1
|
Grzymkowski J, Wyatt B, Nascone-Yoder N. The twists and turns of left-right asymmetric gut morphogenesis. Development 2020; 147:147/19/dev187583. [PMID: 33046455 DOI: 10.1242/dev.187583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organs develop left-right asymmetric shapes and positions that are crucial for normal function. Indeed, anomalous laterality is associated with multiple severe birth defects. Although the events that initially orient the left-right body axis are beginning to be understood, the mechanisms that shape the asymmetries of individual organs remain less clear. Here, we summarize new evidence challenging century-old ideas about the development of stomach and intestine laterality. We compare classical and contemporary models of asymmetric gut morphogenesis and highlight key unanswered questions for future investigation.
Collapse
Affiliation(s)
- Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
2
|
Ismail T, Lee HK, Kim C, Kim Y, Lee H, Kim JH, Kwon S, Huh TL, Khang D, Kim SH, Choi SC, Lee HS. Comparative Analysis of the Developmental Toxicity in Xenopus laevis and Danio rerio Induced by Al 2 O 3 Nanoparticle Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2672-2681. [PMID: 31470468 DOI: 10.1002/etc.4584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/08/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Engineered aluminum oxide nanoparticles (Al2 O3 NPs) having high-grade thermal stability and water-dispersion properties are extensively used in different industries and personal care products. Toxicological response evaluation of these NPs is indispensable in assessing the health risks and exposure limits because of their industrial disposal into the aquatic environment. We assessed and compared the developmental toxicity of Al2 O3 NPs in Xenopus laevis and Danio rerio over a period of 96 h using the frog embryo teratogenic assay Xenopus and a fish embryo toxicity assay. Engineered Al2 O3 NP exposure produced dose-dependent embryonic mortality and decreased the embryo length, indicating a negative effect on growth. Moreover, Al2 O3 NPs induced various malformations, such as small head size, a bent/deformed axis, edema, and gut malformation, dose-dependently and altered the expression of heart- and liver-specific genes in both X. laevis and D. rerio, as revealed by whole-mount in-situ hybridization and reverse transcriptase polymerase chain reaction. In conclusion, the toxicological data suggest that Al2 O3 NPs are developmentally toxic and teratogenic and negatively affect the embryonic development of X. laevis and D. rerio. Our study can serve as a model for the toxicological evaluation of nanomaterial exposure on vertebrate development that is critical to ensure human and environmental safety. Environ Toxicol Chem 2019;38:2672-2681. © 2019 SETAC.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Jun-Hyeong Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Song Kwon
- Lee Gil Ya Cancer and Diabetic Institute, Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Tae-Lin Huh
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetic Institute, Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Stewart ME, Donahue KM, Wilke EG, Shifley ET. LOC496300 is expressed in the endoderm of developing Xenopus laevis embryos. MICROPUBLICATION BIOLOGY 2019; 2019:10.17912/micropub.biology.000150. [PMID: 32550462 PMCID: PMC7252394 DOI: 10.17912/micropub.biology.000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Emily T Shifley
- Northern Kentucky University; Highland Heights, KY,
Correspondence to: Emily T Shifley ()
| |
Collapse
|
4
|
Cayuso J, Dzementsei A, Fischer JC, Karemore G, Caviglia S, Bartholdson J, Wright GJ, Ober EA. EphrinB1/EphB3b Coordinate Bidirectional Epithelial-Mesenchymal Interactions Controlling Liver Morphogenesis and Laterality. Dev Cell 2017; 39:316-328. [PMID: 27825440 PMCID: PMC5107609 DOI: 10.1016/j.devcel.2016.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2016] [Accepted: 10/10/2016] [Indexed: 11/25/2022]
Abstract
Positioning organs in the body often requires the movement of multiple tissues, yet the molecular and cellular mechanisms coordinating such movements are largely unknown. Here, we show that bidirectional signaling between EphrinB1 and EphB3b coordinates the movements of the hepatic endoderm and adjacent lateral plate mesoderm (LPM), resulting in asymmetric positioning of the zebrafish liver. EphrinB1 in hepatoblasts regulates directional migration and mediates interactions with the LPM, where EphB3b controls polarity and movement of the LPM. EphB3b in the LPM concomitantly repels hepatoblasts to move leftward into the liver bud. Cellular protrusions controlled by Eph/Ephrin signaling mediate hepatoblast motility and long-distance cell-cell contacts with the LPM beyond immediate tissue interfaces. Mechanistically, intracellular EphrinB1 domains mediate EphB3b-independent hepatoblast extension formation, while EpB3b interactions cause their destabilization. We propose that bidirectional short- and long-distance cell interactions between epithelial and mesenchyme-like tissues coordinate liver bud formation and laterality via cell repulsion.
