1
|
Rodrigues FF, Lino CI, Oliveira VLS, Zaidan I, Melo ISF, Braga AV, Costa SOAM, Morais MI, Barbosa BCM, da Costa YFG, Moreira NF, Alves MS, Braga AD, Carneiro FS, Carvalho AFS, Queiroz-Junior CM, Sousa LP, Amaral FA, Oliveira RB, Coelho MM, Machado RR. A clindamycin acetylated derivative with reduced antibacterial activity inhibits articular hyperalgesia and edema by attenuating neutrophil recruitment, NF-κB activation and tumor necrosis factor-α production. Int Immunopharmacol 2023; 122:110609. [PMID: 37429145 DOI: 10.1016/j.intimp.2023.110609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
We recently demonstrated that clindamycin exhibits activities in acute and chronic models of pain and inflammation. In the present study, we investigated the effects of clindamycin and a clindamycin acetylated derivative (CAD) in models of acute joint inflammation and in a microbiological assay. Joint inflammation was induced in mice by intraarticular (i.a.) injection of zymosan or lipopolysaccharide (LPS). Clindamycin or CAD were administered via the intraperitoneal route 1 h before zymosan or LPS. Paw withdrawal threshold, joint diameter, histological changes, neutrophil recruitment, tumor necrosis factor-α (TNF-α) production and phosphorylation of the IκBα and NF-κB/p65 were evaluated. In vitro assays were used to measure the antibacterial activity of clindamycin and CAD and also their effects on zymosan-induced TNF-α production by RAW264.7 macrophages. Clindamycin exhibited activity against Staphylococcus aureus and Salmonella Typhimurium ATCC® strains at much lower concentrations than CAD. Intraarticular injection of zymosan or LPS induced articular hyperalgesia, edema and neutrophil infiltration in the joints. Zymosan also induced histological changes, NF-κB activation and TNF-α production. Responses induced by zymosan and LPS were inhibited by clindamycin (200 and 400 mg/kg) or CAD (436 mg/kg). Both clindamycin and CAD inhibited in vitro TNF-α production by macrophages. In summary, we provided additional insights of the clindamycin immunomodulatory effects, whose mechanism was associated with NF-κB inhibition and reduced TNF-α production. Such effects were extended to a clindamycin derivative with reduced antibacterial activity, indicating that clindamycin derivatives should be investigated as candidates to drugs that could be useful in the management of inflammatory and painful conditions.
Collapse
Affiliation(s)
- Felipe F Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Cleudiomar I Lino
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Vívian L S Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Isabella Zaidan
- Laboratório de Sinalização na Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais. Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Alysson V Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Sarah O A M Costa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Marcela I Morais
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Bárbara C M Barbosa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Ygor F G da Costa
- Laboratório de Bioatividade Celular e Molecular, Centro de Pesquisas Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n°, Juiz de Fora, MG, CEP 36036-900, Brasil
| | - Nicole F Moreira
- Laboratório de Bioatividade Celular e Molecular, Centro de Pesquisas Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n°, Juiz de Fora, MG, CEP 36036-900, Brasil
| | - Maria S Alves
- Laboratório de Bioatividade Celular e Molecular, Centro de Pesquisas Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n°, Juiz de Fora, MG, CEP 36036-900, Brasil
| | - Amanda D Braga
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Fernanda S Carneiro
- Laboratório de Sinalização na Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais. Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Antônio F S Carvalho
- Laboratório de Sinalização na Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais. Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Lirlândia P Sousa
- Laboratório de Sinalização na Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais. Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Renata B Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brasil.
