulation of Zfhx1b gene expression promotes the formation of definitive neural stem cells in the mouse anterior neurectoderm. Neural Dev 2010; 5:13. [PMID: 20459606 PMCID: PMC2883982 DOI: 10.1186/1749-8104-5-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/06/2010] [Indexed: 12/12/2022] Open
Abstract
Background Mouse definitive neural stem cells (NSCs) are derived from a population of LIF-responsive primitive neural stem cells (pNSCs) within the neurectoderm, yet details on the early signaling and transcriptional mechanisms that control this lineage transition are lacking. Here we tested whether FGF and Wnt signaling pathways can regulate Zfhx1b expression to control early neural stem cell development. Results By microinjecting FGF8b into the pro-amniotic cavity ex vivo at 7.0 days post-coitum (dpc) and culturing whole embryos, we demonstrate that neurectoderm-specific gene expression (for example, Sox2, Nestin, Zfhx1b) is increased, whereas Wnt3a represses neurectoderm gene expression. To determine whether FGF signaling also mediates the lineage transition from a pNSC to a NSC, 7.0-dpc embryos were microinjected with either FGF8b or inhibitors of the FGF receptor-MAP kinase signaling pathway ex vivo, cultured as whole embryos to approximately 8.5 dpc and assayed for clonal NSC colony formation. We show that pre-activation of FGF signaling in the anterior neurectoderm causes an increase in the number of colony forming NSCs derived later from the anterior neural plate, whereas inhibition of FGF signaling significantly reduces the number of NSC colonies. Interestingly, inhibition of FGF signaling causes the persistence of LIF-responsive pNSCs within the anterior neural plate and over-expression of Zfhx1b in these cells is sufficient to rescue the transition from a LIF-responsive pNSC to an FGF-responsive NSC. Conclusion Our data suggest that definitive NSC fate specification in the mouse neurectoderm is facilitated by FGF activation of Zfhx1b.
Collapse
|
6
|
Bellon E, Luyten FP, Tylzanowski P. delta-EF1 is a negative regulator of Ihh in the developing growth plate. ACTA ACUST UNITED AC 2009; 187:685-99. [PMID: 19948490 PMCID: PMC2806579 DOI: 10.1083/jcb.200904034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Indian hedgehog (Ihh) regulates proliferation and differentiation of chondrocytes in the growth plate. Although the biology of Ihh is currently well documented, its transcriptional regulation is poorly understood. delta-EF1 is a two-handed zinc finger/homeodomain transcriptional repressor. Targeted inactivation of mouse delta-EF1 leads to skeletal abnormalities including disorganized growth plates, shortening of long bones, and joint fusions, which are reminiscent of defects associated with deregulation of Ihh signaling. Here, we show that the absence of delta-EF1 results in delayed hypertrophic differentiation of chondrocytes and increased cell proliferation in the growth plate. Further, we demonstrate that delta-EF1 binds to the putative regulatory elements in intron 1 of Ihh in vitro and in vivo, resulting in down-regulation of Ihh expression. Finally, we show that delta-EF1 haploinsufficiency leads to a postnatal increase in trabecular bone mass associated with enhanced Ihh expression. In summary, we have identified delta-EF1 as an in vivo negative regulator of Ihh expression in the growth plate.
Collapse
Affiliation(s)
- Ellen Bellon
- Laboratory of Skeletal Development and Joint Disorders, Division of Rheumatology, Department of Musculoskeletal Sciences, University of Leuven, Leuven 3000, Belgium
| | | | | |
Collapse
|
7
|
Delalande JM, Guyote ME, Smith CM, Shepherd IT. Zebrafish sip1a and sip1b are essential for normal axial and neural patterning. Dev Dyn 2008; 237:1060-9. [PMID: 18351671 PMCID: PMC2443937 DOI: 10.1002/dvdy.21485] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Smad-interacting protein-1 (SIP1) has been implicated in the development of Mowat-Wilson syndrome whose patients exhibit Hirschsprung disease, an aganglionosis of the large intestine, as well as other phenotypes. We have identified and cloned two sip1 orthologues in zebrafish. Both sip1 orthologues are expressed maternally and have dynamic zygotic expression patterns that are temporally and spatially distinct. We have investigated the function of both orthologues using translation and splice-blocking morpholino antisense oligonucleotides. Knockdown of the orthologues causes axial and neural patterning defects consistent with the previously described function of SIP1 as an inhibitor of BMP signaling. In addition, knockdown of both genes leads to a significant reduction/loss of the post-otic cranial neural crest. This results in a subsequent absence of neural crest precursors in the posterior pharyngeal arches and a loss of enteric precursors in the intestine.