Collapse
Affiliation(s)
- Jordi Cayuso
- Division of Developmental Biology, Mill Hill Laboratories, The Francis Crick Institute, London NW7 1AA, UK
| | - Aliaksandr Dzementsei
- Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Johanna C Fischer
- Division of Developmental Biology, Mill Hill Laboratories, The Francis Crick Institute, London NW7 1AA, UK
| | - Gopal Karemore
- Novo Nordisk Foundation Center for Protein Research, Protein Imaging Platform, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Sara Caviglia
- Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Josefin Bartholdson
- Wellcome Trust Sanger Institute, Cell Surface Signalling Laboratory, Cambridge CB10 1HH, UK
| | - Gavin J Wright
- Wellcome Trust Sanger Institute, Cell Surface Signalling Laboratory, Cambridge CB10 1HH, UK
| | - Elke A Ober
- Division of Developmental Biology, Mill Hill Laboratories, The Francis Crick Institute, London NW7 1AA, UK; Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
5
|
Zhang T, Guo X, Chen Y. Retinoic acid-activated Ndrg1a represses Wnt/β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification. PLoS One 2013; 8:e65058. [PMID: 23741453 PMCID: PMC3669096 DOI: 10.1371/journal.pone.0065058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/22/2013] [Indexed: 12/14/2022] Open
Abstract
How cells integrate multiple patterning signals to achieve early endoderm regionalization remains largely unknown. Between gastrulation and neurulation, retinoic acid (RA) signaling is required, while Wnt/β-catenin signaling has to be repressed for the specification of the pancreas, oesophagus, stomach, and duodenum primordia in Xenopus embryos. In attempt to screen for RA regulated genes in Xenopus endoderm, we identified a direct RA target gene, N-myc downstream regulated gene 1a (ndrg1a) that showed expression early in the archenteron roof endoderm and late in the developing pancreas, oesophagus, stomach, and duodenum. Both antisense morpholino oligonucleotide mediated knockdown of ndrg1a in Xenopus laevis and the transcription activator-like effector nucleases (TALEN) mediated disruption of ndrg1 in Xenopus tropicalis demonstrate that like RA signaling, Ndrg1a is specifically required for the specification of Xenopus pancreas, oesophagus, stomach, and duodenum primordia. Immunofluorescence data suggest that RA-activated Ndrg1a suppresses Wnt/β-catenin signaling in Xenopus archenteron roof endoderm cells. Blocking Wnt/β-catenin signaling rescued Ndrg1a knockdown phenotype. Furthermore, overexpression of the putative Wnt/β-catenin target gene Atf3 phenocopied knockdown of Ndrg1a or inhibition of RA signaling, while Atf3 knockdown can rescue Ndrg1a knockdown phenotype. Lastly, the pancreas/stomach/duodenum transcription factor Pdx1 was able to rescue Atf3 overexpression or Ndrg1a knockdown phenotype. Together, we conclude that RA activated Ndrg1a represses Wnt/β-catenin signaling to allow the specification of pancreas, oesophagus, stomach, and duodenum progenitor cells in Xenopus embryos.
