1
|
Torres-Aguila NP, Salonna M, Hoppler S, Ferrier DEK. Evolutionary diversification of the canonical Wnt signaling effector TCF/LEF in chordates. Dev Growth Differ 2022; 64:120-137. [PMID: 35048372 PMCID: PMC9303524 DOI: 10.1111/dgd.12771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022]
Abstract
Wnt signaling is essential during animal development and regeneration, but also plays an important role in diseases such as cancer and diabetes. The canonical Wnt signaling pathway is one of the most conserved signaling cascades in the animal kingdom, with the T‐cell factor/lymphoid enhancer factor (TCF/LEF) proteins being the major mediators of Wnt/β‐catenin‐regulated gene expression. In comparison with invertebrates, vertebrates possess a high diversity of TCF/LEF family genes, implicating this as a possible key change to Wnt signaling at the evolutionary origin of vertebrates. However, the precise nature of this diversification is only poorly understood. The aim of this study is to clarify orthology, paralogy, and isoform relationships within the TCF/LEF gene family within chordates via in silico comparative study of TCF/LEF gene structure, molecular phylogeny, and gene synteny. Our results support the notion that the four TCF/LEF paralog subfamilies in jawed vertebrates (gnathostomes) evolved via the two rounds of whole‐genome duplications that occurred during early vertebrate evolution. Importantly, gene structure comparisons and synteny analysis of jawless vertebrate (cyclostome) TCFs suggest that a TCF7L2‐like form of gene structure is a close proxy for the ancestral vertebrate structure. In conclusion, we propose a detailed evolutionary path based on a new pre‐whole‐genome duplication vertebrate TCF gene model. This ancestor gene model highlights the chordate and vertebrate innovations of TCF/LEF gene structure, providing the foundation for understanding the role of Wnt/β‐catenin signaling in vertebrate evolution.
Collapse
Affiliation(s)
- Nuria P Torres-Aguila
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Marika Salonna
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - David E K Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
2
|
Abstract
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
3
|
King ML, Messitt TJ, Mowry KL. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 2012; 97:19-33. [PMID: 15601255 DOI: 10.1042/bc20040067] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Localization of maternal mRNAs in many developing organisms provides the basis for both initial polarity during oogenesis and patterning during embryogenesis. Prominent examples of this phenomenon are found in Xenopus laevis, where localized maternal mRNAs generate developmental polarity along the animal/vegetal axis. Targeting of mRNA molecules to specific subcellular regions is a fundamental mechanism for spatial regulation of gene expression, and considerable progress has been made in defining the underlying molecular pathways.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St., Miami, FL 33136, USA.
| | | | | |
Collapse
|
4
|
Abstract
Wnt signaling pathways control lineage specification in vertebrate embryos and regulate pluripotency in embryonic stem (ES) cells, but how the balance between progenitor self-renewal and differentiation is achieved during axis specification and tissue patterning remains highly controversial. The context- and stage-specific effects of the different Wnt pathways produce complex and sometimes opposite outcomes that help to generate embryonic cell diversity. Although the results of recent studies of the Wnt/β-catenin pathway in ES cells appear to be surprising and controversial, they converge on the same conserved mechanism that leads to the inactivation of TCF3-mediated repression.