| |
Collapse
|
2
|
Sauer A, Putensen C, Bode C. Immunomodulation by Tetracyclines in the Critically Ill: An Emerging Treatment Option? Crit Care 2022; 26:74. [PMID: 35337355 PMCID: PMC8951664 DOI: 10.1186/s13054-022-03909-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2022. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2022 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Astaxanthin Provides Antioxidant Protection in LPS-Induced Dendritic Cells for Inflammatory Control. Mar Drugs 2021; 19:md19100534. [PMID: 34677433 PMCID: PMC8540215 DOI: 10.3390/md19100534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Astaxanthin, originating from marine organisms, is a natural bioactive compound with powerful antioxidant activity. Here, we evaluated the antioxidant ability of astaxanthin on dendritic cells (DCs), a key target of immune regulation, for inflammatory control in a sepsis model. Our results showed that astaxanthin suppressed nitric oxide (NO) production, reactive oxygen species (ROS) production, and lipid peroxidation activities in LPS-induced DCs and LPS-challenged mice. Moreover, the reduced glutathione (GSH) levels and the GSH/GSSG ratio were increased, suggesting that astaxanthin elevated the level of cellular reductive status. Meanwhile, the activities of antioxidant enzymes, including glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD), were significantly upregulated. Astaxanthin also inhibited the LPS-induced secretions of IL-1β, IL-17, and TGF-β cytokines. Finally, we found that the expressions of heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) were significantly upregulated by astaxanthin in LPS-induced DCs, suggesting that the HO-1/Nrf2 pathway plays a significant role in the suppression of oxidative stress. These results suggested that astaxanthin possesses strong antioxidant characteristics in DC-related inflammatory responses, which is expected to have potential as a method of sepsis treatment.
Collapse
|
4
|
Şeker Karatoprak G, İlgün S, Koşar M. Phenolic Composition, Anti-Inflammatory, Antioxidant, and Antimicrobial Activities of Alchemilla mollis (Buser) Rothm. Chem Biodivers 2017; 14. [PMID: 28502116 DOI: 10.1002/cbdv.201700150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 11/06/2022]
Abstract
The current study was designed to evaluate the antioxidant, anti-inflammatory and antimicrobial activities of Alchemilla mollis (Buser) Rothm. (Rosaceae) aerial parts extracts. Chemical composition was analyzed by spectrophotometric and chromatographic (HPLC) techniques. The antioxidant properties assessed included DPPH· and ABTS·+ radical scavenging, β-carotene-linoleic acid co-oxidation assay. Antimicrobial activity was evaluated with disc diffusion and micro dilution method. In order to evaluate toxicity of the extracts, with the sulforhodamine B colorimetric assay L929 cell line (mouse fibroblast) was used. The anti-inflammatory activities of the potent antioxidant extracts (methanol, 70% methanol, and water extracts) were determined by measuring the inhibitory effects on NO production and pro-inflammatory cytokine TNF-α levels in lipopolysaccharide stimulated RAW 264.7 cells. 70% methanol and water extracts which were found to be rich in phenolic compounds (184.79 and 172.60 mg GAE/g extract) showed higher antioxidant activity. Luteolin-7-O-glucoside was the main compound in the extracts. Ethyl acetate and 70% methanol extracts showed higher antibacterial activity against Staphylococcus aureus and Salmonella enteritidis with MIC value of 125 μg/ml. 70% methanol extract potentially inhibited the NO and TNF-α production (18.43 μm and 1556.22 pg/ml, respectively, 6 h).