Collapse
Affiliation(s)
- Tiejun Zhang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Guo
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yonglong Chen
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- * E-mail:
| |
Collapse
|
6
|
Chernet BT, Levin M. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis Model Mech 2013; 6:595-607. [PMID: 23471912 PMCID: PMC3634644 DOI: 10.1242/dmm.010835] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding mechanisms that orchestrate cell behavior into appropriately patterned tissues and organs within the organism is an essential element of preventing, detecting and treating cancer. Bioelectric signals (resting transmembrane voltage potential gradients in all cells) underlie an important and broadly conserved set of control mechanisms that regulate pattern formation. We tested the role of transmembrane potential in tumorigenesis mediated by canonical oncogenes in Xenopus laevis. Depolarized membrane potential (Vmem) was a characteristic of induced tumor-like structures (ITLSs) generated by overexpression of Gli1, KrasG12D, Xrel3 or p53Trp248. This bioelectric signature was also present in precursor ITLS sites. Vmem is a bioelectric marker that reveals ITLSs before they become histologically and morphologically apparent. Moreover, voltage was functionally important: overexpression of hyperpolarizing ion transporters caused a return to normal Vmem and significantly reduced ITLS formation in vivo. To characterize the molecular mechanism by which Vmem change regulates ITLS phenotypes, we performed a suppression screen. Vmem hyperpolarization was transduced into downstream events via Vmem-regulated activity of SLC5A8, a sodium-butyrate exchanger previously implicated in human cancer. These data indicate that butyrate, a histone deacetylase (HDAC) inhibitor, might be responsible for transcriptional events that mediate suppression of ITLSs by hyperpolarization. Vmem is a convenient cellular parameter by which tumors induced by human oncogenes can be detected in vivo and represents a new diagnostic modality. Moreover, control of resting membrane potential is functionally involved in the process by which oncogene-bearing cells depart from normal morphogenesis programs to form tumors. Modulation of Vmem levels is a novel and promising strategy for tumor normalization.
Collapse
Affiliation(s)
- Brook T Chernet
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | | |
Collapse
|
7
|
Shifley ET, Kenny AP, Rankin SA, Zorn AM. Prolonged FGF signaling is necessary for lung and liver induction in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2012; 12:27. [PMID: 22988910 PMCID: PMC3514138 DOI: 10.1186/1471-213x-12-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/10/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND FGF signaling plays numerous roles during organogenesis of the embryonic gut tube. Mouse explant studies suggest that different thresholds of FGF signaling from the cardiogenic mesoderm induce lung, liver, and pancreas lineages from the ventral foregut progenitor cells. The mechanisms that regulate FGF dose in vivo are unknown. Here we use Xenopus embryos to examine the hypothesis that a prolonged duration of FGF signaling from the mesoderm is required to induce foregut organs. RESULTS We show that both mesoderm and FGF signaling are required for liver and lung development in Xenopus; formally demonstrating that this important step in organ induction is conserved with other vertebrate species. Prolonged contact with the mesoderm and persistent FGF signaling through both MEK and PI3K over an extended period of time are required for liver and lung specification. Inhibition of FGF signaling results in reduced liver and lung development, with a modest expansion of the pancreas/duodenum progenitor domain. Hyper-activation of FGF signaling has the opposite effect expanding liver and lung gene expression and repressing pancreatic markers. We show that FGF signaling is cell autonomously required in the endoderm and that a dominant negative FGF receptor decreases the ability of ventral foregut progenitor cells to contribute to the lung and liver buds. CONCLUSIONS These results suggest that the liver and lungs are specified at progressively later times in development requiring mesoderm contact for different lengths of time. Our data suggest that this is achieved at least in part through prolonged FGF signaling. In addition to providing a foundation for further mechanistic studies on foregut organogenesis using the experimental advantages of the Xenopus system, these data have implications for the directed differentiation of stem cells into foregut lineages.
Collapse
Affiliation(s)
- Emily T Shifley
- Perinatal Institute, Divisions of Developmental Biology, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
8
|
Tseng AS, Levin M. Transducing bioelectric signals into epigenetic pathways during tadpole tail regeneration. Anat Rec (Hoboken) 2012; 295:1541-51. [PMID: 22933452 DOI: 10.1002/ar.22495] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 11/12/2022]
Abstract
One important component of the cell-cell communication that occurs during regenerative patterning is bioelectrical signaling. In particular, the regeneration of the tail in Xenopus laevis tadpoles both requires, and can be initiated at non-regenerative stages by, specific regulation of bioelectrical signaling (alteration in resting membrane potential and a subsequent change in sodium content of blastemal cells). Although standing gradients of transmembrane voltage and ion concentration can provide positional guidance and other morphogenetic cues, these biophysical parameters must be transduced into transcriptional responses within cells. A number of mechanisms have been described for linking slow voltage changes to gene expression, but recent data on the importance of epigenetic regulation for regeneration suggest a novel hypothesis: that sodium/butyrate transporters link ion flows to influx of small molecules needed to modify chromatin state. Here, we briefly review the data on bioelectricity in tadpole tail regeneration, present a technique for convenient alteration of transmembrane potential in vivo that does not require transgenes, show augmentation of regeneration in vivo by manipulation of voltage, and present new data in the Xenopus tail consistent with the hypothesis that the monocarboxlyate transporter SLC5A8 may link regeneration-relevant epigenetic modification with upstream changes in ion content.