Collapse
Affiliation(s)
- Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
5
|
Koenig SF, Brentle S, Hamdi K, Fichtner D, Wedlich D, Gradl D. En2, Pax2/5 and Tcf-4 transcription factors cooperate in patterning the Xenopus brain. Dev Biol 2010; 340:318-28. [DOI: 10.1016/j.ydbio.2010.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 02/01/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022]
|
6
|
van Venrooy S, Fichtner D, Kunz M, Wedlich D, Gradl D. Cold-inducible RNA binding protein (CIRP), a novel XTcf-3 specific target gene regulates neural development in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2008; 8:77. [PMID: 18687117 PMCID: PMC2527318 DOI: 10.1186/1471-213x-8-77] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 08/07/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND As nuclear mediators of wnt/beta-catenin signaling, Lef/Tcf transcription factors play important roles in development and disease. Although it is well established, that the four vertebrate Lef/Tcfs have unique functional properties, most studies unite Lef-1, Tcf-1, Tcf-3 and Tcf-4 and reduce their function to uniformly transduce wnt/beta-catenin signaling for activating wnt target genes. In order to discriminate target genes regulated by XTcf-3 from those regulated by XTcf-4 or Lef/Tcfs in general, we performed a subtractive screen, using neuralized Xenopus animal cap explants. RESULTS We identified cold-inducible RNA binding protein (CIRP) as novel XTcf-3 specific target gene. Furthermore, we show that knockdown of XTcf-3 by injection of an antisense morpholino oligonucleotide results in a general broadening of the anterior neural tissue. Depletion of XCIRP by antisense morpholino oligonucleotide injection leads to a reduced stability of mRNA and an enlargement of the anterior neural plate similar to the depletion of XTcf-3. CONCLUSION Distinct steps in neural development are differentially regulated by individual Lef/Tcfs. For proper development of the anterior brain XTcf-3 and the Tcf-subtype specific target XCIRP appear indispensable. Thus, regulation of anterior neural development, at least in part, depends on mRNA stabilization by the novel XTcf-3 target gene XCIRP.
Collapse
|
7
|
Koenig SF, Lattanzio R, Mansperger K, Rupp RA, Wedlich D, Gradl D. Autoregulation of XTcf-4 depends on a Lef/Tcf site on the XTcf-4 promoter. Genesis 2008; 46:81-6. [DOI: 10.1002/dvg.20363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Abstract
The Wnt/beta-catenin pathway is a conserved cell-cell signalling mechanism in animals that regulates gene expression via TCF/LEF DNA-binding factors to coordinate many cellular processes. Vertebrates normally have four Tcf/Lef genes, which, through alternative splicing and alternative promoter use give rise to a variety of TCF/LEF isoforms. Recent evidence from several experimental systems suggests that this diversity of TCF/LEF factors is functionally important in vertebrates for mediating tissue- and stage-specific Wnt regulation in embryonic development, stem cell differentiation and associated diseases, such as cancer.
Collapse
Affiliation(s)
- Stefan Hoppler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | | |
Collapse
|
9
|
Lin HC, Holland LZ, Holland ND. Expression of the AmphiTcf gene in amphioxus: insights into the evolution of the TCF/LEF gene family during vertebrate evolution. Dev Dyn 2007; 235:3396-403. [PMID: 17013891 DOI: 10.1002/dvdy.20971] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
T-cell factor (TCF) and lymphoid enhancer factors (LEF) genes encode proteins that are transcription factors mediating beta-catenin/Wnt signaling. Whereas mammals have four such genes, the Florida amphioxus (Branchiostoma floridae) apparently has only one such gene (AmphiTcf). From cleavage through early gastrula, cytoplasmic maternal transcripts of this gene are localized toward the animal pole. In gastrulae, AmphiTcf expression begins in the mesendoderm. In neurulae, there is expression in the pharynx, hindgut, anterior notochord, somites, and at the anterior end of the neural plate. In early larvae, expression is detectable in the floor of the diencephalon, notochord, tail bud, forming somites, pharynx, and ciliated pit (a presumed homolog of the vertebrate adenohypophysis). Phylogenetic analysis of TCF/LEF proteins placed AmphiTcf as the sister group of a clade comprising vertebrate Tcf1, Lef1, Tcf3, and Tcf4. Comparison of developmental expression for amphioxus AmphiTcf and vertebrate TCF/LEF genes indicates that this gene family has undergone extensive subfunctionalization and neofunctionalization during vertebrate evolution.
Collapse
Affiliation(s)
- Hsiu-Chin Lin
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
10
|
Abstract
How important is the contribution of mRNAs and proteins stored in the oocyte for determining the body plan of the Xenopus embryo? Here we review the current understanding of the roles of maternally supplied transcription factors, signaling molecules, and signaling regulators in establishing the ectoderm, mesoderm, and endoderm germ layers and the embryonic axes. Key essential asymmetries of VegT, Wnt11, and Ectodermin are described, as well as the complexity of maternal transcription factors that are involved in the initial expression of early zygotic genes.