Collapse
Affiliation(s)
- Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Müberra Koşar
- Department of Pharmacognosy, Faculty of Pharmacy, Eastern Mediterranean University, Gazimağusa, Mersin, 10, Turkey
| |
Collapse
|
5
|
Alyousef AA, Divakar DD, Muzaheed. Chemically modified tetracyclines an emerging host modulator in chronic periodontitis patients: A randomized, double-blind, placebo-controlled, clinical trial. Microb Pathog 2017; 110:279-284. [PMID: 28687322 DOI: 10.1016/j.micpath.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 01/28/2023]
Abstract
Although periodontal diseases are caused by some of the specific pathogens, most of the tissue damage is caused by the host reaction to disease and not actually by the infections. Therefore, host modulatory therapy (HMT) has advanced benefit for the treatment of periodontitis, which works basically by reducing tissue destruction and regeneration in periodontium by altering the critical aspects of host response regulation and up regulating defensive regenerative responses. The present study was conducted with the goal to test an innovative therapeutic option using chemically modified tetracycline in patients affected with generalized, moderate and severe chronic periodontitis. We assumed that CMT might have the potential to provoke an assessable clinical result and pharmacologically impede the level inflammatory flow. CMT (incyclinide) treated group had significantly higher CAL (clinical attachment) values than Placebo Control suggesting an improved CAL in CMT treatment. Host modulation therapy width incyclinide can be as an adjunct to conventional nonsurgical therapies without antimicrobial resistance. Progress was noticed in the clinical parameters but not the serum CRP level in our study establishing the role of CMTs in controlling chronic periodontitis. Also CMT treatment indicates its role in anti-inflammatory process as it inhibited IL-12 and TNF alpha but IL-10 level was not affected. However, more randomized placebo-controlled clinical trials with large sample size are required in order to authenticate the usage of CMTs in chronic periodontitis treatment. Based on this understanding, exploration of the novel, low-cost synthetic inhibitors that can be used as potential therapeutic agents, has been tested.
Collapse
Affiliation(s)
- Abdullah A Alyousef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh, 11433, Saudi Arabia
| | - Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia.
| | - Muzaheed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, PO Box 2435, University of Dammam, Dammam, 31441, Saudi Arabia
| |
Collapse
|
6
|
Cho JH, Kwon JE, Cho Y, Kim I, Kang SC. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression. Nutrients 2015; 7:4862-74. [PMID: 26083119 PMCID: PMC4488820 DOI: 10.3390/nu7064862] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022] Open
Abstract
Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin.
Collapse
Affiliation(s)
- Joon Hyeong Cho
- Department of Biological and Environmental Science, Dongguk University, Goyang 410-820, Korea.
| | - Jung Eun Kwon
- Department of Biological Science, Gachon University, Seongnam 461-701, Korea.
| | - Youngmi Cho
- Department of Biological Science, Gachon University, Seongnam 461-701, Korea.
| | - Inhye Kim
- Department of Biological Science, Gachon University, Seongnam 461-701, Korea.
| | - Se Chan Kang
- Department of Biological Science, Gachon University, Seongnam 461-701, Korea.
| |
Collapse
|
7
|
Choi EY, Kim HJ, Han JS. Anti-inflammatory effects of calcium citrate in RAW 264.7cells via suppression of NF-κB activation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:27-34. [PMID: 25434759 DOI: 10.1016/j.etap.2014.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Here we aimed to investigate the anti-inflammatory effects of calcium citrate in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The anti-inflammatory effects of calcium citrate were investigated by assessing pro-inflammatory factors (NO, ROS, NF-κB, iNOS, and COX-2) and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Treatment of cells with calcium citrate (10-100μM) significantly reduced the generation of intracellular reactive oxygen species and increased the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase in LPS-stimulated macrophages. Calcium citrate was further shown to inhibit NO production in LPS-stimulated RAW 264.7cells. The expression levels of iNOS, COX-2, and NF-κB were also suppressed by treatment with calcium citrate. Calcium citrate was furthermore found to significantly inhibit the production of IL-1β, IL-6, and TNF-α in response to LPS-stimulation. These findings demonstrate that calcium citrate may be an effective anti-inflammatory agent.