Collapse
Affiliation(s)
- Ai-Sun Tseng
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, Medford, Massachusetts, USA
| | | |
Collapse
|
9
|
Faas L, Isaacs HV. Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. Dev Dyn 2009; 238:835-52. [PMID: 19301404 PMCID: PMC2701559 DOI: 10.1002/dvdy.21901] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using Xenopus tropicalis, we present the first analysis of the developmental effects that result from knocking down the function of the three Cdx genes present in the typical vertebrate genome. Knockdowns of individual Cdx genes lead to a similar range of posterior defects; compound Cdx knockdowns result in increasingly severe posterior truncations, accompanied by posterior shifts and reduction of 5' Hox gene expression. We provide evidence that Cdx and Wnt3A genes are components of a positive feedback loop operating in the posterior axis. We show that Cdx function is required during later, but not early stages of development, for correct regional specification of the endoderm and morphogenesis of the gut. Our results support the hypothesis that during amphibian development the overall landscape of Cdx activity in the embryo is more important than the specific function of individual Cdx proteins.
Collapse
Affiliation(s)
- Laura Faas
- Department of Biology, University of York, York, United Kingdom
| | | |
Collapse
|
10
|
Xu K, Chong DC, Rankin SA, Zorn AM, Cleaver O. Rasip1 is required for endothelial cell motility, angiogenesis and vessel formation. Dev Biol 2009; 329:269-79. [PMID: 19272373 PMCID: PMC2683470 DOI: 10.1016/j.ydbio.2009.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 01/27/2023]
Abstract
Ras proteins are small GTPases that regulate cellular growth and differentiation. Components of the Ras signaling pathway have been shown to be important during embryonic vasculogenesis and angiogenesis. Here, we report that Rasip1, which encodes a novel Ras-interacting protein, is strongly expressed in vascular endothelial cells throughout development, in both mouse and frog. Similar to the well-characterized vascular markers VEGFR2 and PECAM, Rasip1 is specifically expressed in angioblasts prior to vessel formation, in the initial embryonic vascular plexus, in the growing blood vessels during angiogenesis and in the endothelium of mature blood vessels into the postnatal period. Rasip1 expression is undetectable in VEGFR2 null embryos, which lack endothelial cells, suggesting that Rasip1 is endothelial specific. siRNA-mediated reduction of Rasip1 severely impairs angiogenesis and motility in endothelial cell cultures, and morpholino knockdown experiments in frog embryos demonstrate that Rasip1 is required for embryonic vessel formation in vivo. Together, these data identify Rasip1 as a novel endothelial factor that plays an essential role in vascular development.
Collapse
Affiliation(s)
- Ke Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Diana C. Chong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Scott A. Rankin
- Division of Developmental Biology, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| |
Collapse
|
11
|
Costa RMB, Soto X, Chen Y, Zorn AM, Amaya E. spib is required for primitive myeloid development in Xenopus. Blood 2008; 112:2287-96. [PMID: 18594023 PMCID: PMC2577559 DOI: 10.1182/blood-2008-04-150268] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/23/2008] [Indexed: 12/03/2022] Open
Abstract
Vertebrate blood formation occurs in 2 spatially and temporally distinct waves, so-called primitive and definitive hematopoiesis. Although definitive hematopoiesis has been extensively studied, the development of primitive myeloid blood has received far less attention. In Xenopus, primitive myeloid cells originate in the anterior ventral blood islands, the equivalent of the mammalian yolk sac, and migrate out to colonize the embryo. Using fluorescence time-lapse video microscopy, we recorded the migratory behavior of primitive myeloid cells from their birth. We show that these cells are the first blood cells to differentiate in the embryo and that they are efficiently recruited to embryonic wounds, well before the establishment of a functional vasculature. Furthermore, we isolated spib, an ETS transcription factor, specifically expressed in primitive myeloid precursors. Using spib antisense morpholino knockdown experiments, we show that spib is required for myeloid specification, and, in its absence, primitive myeloid cells retain hemangioblast-like characteristics and fail to migrate. Thus, we conclude that spib sits at the top of the known genetic hierarchy that leads to the specification of primitive myeloid cells in amphibians.