Collapse
Affiliation(s)
- Janet Heasman
- Division of Developmental Biology ML7007, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
11
|
Standley HJ, Destrée O, Kofron M, Wylie C, Heasman J. Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes. Dev Biol 2006; 289:318-28. [PMID: 16325796 DOI: 10.1016/j.ydbio.2005.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/23/2005] [Accepted: 10/04/2005] [Indexed: 11/21/2022]
Abstract
Wnt signaling pathways have essential roles in developing embryos and adult tissue, and alterations in their function are implicated in many disease processes including cancers. The major nuclear transducers of Wnt signals are the Tcf/LEF family of transcription factors, which have binding sites for both the transcriptional co-repressor groucho, and the co-activator beta-catenin. The early Xenopus embryo expresses three maternally inherited Tcf/LEF mRNAs, and their relative roles in regulating the expression of Wnt target genes are not understood. We have addressed this by using antisense oligonucleotides to deplete maternal XTcf1 and XTcf4 mRNAs in oocytes. We find that XTcf1 represses expression of Wnt target genes ventrally and laterally, and activates their expression dorsally. Double depletions of XTcf1 and XTcf3 suggest that they act cooperatively to repress Wnt target genes ventrally. In contrast, XTcf4 has no repressive role but is required to activate expression of Xnr3 and chordin in organizer cells at the gastrula stage. This work provides evidence for distinct roles for XTcfs in regulating Wnt target gene expression.
Collapse
Affiliation(s)
- Henrietta J Standley
- Division of Developmental Biology ML7007, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, OH 45229-3039, USA
| | | | | | | | | |
Collapse
|
12
|
Liu F, van den Broek O, Destrée O, Hoppler S. Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/β-catenin signalling in mesoderm development. Development 2005; 132:5375-85. [PMID: 16291789 DOI: 10.1242/dev.02152] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tcf/Lef transcription factors and β-catenin mediate canonical Wnt signalling, which plays remarkably diverse roles in embryonic development,stem cell renewal and cancer progression. To investigate the molecular mechanisms allowing for these diverse yet specific functions, we studied the several distinct roles for Wnt/β-catenin signalling in early Xenopus development: establishing the dorsal body axis; regulating mesoderm induction; and subsequent ventrolateral patterning. Our previous experiments and the expression patterns of Tcf/Lef factors during these embryonic stages led us to examine whether different Tcf/Lef factors mediate these distinct events downstream of canonical Wnt/β-catenin signalling. By manipulating gene expression with morpholino-driven gene knockdown and capped RNA-mediated rescue, we show that genes encoding different Tcf/Lef transcription factors mediate distinct responses to Wnt signalling in early Xenopus development: Tcf1 and Tcf3 genes are non-redundantly required in mesoderm induction for mediating primarily transcriptional activation and repression, respectively; while ventrolateral patterning requires both Tcf1 and Lef1 genes to express sufficient levels of transcription-activating Tcf factors. Our investigation further identifies that motifs within their central domain, rather than their C-terminus, determine the particular molecular function of Tcf/Lef factors. These findings suggest that Tcf/Lef genes encode factors of different activities, which function together in antagonistic or synergistic ways to modulate the intensity and outcome of Wnt/β-catenin signalling and to trigger tissue-specific responses.