Collapse
Affiliation(s)
- Eun-Young Choi
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Republic of Korea
| | - Hak-Ju Kim
- Seojin Biotech Co., Ltd., Gyeoggi 443-373, Republic of Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
8
|
Abolhasani J, Farajzadeh N. A new spectrofluorimetric method for the determination of some tetracyclines based on their interfering effect on resonance fluorescence energy transfer. LUMINESCENCE 2014; 30:257-62. [DOI: 10.1002/bio.2722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/22/2014] [Accepted: 05/22/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Jafar Abolhasani
- Department of Chemistry, Faculty of Science; Tabriz Branch, Islamic Azad University; Tabriz Iran
| | - Nazli Farajzadeh
- Department of Chemistry, Faculty of Science; Tabriz Branch, Islamic Azad University; Tabriz Iran
| |
Collapse
|
9
|
Tilakaratne A, Soory M. Anti-inflammatory Actions of Adjunctive Tetracyclines and Other Agents in Periodontitis and Associated Comorbidities. Open Dent J 2014; 8:109-24. [PMID: 24976875 PMCID: PMC4073587 DOI: 10.2174/1874210601408010109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/08/2014] [Accepted: 05/12/2014] [Indexed: 02/08/2023] Open
Abstract
The non-antimicrobial properties of tetracyclines such as anti-inflammatory, proanabolic and anti-catabolic actions make them effective pharmaceuticals for the adjunctive management of chronic inflammatory diseases. An over-exuberant inflammatory response to an antigenic trigger in periodontitis and other chronic inflammatory diseases could contribute to an autoimmune element in disease progression. Their adjunctive use in managing periodontitis could have beneficial effects in curbing excessive inflammatory loading from commonly associated comorbidities such as CHD, DM and arthritis. Actions of tetracyclines and their derivatives include interactions with MMPs, tissue inhibitors of MMPs, growth factors and cytokines. They affect the sequence of inflammation with implications on immunomodulation, cell proliferation and angiogenesis; these actions enhance their scope, in treating a range of disease entities. Non-antimicrobial chemically modified tetracyclines (CMTs) sustain their diverse actions in organ systems which include anti-inflammatory, anti-apoptotic, anti-proteolytic actions, inhibition of angiogenesis and tumor metastasis. A spectrum of biological actions in dermatitis, periodontitis, atherosclerosis, diabetes, arthritis, inflammatory bowel disease, malignancy and prevention of bone resorption is particularly relevant to minocycline. Experimental models of ischemia indicate their specific beneficial effects. Parallel molecules with similar functions, improved Zn binding and solubility have been developed for reducing excessive MMP activity. Curbing excessive MMP activity is particularly relevant to periodontitis, and comorbidities addressed here, where specificity is paramount. Unique actions of tetracyclines in a milieu of excessive inflammatory stimuli make them effective therapeutic adjuncts in the management of chronic inflammatory disorders. These beneficial actions of tetracyclines are relevant to the adjunctive management of periodontitis subjects presenting with commonly prevalent comorbidities addressed here.
Collapse
Affiliation(s)
- Aruni Tilakaratne
- Department of Oral Medicine and Periodontology, Faculty of Dental Science, University of Peradeniya, Sri-Lanka
| | - Mena Soory
- Periodontology King's College London Dental Institute, Denmark Hill, London SE5 9RW, UKB
| |
Collapse
|
10
|
Lee SY, Kim HJ, Han JS. Anti-inflammatory Effect of Oyster Shell Extract in LPS-stimulated Raw 264.7 Cells. Prev Nutr Food Sci 2013; 18:23-9. [PMID: 24471106 PMCID: PMC3867150 DOI: 10.3746/pnf.2013.18.1.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/15/2013] [Indexed: 01/24/2023] Open
Abstract
This study was designed to investigate the anti-inflammatory effect of oyster shell extract on the production of pro-inflammatory factors [NO, reactive oxygen species (ROS), nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2)] and pro-inflammatory cytokines [Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and TNF-α] in the lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. Cell viability, as measured by the MTT assay, showed that oyster shell extract had no significant cytotoxicity in Raw 264.7 cells. The treatment with oyster shell extract decreased the generation of intracellular reactive oxygen species dose dependently and increased antioxidant enzyme activities, such as SOD, catalase, GSH-px in LPS-stimulated macrophage cells. Oyster shell extract significantly suppressed the production of NO and also decreased the expressions of iNOS, COX-2 and NF-κB. Additionally, oyster shell extract significantly inhibited the production of IL-1β, IL-6, and TNF-α in LPS-stimulated Raw 264.7 cells. Thus, these results showed that the oyster shell extract had an anti-inflammatory effect on LPS-stimulated Raw 264.7 cells.