Collapse
Affiliation(s)
- Ricardo M B Costa
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
12
|
Wills A, Dickinson K, Khokha M, Baker JC. Bmp signaling is necessary and sufficient for ventrolateral endoderm specification in Xenopus. Dev Dyn 2008; 237:2177-86. [PMID: 18651654 PMCID: PMC4497515 DOI: 10.1002/dvdy.21631] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we show that Bmp signaling is necessary and sufficient for the specification of ventral endoderm in Xenopus embryos. Overexpression of Bmp4 in ectoderm induces markers of endoderm, including Sox17beta, Mixer, and VegT, but cannot induce the expression of the dorsoanterior markers, Xhex and Cerberus. Furthermore, knockdown approaches using overexpression of Bmp antagonists and morpholinos designed against Bmp4, Bmp2, and Bmp7 demonstrate that Bmp signaling is critical for ventral, but not dorsoanterior endoderm formation. This activity is not simply a result of embryonic dorsalization as markers for dorsal endoderm are not expanded. We further show that endodermal cells of either ventral or dorsal character do not form when both Wnt and Bmp signals are abolished. Overall, this report strongly suggests that Bmp plays an essential role in ventral endoderm specification.
Collapse
Affiliation(s)
- Andrea Wills
- Department of Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
13
|
Christine KS, Conlon FL. Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline. Dev Cell 2008; 14:616-23. [PMID: 18410736 PMCID: PMC2807748 DOI: 10.1016/j.devcel.2008.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 11/28/2007] [Accepted: 01/17/2008] [Indexed: 11/21/2022]
Abstract
The CASTOR (CST) transcription factor was initially identified for its role in maintaining stem cell competence in the Drosophila dorsal midline. Here we report that Xenopus CST affects cardiogenesis. In CST-depleted embryos, cardiomyocytes at the ventral midline arrest and are maintained as cardiac progenitors, while cells in more dorsal regions of the heart undergo their normal program of differentiation. Cardia bifida results from failed midline differentiation, even though cardiac cell migration and initial cell fate specification occur normally. Our fate mapping studies reveal that this ventral midline population of cardiomyocytes ultimately gives rise to the outer curvature of the heart; however, CST-depleted midline cells overproliferate and remain a coherent population of nonintegrated cells positioned on the outer wall of the ventricle. These midline-specific requirements for CST suggest the regulation of cardiomyocyte differentiation is regionalized along a dorsal-ventral axis and that this patterning occurs prior to heart tube formation.
Collapse
Affiliation(s)
- Kathleen S. Christine
- Carolina Cardiovascular Biology Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Frank L. Conlon
- Carolina Cardiovascular Biology Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
- Departments of Genetics, Fordham Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
14
|
Matsushita S, Urase K, Komatsu A, Scotting PJ, Kuroiwa A, Yasugi S. Foregut endoderm is specified early in avian development through signal(s) emanating from Hensen's node or its derivatives. Mech Dev 2008; 125:377-95. [PMID: 18374547 DOI: 10.1016/j.mod.2008.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 02/13/2008] [Accepted: 02/13/2008] [Indexed: 12/21/2022]
Abstract
In this study, the initial specification of foregut endoderm in the chick embryo was analyzed. A fate map constructed for the area pellucida endoderm at definitive streak-stage showed centrally-located presumptive cells of foregut-derived organs around Hensen's node. Intracoelomic cultivation of the area pellucida endoderm at this stage combined with somatic mesoderm resulted in the differentiation predominantly into intestinal epithelium, suggesting that this endoderm may not yet be regionally specified. In vitro cultivation of this endoderm for 1-1.5 day combined with Hensen's node or its derivatives but not with other embryonic structures/tissues elicited endodermal expression of cSox2 but not of cHoxb9, which is characteristic of specified foregut endoderm. When the anteriormost or posteriormost part of the area pellucida endoderm at this stage, whose fate is extraembryonic, was combined with Hensen's node or its derivatives for 1 day, then enwrapped with somatic mesoderm and cultivated for a long period intracoelomically, differentiation of various foregut organ epithelia was observed. Such epithelia never appeared in the endoderm associated with other embryonic structures/tissues and cultured similarly. Thus, Hensen's node and its derivatives that lie centrally in the presumptive endodermal area of the foregut are likely to play an important role in the initial specification of the foregut. Chordin-expressing COS cells or noggin-producing CHO cells transplanted into the anteriormost area pellucida of the definitve streak-stage embryo could induce endodermal expression of cSox2 but not of cHoxb9, suggesting that chordin and noggin that emanate from Hensen's node and its derivatives, may be involved in this process.