Collapse
Affiliation(s)
- Fei Liu
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
13
|
Tropepe V, Li S, Dickinson A, Gamse JT, Sive HL. Identification of a BMP inhibitor-responsive promoter module required for expression of the early neural gene zic1. Dev Biol 2005; 289:517-29. [PMID: 16307736 DOI: 10.1016/j.ydbio.2005.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 09/30/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
Expression of the transcription factor zic1 at the onset of gastrulation is one of the earliest molecular indicators of neural fate determination in Xenopus. Inhibition of bone morphogenetic protein (BMP) signaling is critical for activation of zic1 expression and fundamental for establishing neural identity in both vertebrates and invertebrates. The mechanism by which interruption of BMP signaling activates neural-specific gene expression is not understood. Here, we report identification of a 215 bp genomic module that is both necessary and sufficient to activate Xenopus zic1 transcription upon interruption of BMP signaling. Transgenic analyses demonstrate that this BMP inhibitory response module (BIRM) is required for expression in the whole embryo. Multiple consensus binding sites for specific transcription factor families within the BIRM are required for its activity and some of these regions are phylogenetically conserved between orthologous vertebrate zic1 genes. These data suggest that interruption of BMP signaling facilitates neural determination via a complex mechanism, involving multiple regulatory factors that cooperate to control zic1 expression.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified/embryology
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Base Sequence
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Consensus Sequence
- Conserved Sequence
- Ectoderm/cytology
- Ectoderm/metabolism
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Neural Crest/cytology
- Neural Crest/embryology
- Neural Crest/metabolism
- Promoter Regions, Genetic
- Protein Binding/genetics
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Xenopus Proteins/genetics
- Xenopus Proteins/metabolism
Collapse
Affiliation(s)
- Vincent Tropepe
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
14
|
Zhang C, Basta T, Fawcett SR, Klymkowsky MW. SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus. Dev Biol 2005; 278:526-41. [PMID: 15680368 DOI: 10.1016/j.ydbio.2004.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/18/2004] [Accepted: 11/09/2004] [Indexed: 02/06/2023]
Abstract
In zebrafish, the divergent F-type SOX casanova acts downstream of Nodal signaling to specify endoderm. While no casanova orthologs have been identified in tetrapods, the F-type SOX, SOX7, is supplied maternally in Xenopus (Fawcett and Klymkowsky, 2004. GER 4, 29). Subsequent RT-PCR and section-based in situ hybridization analyses indicate that SOX7 mRNA is localized to the vegetal region of the blastula-stage embryo. Overexpression and maternal depletion studies reveal that the T-box transcription factor VegT, which initiates mesoendodermal differentiation, directly regulates SOX7 expression. SOX7, but not SOX17 (another F-type SOX), binds to sites within the Xnr5 promoter and SOX7, but not SOX17, induces expression of the Nodal-related genes Xnr1, Xnr2, Xnr4, Xnr5, and Xnr6, the homeodomain transcription factor Mixer, and the endodermal marker SOX17beta; both SOX7 and SOX17 induce expression of the pan-endodermal marker endodermin. SOX7's induction of Xnr expression in animal caps is independent of Mixer and Nodal signaling. In animal caps, VegT's ability to induce Mixer and Edd appears to depend upon SOX7 activity. Whole embryo experiments suggests that vegetal factors partially compensate for the absence of SOX7. Based on the antagonistic effects of SOX7 and SOX3 (Zhang et al., 2004. Dev. Biol. 273, 23) and their common binding sites in the Xnr5 promoter, we propose a model in which competitive interactions between these two proteins are involved in refining the domain of endodermal differentiation.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular and Developmental Biology, University of Colorado, Porter Biosci. Building, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
15
|
Veien ES, Grierson MJ, Saund RS, Dorsky RI. Expression pattern of zebrafishtcf7 suggests unexplored domains of Wnt/?-catenin activity. Dev Dyn 2005; 233:233-9. [PMID: 15765502 DOI: 10.1002/dvdy.20330] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tcf/Lef transcription factors play an important role in mediating canonical Wnt signaling. When bound by beta-catenin, Tcf/Lef proteins either activate or de-repress gene transcription. In zebrafish, four members have been identified: Lef1, Tcf3, Tcf3b, and Tcf4. Here, we report the cloning and expression of the tcf7 gene. Forms of Tcf7 expressed in the embryo contain two highly conserved regions: an N-terminal beta-catenin binding domain and a C-terminal HMG domain. Tcf7 lacks a putative Groucho corepressor binding site, suggesting that, like Lef1, it functions as a transcriptional activator. We isolated three C-terminal splice variants of tcf7 corresponding to human B, C, and D isoforms. tcf7 expression overlaps with lef1 expression maternally, in the tail bud, fin buds, and paraxial mesoderm, and we expect that the two genes function redundantly in those areas. tcf7 is also expressed in nonoverlapping areas such as the prechordal mesoderm, dorsal retina, and median fin fold, suggesting unique functions.