Collapse
Affiliation(s)
- Se-Young Lee
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| | - Hak-Ju Kim
- Seojin Boitech Co. Ltd., Gyeonggi 443-373, Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
11
|
Lu X, Guo H, Sun L, Zhang L, Zhang Y. Protective effects of sulfated chitooligosaccharides with different degrees of substitution in MIN6 cells. Int J Biol Macromol 2013; 52:92-8. [DOI: 10.1016/j.ijbiomac.2012.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/21/2012] [Accepted: 09/30/2012] [Indexed: 11/25/2022]
|
12
|
Fuoco D. Classification Framework and Chemical Biology of Tetracycline-Structure-Based Drugs. Antibiotics (Basel) 2012; 1:1-13. [PMID: 27029415 PMCID: PMC4790241 DOI: 10.3390/antibiotics1010001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/21/2012] [Accepted: 06/08/2012] [Indexed: 12/27/2022] Open
Abstract
By studying the literature about tetracyclines (TCs), it becomes clearly evident that TCs are very dynamic molecules. In some cases, their structure-activity-relationship (SAR) are well known, especially against bacteria, while against other targets, they are virtually unknown. In other diverse fields of research-such as neurology, oncology and virology-the utility and activity of the tetracyclines are being discovered and are also emerging as new technological fronts. The first aim of this paper is to classify the compounds already used in therapy and prepare the schematic structure that includes the next generation of TCs. The second aim of this work is to introduce a new framework for the classification of old and new TCs, using a medicinal chemistry approach to the structure of those drugs. A fully documented Structure-Activity-Relationship (SAR) is presented with the analysis data of antibacterial and nonantibacterial (antifungal, antiviral and anticancer) tetracyclines. The lipophilicity and the conformational interchangeability of the functional groups are employed to develop the rules for TC biological activity.
Collapse
Affiliation(s)
- Domenico Fuoco
- Italian National Board of Chemists and Italian Chemical Society, Rome, 00187, Italy.
- McGill Nutrition and Performance Laboratory, Department of Oncology, School of Medicine, McGill University, 5252 Maisonneuve Street, Montreal, QC, H4A3S5, Canada.
| |
Collapse
|
13
|
Lee HA, Han JS. Anti-inflammatory Effect of Perilla frutescens (L.) Britton var. frutescens Extract in LPS-stimulated RAW 264.7 Macrophages. Prev Nutr Food Sci 2012; 17:109-15. [PMID: 24471071 PMCID: PMC3866756 DOI: 10.3746/pnf.2012.17.2.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/12/2012] [Indexed: 11/06/2022] Open
Abstract
This study was designed to investigate the inhibitory effects of Perilla frutescens (L.) Britton var. frutescens extract on the production of inflammation-related mediators (NO, ROS, NF-κB, iNOS and COX-2) and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Perilla frutescents (L.) Britton var. frutescens was air-dried and extracted with ethanol. The extract dose-dependently decreased the generation of intracellular reactive oxygen species and dose-dependently increased antioxidant enzyme activities, such as superoxide dismutase, catalase and glutathione peroxidase in lipopolysaccharide stimulated RAW 264.7 macrophages. Also, Perilla frutescens (L.) Britton var. frutescens extract suppressed NO production in lipopolysaccharide-stimulated RAW 264.7 cells. The expressions of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), NF-κB, iNOS and COX-2 were inhibited by the treatment with the extract. Thus, this study shows the Perilla frutescens (L.) Britton var. frutescens extract could be useful for inhibition of the inflammatory process.