Collapse
Affiliation(s)
- Susumu Matsushita
- Department of Biology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Spagnoli FM, Brivanlou AH. The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm. Development 2007; 135:451-61. [PMID: 18094028 DOI: 10.1242/dev.008458] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanisms underlying regional specification of distinct organ precursors within the endoderm, including the liver and pancreas, are still poorly understood. This is particularly true for stages between endoderm formation and the initiation of organogenesis. In this report, we have investigated these intermediate steps downstream of the early endodermal factor Gata5, which progressively lead to the induction of pancreatic fate. We have identified TGIF2 as a novel Gata5 target and demonstrate its function in the establishment of the pancreatic region within dorsal endoderm in Xenopus. TGIF2 acts primarily by restricting BMP signaling in the endoderm to allow pancreatic formation. Consistently, we found that blocking BMP signaling by independent means also perturbs the establishment of pancreatic identity in the endoderm. Previous findings demonstrated a crucial role for BMP signaling in determining dorsal/ventral fates in ectoderm and mesoderm. Our results now extend this trend to the endoderm and identify TGIF2 as the molecular link between dorsoventral patterning of the endoderm and pancreatic specification.
Collapse
Affiliation(s)
- Francesca M Spagnoli
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
16
|
Langdon YG, Goetz SC, Berg AE, Swanik JT, Conlon FL. SHP-2 is required for the maintenance of cardiac progenitors. Development 2007; 134:4119-30. [PMID: 17928416 PMCID: PMC2807747 DOI: 10.1242/dev.009290] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The isolation and culturing of cardiac progenitor cells has demonstrated that growth factor signaling is required to maintain cardiac cell survival and proliferation. In this study, we demonstrate in Xenopus that SHP-2 activity is required for the maintenance of cardiac precursors in vivo. In the absence of SHP-2 signaling, cardiac progenitor cells downregulate genes associated with early heart development and fail to initiate cardiac differentiation. We further show that this requirement for SHP-2 is restricted to cardiac precursor cells undergoing active proliferation. By demonstrating that SHP-2 is phosphorylated on Y542/Y580 and that it binds to FRS-2, we place SHP-2 in the FGF pathway during early embryonic heart development. Furthermore, we demonstrate that inhibition of FGF signaling mimics the cellular and biochemical effects of SHP-2 inhibition and that these effects can be rescued by constitutively active/Noonan-syndrome-associated forms of SHP-2. Collectively, these results show that SHP-2 functions within the FGF/MAPK pathway to maintain survival of proliferating populations of cardiac progenitor cells.
Collapse
Affiliation(s)
- Yvette G. Langdon
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah C. Goetz
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anna E. Berg
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jackie Thomas Swanik
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, Fordham Hall, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, Fordham Hall, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 2007; 134:2207-17. [PMID: 17507400 DOI: 10.1242/dev.001230] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver and pancreas are specified from the foregut endoderm through an interaction with the adjacent mesoderm. However, the earlier molecular mechanisms that establish the foregut precursors are largely unknown. In this study, we have identified a molecular pathway linking gastrula-stage endoderm patterning to organ specification. We show that in gastrula and early-somite stage Xenopus embryos, Wnt/beta-catenin activity must be repressed in the anterior endoderm to maintain foregut identity and to allow liver and pancreas development. By contrast, high beta-catenin activity in the posterior endoderm inhibits foregut fate while promoting intestinal development. Experimentally repressing beta-catenin activity in the posterior endoderm was sufficient to induce ectopic organ buds that express early liver and pancreas markers. beta-catenin acts in part by inhibiting expression of the homeobox gene hhex, which is one of the earliest foregut markers and is essential for liver and pancreas development. Promoter analysis indicates that beta-catenin represses hhex transcription indirectly via the homeodomain repressor Vent2. Later in development, beta-catenin activity has the opposite effect and enhances liver development. These results illustrate that turning Wnt signaling off and on in the correct temporal sequence is essential for organ formation, a finding that might directly impact efforts to differentiate liver and pancreas tissue from stem cells.