Collapse
|
8
|
Taschner MJ, Rafigh M, Lampert F, Schnaiter S, Hartmann C. Ca2+/Calmodulin-dependent kinase II signaling causes skeletal overgrowth and premature chondrocyte maturation. Dev Biol 2008; 317:132-46. [PMID: 18342847 DOI: 10.1016/j.ydbio.2008.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 02/01/2008] [Accepted: 02/05/2008] [Indexed: 11/17/2022]
Abstract
The long bones of vertebrate limbs originate from cartilage templates and are formed by the process of endochondral ossification. This process requires that chondrocytes undergo a progressive maturation from proliferating to postmitotic prehypertrophic to mature, hypertrophic chondrocytes. Coordinated control of proliferation and maturation regulates growth of the skeletal elements. Various signals and pathways have been implicated in orchestrating these processes, but the underlying intracellular molecular mechanisms are often not entirely known. Here we demonstrated in the chick using replication-competent retroviruses that constitutive activation of Calcium/Calmodulin-dependent kinase II (CaMKII) in the developing wing resulted in elongation of skeletal elements associated with premature differentiation of chondrocytes. The premature maturation of chondrocytes was a cell-autonomous effect of constitutive CaMKII signaling associated with down-regulation of cell-cycle regulators and up-regulation of chondrocyte maturation markers. In contrast, the elongation of the skeletal elements resulted from a non-cell autonomous up-regulation of the Indian hedgehog responsive gene encoding Parathyroid-hormone-related peptide. Reduction of endogenous CaMKII activity by overexpressing an inhibitory peptide resulted in shortening of the skeletal elements associated with a delay in chondrocyte maturation. Thus, CaMKII is an essential component of intracellular signaling pathways regulating chondrocyte maturation.
Collapse
Affiliation(s)
- Michael J Taschner
- Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
9
|
Tylzanowski P, Mebis L, Luyten FP. The Noggin null mouse phenotype is strain dependent and haploinsufficiency leads to skeletal defects. Dev Dyn 2007; 235:1599-607. [PMID: 16598734 DOI: 10.1002/dvdy.20782] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Noggin is a secreted peptide that binds and inactivates Bone Morphogenetic Proteins, members of the transforming growth factor beta superfamily of secreted signaling molecules. In vertebrate limbs, Noggin is expressed in condensing cartilage and immature chondrocytes. Inactivation of the Noggin gene has been reported in an inbred 129X1/SvJ mouse genetic background. The null allele was lethal at 18.5 dpc and resulted in severe hyperplasia of the cartilage together with multiple joint fusions. In order to investigate the effect of the genetic background on the phenotypic manifestation of Noggin inactivation, we crossed the Noggin null allele into the outbred CD1 and inbred DBA1 and C57BL/6 mouse strains. We describe here skeletal phenotypes of Noggin null mice, such as accelerated or delayed mineralization of different bones suggestive of a complex tissue response to the perturbations in BMP balances. Additionally, we found that in the absence of Noggin, early specification of myogenic differentiation was unaffected, whereas terminal stages of myogenesis were delayed. Furthermore, we have discovered Noggin haploinsufficiency leading to carpal and tarsal fusions reminiscent of some phenotypes reported for NOGGIN haploinsufficiency in humans.
Collapse
|
10
|
Stricker S, Brieske N, Haupt J, Mundlos S. Comparative expression pattern of Odd-skipped related genes Osr1 and Osr2 in chick embryonic development. Gene Expr Patterns 2006; 6:826-34. [PMID: 16554187 DOI: 10.1016/j.modgep.2006.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 01/08/2023]
Abstract
Odd-skipped genes encode zinc-finger transcription factors with widespread roles in embryonic development. In Drosophila, odd-skipped acts as a pair-rule gene, while its orthologous gene in Caenorhabditis elegans is involved in gut development. In mammals two paralogs exist, Osr1 and Osr2, with functions described in heart and urogenital, and in secondary palate development, respectively. As the chicken embryo is a widely used system for analysing gene function in vivo, we determined the expression pattern of the two chicken orthologues, cOsr1 and cOsr2, during embryonic development. We demonstrate expression of both genes in a variety of organs and structures, such as kidney, eye, branchial arches and dermis. Both genes show a highly dynamic expression pattern with partially overlapping, but mostly distinct domains of expression. Special emphasis in this study was laid on the investigation of cOsr1 and cOsr2 in limb development, where we compared their expression pattern with the expression of Osr1 and Osr2 in the mouse.