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
14
|
Amat A, Fantacci S, De Angelis F, Carlotti B, Elisei F. DFT/TDDFT investigation of the stepwise deprotonation in tetracycline: pKa assignment and UV–vis spectroscopy. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1218-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Li DY, Xue MY, Geng ZR, Chen PY. The suppressive effects of Bursopentine (BP5) on oxidative stress and NF-ĸB activation in lipopolysaccharide-activated murine peritoneal macrophages. Cell Physiol Biochem 2012; 29:9-20. [PMID: 22415070 DOI: 10.1159/000337581] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Bursopentine (BP5) is a novel thiol-containing pentapeptide isolated from chicken bursa of Fabricius, and is reported to exert immunomodulatory effects on B and T lymphocytes. It has been found that some thiol compounds, such as glutathione (GSH) and N-acetylcysteine (NAC) protect living cells from oxidative stress. This led us to investigate whether BP5 had any ability to protect macrophages from oxidative stress as well as any mechanism that might underlie this process. METHODS Murine peritoneal macrophages activated by lipopolysaccharide (LPS) (2 μg/ml) were treated with single bouts (0, 25, 50, and 100 μM) of BP5. RESULTS BP5 potently suppressed the markers for oxidative stress, including nitric oxide (NO), reactive oxygen species (ROS), lipid peroxidation, and protein oxidation. It also decreased the expression and activity of inducible nitric oxide synthase (iNOS) and promoted a protective antioxidant state by elevating GSH content and by activating the expression and activity of certain key antioxidant and redox enzymes, including glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT). This suppressive effect on oxidative stress was accompanied by down-regulated expression and activity of nuclear factor kappa B (NF-κB). CONCLUSION These findings demonstrate that BP5 can protect LPS-activated murine peritoneal macrophages from oxidative stress. BP5 may have applications as an anti-oxidative stress reagent.
Collapse
Affiliation(s)
- De-yuan Li
- Key Laboratory of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing, China.
| | | | | | | |
Collapse
|
16
|
Lee HA, Han JS. Anti-Inflammatory Effect of Fermented Liriope platyphylla Extract in LPS-stimulated RAW 264.7 Macrophages. Prev Nutr Food Sci 2011. [DOI: 10.3746/jfn.2011.16.4.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Roy SK, Kendrick D, Sadowitz BD, Gatto L, Snyder K, Satalin JM, Golub LM, Nieman G. Jack of all trades: pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacol Res 2011; 64:580-9. [PMID: 21767646 PMCID: PMC3195907 DOI: 10.1016/j.phrs.2011.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sepsis is a disease process that has humbled the medical profession for centuries with its resistance to therapy, relentless mortality, and pathophysiologic complexity. Despite 30 years of aggressive, concerted, well-resourced efforts the biomedical community has been unable to reduce the mortality of sepsis from 30%, nor the mortality of septic shock from greater than 50%. In the last decade only one new drug for sepsis has been brought to the market, drotrecogin alfa-activated (Xigris™), and the success of this drug has been limited by patient safety issues. Clearly a new agent is desperately needed. The advent of recombinant human immune modulators held promise but the outcomes of clinical trials using biologics that target single immune mediators have been disappointing. The complex pathophysiology of the systemic inflammatory response syndrome (SIRS) is self-amplifying and redundant at multiple levels. In this review we argue that perhaps pharmacologic therapy for sepsis will only be successful if it addresses this pathophysiologic complexity; the drug would have to be pleiotropic, working on many components of the inflammatory cascade at once. In this context, therapy that targets any single inflammatory mediator will not adequately address the complexity of SIRS. We propose that chemically modified tetracycline-3, CMT-3 (or COL-3), a non-antimicrobial modified tetracycline with pleiotropic anti-inflammatory properties, is an excellent agent for the management of sepsis and its associated complication of the acute respiratory distress syndrome (ARDS). The purpose of this review is threefold: (1) to examine the shortcomings of current approaches to treatment of sepsis and ARDS in light of their pathophysiology, (2) to explore the application of COL-3 in ARDS and sepsis, and finally (3) to elucidate the mechanisms of COL-3 that may have potential therapeutic benefit in ARDS and sepsis.