Collapse
Affiliation(s)
- Valérie A McLin
- Cincinnati Children's Research Foundation, Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
18
|
Plata C, Sussman CR, Sindic A, Liang JO, Mount DB, Josephs ZM, Chang MH, Romero MF. Zebrafish Slc5a12 Encodes an Electroneutral Sodium Monocarboxylate Transporter (SMCTn). J Biol Chem 2007; 282:11996-2009. [PMID: 17255103 DOI: 10.1074/jbc.m609313200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified and characterized two different sodium-coupled monocarboxylate cotransporters (SMCT) from zebrafish (Danio rerio), electrogenic (zSMCTe) and electroneutral (zSMCTn). zSMCTn is the 12th member of the zebrafish Slc5 gene family (zSlc5a12). Both zSMCT sequences have approximately 50% homology to human SLC5A8 (hSMCT). Transport function and kinetics were measured in Xenopus oocytes injected with zSMCT cRNAs by measurement of intracellular Na(+) concentration ([Na(+)](i)) and membrane potential. Both zSMCTs oocytes increased [Na(+)](i) with addition of monocarboxylates (MC) such as lactate, pyruvate, nicotinate, and butyrate. By using two electrode voltage clamp experiments, we measured currents elicited from zSMCTe after MC addition. MC-elicited currents from zSMCTe were similar to hSMCT currents. In contrast, we found no significant MC-elicited current in either zSMCTn or control oocytes. Kinetic data show that zSMCTe has a higher affinity for lactate, nicotinate, and pyruvate (K(m)(L-lactate) = 0.17 +/- 0.02 mM, K(m)(nicotinate) = 0.54 +/- 0.12 mM at -150 mV) than zSMCTn (K(m)(L-lactate) = 1.81 +/- 0.19 mM, K(m)(nicotinate) = 23.68 +/- 4.88 mM). In situ hybridization showed that 1-, 3-, and 5-day-old zebrafish embryos abundantly express both zSMCTs in the brain, eyes, intestine, and kidney. Within the kidney, zSMCTn mRNA is expressed in pronephric tubules, whereas zSMCTe mRNA is more distal in pronephric ducts. zSMCTn is expressed in exocrine pancreas, but zSMCTe is not. Roles for Na(+)-coupled monocarboxylate cotransporters have not been described for the brain or eye. In summary, zSMCTe is the zebrafish SLC5A8 ortholog, and zSMCTn is a novel, electroneutral SMCT (zSlc5a12). Slc5a12 in higher vertebrates is likely responsible for the electroneutral Na(+)/lactate cotransport reported in mammalian and amphibian kidneys.
Collapse
Affiliation(s)
- Consuelo Plata
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Stafford D, Hornbruch A, Mueller PR, Prince VE. A conserved role for retinoid signaling in vertebrate pancreas development. Dev Genes Evol 2004; 214:432-41. [PMID: 15322880 DOI: 10.1007/s00427-004-0420-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 05/20/2004] [Indexed: 11/28/2022]
Abstract
Retinoic acid (RA) signaling plays critical roles in the regionalization of the central nervous system and mesoderm of all vertebrates that have been examined. However, to date, a role for RA in pancreas and liver development has only been demonstrated for the teleost zebrafish. Here, we demonstrate that RA signaling is required for development of the pancreas but not the liver in the amphibian Xenopus laevis and the avian quail. We disrupted RA signaling in Xenopus tadpoles, using both a pharmacological and a dominant-negative strategy. RA-deficient quail embryos were obtained from hens with a dietary deficiency in vitamin A. In both species we found that pancreas development was dependent on RA signaling. Furthermore, treatment of Xenopus tadpoles with exogenous RA led to an expansion of the pancreatic field. By contrast, liver development was not perturbed by manipulation of RA signaling. Taken together with our previous finding that RA signaling is necessary and sufficient for zebrafish pancreas development, these data support the hypothesis that a critical role for RA signaling in pancreas development is a conserved feature of the vertebrates.
Collapse
Affiliation(s)
- D Stafford
- The Committee on Developmental Biology, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|