Collapse
Affiliation(s)
- Sigmar Stricker
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | |
Collapse
|
11
|
Miyoshi T, Maruhashi M, Van De Putte T, Kondoh H, Huylebroeck D, Higashi Y. Complementary expression pattern ofZfhx1 genesSip1 andδEF1 in the mouse embryo and their genetic interaction revealed by compound mutants. Dev Dyn 2006; 235:1941-52. [PMID: 16598713 DOI: 10.1002/dvdy.20799] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In mouse embryos, the Zfhx1 transcription factor genes, Sip1 and deltaEF1, are expressed in complementary domains in many tissues. Their possible synergism in embryogenesis was investigated by comparing the phenotype of Sip1-/-;deltaEF1-/- double homozygotes with single homozygous embryos. Unexpectedly, in Sip1-/- embryos deltaEF1 was ectopically activated, suggesting a negative regulation of deltaEF1 expression by Sip1. Sip1-/-;deltaEF1-/- embryos were similar to Sip1-/- embryos in short somite production and developmental arrest around E8.5, but showed more severe defects in dorsal neural tube morphogenesis accompanied by a larger reduction of Sox2 expression, ascribable to the loss of the ectopic deltaEF1 expression. Sip1+/-;deltaEF1-/- embryos develop various morphological defects after E10 that were absent in deltaEF1-/- embryos even in tissues without significant overlap of Sip1 and deltaEF1 expression, and arrested during mid gestation earlier than deltaEF1-/- embryos. These findings indicate that complex synergistic interactions occur between Zfhx1 transcription factor genes during mouse embryogenesis.
Collapse
Affiliation(s)
- Tomoya Miyoshi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The developing limb bud provides one of the best examples in which programmed cell death exerts major morphogenetic functions. In this work, we revise the distribution and the developmental significance of cell death in the embryonic vertebrate limb and its control by the BMP signalling pathway. In addition, paying special attention to the interdigital apoptotic zones, we review current data concerning the intracellular death machinery implicated in mesodermal limb apoptosis.
Collapse
Affiliation(s)
- Vanessa Zuzarte-Luis
- Departamento de Anatomia y Biologia Celular, Universidad de Cantabria, C/Cardenal Herrera Oria, s/n, 39011 Santander, Cantabria, Spain
| | | |
Collapse
|
13
|
Nitta KR, Tanegashima K, Takahashi S, Asashima M. XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. Dev Biol 2004; 275:258-67. [PMID: 15464588 DOI: 10.1016/j.ydbio.2004.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 08/07/2004] [Accepted: 08/09/2004] [Indexed: 11/26/2022]
Abstract
Neural differentiation is induced by inhibition of BMP signaling. Secreted inhibitors of BMP such as Chordin from the Spemann organizer contribute to the initial step of neural induction. Xenopus Smad-interacting protein-1 gene (XSIP1) is expressed in neuroectoderm from the early gastrula stage through to the neurula stage. XSIP1 is able to inhibit BMP signaling and overexpression of XSIP1 induces neural differentiation. To clarify the function of XSIP1 in neural differentiation, we performed a loss-of-function study of XSIP1. Knockdown of XSIP1 inhibited SoxD expression and neural differentiation. These results indicate that XSIP1 is essential for neural induction. Furthermore, loss-of-function experiments showed that SoxD is essential for XSIP1 transcription and for neural differentiation. However, inhibition of XSIP1 translation prevented neural differentiation induced by SoxD; thus, SoxD was not sufficient to mediate neural differentiation. Expression of XSIP1 was also required for inhibition of BMP signaling. Together, these results suggest that XSIP1 and SoxD interdependently function to maintain neural differentiation.
Collapse
Affiliation(s)
- Kazuhiro R Nitta
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | | | | | | |
Collapse
|
14
|
Edom-Vovard F, Duprez D. Signals regulating tendon formation during chick embryonic development. Dev Dyn 2004; 229:449-57. [PMID: 14991700 DOI: 10.1002/dvdy.10481] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tendons are collagen-rich structures that link muscle to cartilage. By using quail-chick chimeras, it has been shown that tendon and cartilage cells originate from the same mesodermic compartment, which is distinct from that giving rise to muscle cells. Axial tendons originate from the sclerotomal compartment, and limb tendons originate from the lateral plate, whereas axial and limb muscles derive from dermomyotomes. Despite these different embryologic origins, muscle and tendon morphogenesis occurs in close spatial and temporal association. Facilitated by the distinct embryologic origin of myogenic and tendon cells, surgical studies in the avian embryo have highlighted interactions between tendons and muscles, during embryonic development. However, these interactions seem to differ between axial and limb levels. The molecular mechanisms underlying muscle and tendon interactions have been shown recently to involve different members of the fibroblast growth factor family. This review covers the available data on the early steps of tendon formation in the limb and along the primary axis. The relationship with muscle morphogenesis will be highlighted.
Collapse
|
15
|
Abstract
The Wnt family of glycoproteins is involved in numerous developmental and disease processes in higher eukaryotes, exerting their action by binding to cell-surface receptors. In the extracellular space, Wnts are negatively regulated by secreted antagonists that either bind to the receptors directly (Dkk1) or to Wnt molecules themselves (Sfrp-FRZB family), preventing its subsequent binding to the receptor. Here we report on a transgenic mouse expressing Cre under the control of the mouse Frzb promoter element. Analysis of the Cre expression was carried out at 10.5 and 14.5 dpc using the ROSA26R mouse line. Expression of the transgenic construct was detected in the limbs, the heart, the nasal epithelium, bone, whiskers, and around the orbita of the eye. The mouse could be used for conditional gene modification in those tissues.
Collapse
|