Collapse
Affiliation(s)
- Shreyas K Roy
- Department of Surgery, Upstate University Hospital, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cho HY, Park CM, Kim MJ, Chinzorig R, Cho CW, Song YS. Comparative effect of genistein and daidzein on the expression of MCP-1, eNOS, and cell adhesion molecules in TNF-α-stimulated HUVECs. Nutr Res Pract 2011; 5:381-8. [PMID: 22125674 PMCID: PMC3221822 DOI: 10.4162/nrp.2011.5.5.381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/25/2011] [Accepted: 10/05/2011] [Indexed: 01/18/2023] Open
Abstract
We compared the effects of genistein and daidzein on the expression of chemokines, cell adhesion molecules (CAMs), and endothelial nitric oxide synthase (eNOS) in tumor necrosis factor (TNF)-α-stimulated human umbilical vascular endothelial cells (HUVECs). TNF-α exposure significantly increased expression of monocyte chemoattractant protein (MCP)-1, vascular adhesion molecule (VCAM)-1, and intercellular adhesion molecule-1. Genistein significantly decreased MCP-1 and VCAM-1 production in a dose-dependent manner, whereas CAM expression was not significantly lowered by genistein treatment. However, daidzein slightly decreased MCP-1 production. The effects of genistein and daidzein on MCP-1 secretion coincided with mRNA expression. Pre-treatment with either genistein or daidzein elevated eNOS expression and nitric oxide production disturbed by TNF-α exposure. A low concentration of isoflavones significantly inhibited nuclear factor (NF)κB activation, whereas a high dose slightly ameliorated these inhibitive effects. These results suggest that genistein had a stronger effect on MCP-1 and eNOS expression than that of daidzein. Additionally, NFκB transactivation might be partially related to the down-regulation of these mRNAs in TNF-α-stimulated HUVECs.
Collapse
Affiliation(s)
- Hye Yeon Cho
- Paik Institute for Clinical Research, Inje University, Busan 614-735, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Huang Y, Li R, Chen X, Zhuo Y, Jin R, Qian XP, Jiang YQ, Zeng ZH, Zhang Y, Shao QX. Doxycycline up-regulates the expression of IL-6 and GM-CSF via MAPK/ERK and NF-κB pathways in mouse thymic epithelial cells. Int Immunopharmacol 2011; 11:1143-9. [DOI: 10.1016/j.intimp.2011.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/18/2011] [Accepted: 03/08/2011] [Indexed: 12/23/2022]
|
20
|
Park CM, Park JY, Noh KH, Shin JH, Song YS. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:834-842. [PMID: 21075189 DOI: 10.1016/j.jep.2010.11.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 10/31/2010] [Accepted: 11/03/2010] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The common dandelion (Taraxacum officinale G.H. Weber ex Wiggers, Asteraceae) has been widely used in folklore medicine to treat dyspepsia, heartburn, and spleen and liver disorders. AIM OF THE STUDY To compare the antioxidative and anti-inflammatory activities of Taraxacum officinale methanol extract (TOME) and water extract (TOWE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and assess their constitutional differences, including luteolin, chicoric acid, and total phenol content. MATERIALS AND METHODS Antioxidative enzyme activities, nitric oxide (NO) production, and inducible NO synthase (iNOS) and nuclear factor (NF)-κB expression were estimated by biochemical analysis, the Griess reaction, reverse transcription-polymerase chain reaction, western hybridization, and electrophoretic mobility shift assay. High-performance liquid chromatography and the Folin-Ciocalteau method were used to analyze functional phytochemicals and total phenol content. RESULTS TOME and TOWE significantly reduced NO production with an IC(50) of 79.9 and 157.5 μg/mL, respectively, without cytotoxicity. Depleted glutathione (GSH) and antioxidative enzyme activities, including superoxide dismutase, catalase, GSH-peroxidase, and GSH-reductase, were restored by dandelion extracts. Both extracts inhibited LPS-stimulated iNOS gene expression and that of its transcription factor, NF-κB, in parallel with nitrite reduction. TOME showed more potent antioxidative and anti-inflammatory capacities than TOWE, which was attributable to its high total phenol, luteolin, and chicoric acid content. CONCLUSIONS These results indicate that TOME and TOWE inhibit oxidative stress and inflammatory responses through elevated de novo synthesis of antioxidative enzymes and suppression of iNOS expression by NF-κB inactivation.