Collapse
Affiliation(s)
- Eric S Veien
- Program in Neuroscience, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
16
|
Kunz M, Herrmann M, Wedlich D, Gradl D. Autoregulation of canonical Wnt signaling controls midbrain development. Dev Biol 2004; 273:390-401. [PMID: 15328021 DOI: 10.1016/j.ydbio.2004.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 06/07/2004] [Accepted: 06/10/2004] [Indexed: 11/23/2022]
Abstract
After the primary anterior-posterior patterning of the neural plate, a subset of wnt signaling molecules including Xwnt-1, Xwnt-2b, Xwnt-3A, Xwnt-8b are still expressed in the developing brain in a region spanning from the posterior part of the diencephalon to the mesencephalon/metencephalon boundary. In this expression field, they are colocalized with the HMG-box transcription factor XTcf-4. Using antisense morpholino loss-of-function strategies, we demonstrate that the expression of this transcription factor depends on Xwnt-2b, which itself is under the control of XTcf-4. Marker gene analyses reveal that this autoregulatory loop is important for proper development of the midbrain and the isthmus. Staining for NCAM reveals a lack of dorsal neural tissue in this area. This reduction is caused by a reduced proliferation rate as shown by staining for PhosphoH3 positive nuclei. In rescue experiments, we demonstrate that individual isoforms of XTcf-4 control the development of different parts of the brain. XTcf-4A restored the expression of the mesencephalon marker genes pax-6 and wnt-2b but not the isthmus marker gene en-2. XTcf-4C, in contrast, restored en-2, but had only weak effects on pax-6 and wnt-2b. Thus, autoregulation of canonical Wnt signaling and alternative expression of different isoforms of XTcf-4 is essential for specifying the developing CNS.
Collapse
Affiliation(s)
- Martin Kunz
- Zoologisches Institut II, Universität Karlsruhe (TH), 76131 Karlsruhe, Germany
| | | | | | | |
Collapse
|
17
|
Sinner D, Rankin S, Lee M, Zorn AM. Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development 2004; 131:3069-80. [PMID: 15163629 DOI: 10.1242/dev.01176] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have led to a model of the molecular pathway that specifies the endoderm during vertebrate gastrulation. The HMG box transcription factor Sox17 is a key component of this pathway and is essential for endoderm formation; however, the molecular events controlled by Sox17 are largely unknown. We have identified several direct transcriptional targets of Sox17, including Foxa1 and Foxa2. We show that beta-catenin, a component of Wnt signaling pathway, physically interacts with Sox17 and potentiates its transcriptional activation of target genes. We identify a motif in the C terminus of Sox17, which is conserved in all the SoxF subfamily of Sox proteins, and this motif is required for the ability of Sox17 to both transactivate target genes and bind beta-catenin. Nuclear beta-catenin is present in endoderm cells of the gastrula, and depletion of beta-catenin from embryos results in a repression of Sox17 target genes. These data suggest that in a mechanism analogous to Tcf/Lef interacting with beta-catenin, Sox17 and beta-catenin interact to transcribe endodermal target genes.
Collapse
Affiliation(s)
- Débora Sinner
- Cincinnati Children's Hospital Medical Center, Division of Developmental Biology and The Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
18
|
Zhang C, Basta T, Jensen ED, Klymkowsky MW. The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 2003; 130:5609-24. [PMID: 14522872 DOI: 10.1242/dev.00798] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Xenopus laevis, beta-catenin-mediated dorsal axis formation can be suppressed by overexpression of the HMG-box transcription factor XSOX3. Mutational analysis indicates that this effect is due not to the binding of XSOX3 to beta-catenin nor to its competition with beta-catenin-regulated TCF-type transcription factors for specific DNA binding sites, but rather to SOX3 binding to sites within the promoter of the early VegT- and beta-catenin-regulated dorsal-mesoderm-inducing gene Xnr5. Although B1-type SOX proteins, such as XSOX3, are commonly thought to act as transcriptional activators, XSOX3 acts as a transcriptional repressor of Xnr5 in both the intact embryo and animal caps injected with VegT RNA. Expression of a chimeric polypeptide composed of XSOX3 and a VP16 transcriptional activation domain or morpholino-induced decrease in endogenous XSOX3 polypeptide levels lead to an increase in Xnr5 expression, as does injection of an anti-XSOX3 antibody that inhibits XSOX3 DNA binding. These observations indicate that maternal XSOX3 acts in a novel manner to restrict Xnr5 expression to the vegetal hemisphere.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|