Collapse
Affiliation(s)
- Chung Mu Park
- Department of Smart Foods and Drugs, Inje University, Obang-dong 607, Gimhae, Gyeongnam 621-749, Republic of Korea
| | | | | | | | | |
Collapse
|
21
|
Carlotti B, Fuoco D, Elisei F. Fast and ultrafast spectroscopic investigation of tetracycline derivatives in organic and aqueous media. Phys Chem Chem Phys 2010; 12:15580-91. [PMID: 20661497 DOI: 10.1039/c0cp00044b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical properties of seven tetracycline derivatives (tetracycline, oxytetracycline, demeclocycline, chlortetracycline, doxycycline, minocycline and meclocycline) in organic solvents and aqueous solution were studied using steady-state absorption and fluorescence techniques and transient absorption spectroscopies with nanosecond and femtosecond time resolution. The molecular structure, solvent and pH effects on the optical properties of this class of pharmaceutically interesting compounds were investigated in detail. The investigation furnished a complete description of the nature, the spectral and kinetic properties of the excited states formed upon irradiation. All the tetracycline derivatives exhibited a similar behaviour, and the photophysics of these molecules is different in organic solvents and in aqueous medium, where they exhibit a significant pH dependence. In water, compared to organic solvents, these compounds showed a blue-shifted bathochromic absorption band, a red-shifted emission spectrum, an increased Stokes shift and a decreased fluorescence quantum yield. These findings, together with the overall investigated solvent effect, suggested that in aqueous solvent additional fast and non-radiative deactivation processes, responsible for the large Stokes Shift and for the reduced fluorescence efficiency, are present. In fact, in organic media just two transients were observed during the ultrafast time-resolved investigation: the vibrationally hot S(1) state which was quickly stabilized by solvent reorganization to the relaxed S(1) state. This state showed lifetimes of tens of picoseconds and relaxed by fluorescence and internal conversion. No longer-lived transients were detected. In aqueous solution the excited-state deactivation of tetracyclines was found to be more complicated. Different protonated and tautomeric forms of the S(1) state were detected: a component which showed decay times of tens of picoseconds and a component which was longer-lived. A significant pH effect on the nature and number of these components was found. In fact, a remarkable change in the Stokes shift and in the fluorescence efficiency was also observed on going from acidic to basic aqueous solutions. The most important variations in the absorption properties were found in the pH range in which the second acid-base equilibrium takes place. The tetracycline lowest excited triplet state was observed as a 'rest absorption' during the femtosecond-resolved measurements in aqueous solution; through the nanosecond-resolved laser flash photolysis study, lower-energy radical species were detected, characterized by lifetimes of tens of microseconds. The formation of these species may be involved in the observed phototoxicity of the tetracycline drugs.
Collapse
Affiliation(s)
- Benedetta Carlotti
- Chemistry Department, and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | | | | |
Collapse
|
22
|
Park CM, Park JY, Song YS. Luteolin and Chicoric Acid, Two Major Constituents of Dandelion Leaf, Inhibit Nitric Oxide and Lipid Peroxide Formation in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Prev Nutr Food Sci 2010. [DOI: 10.3746/jfn.2010.15.2.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Yi NR, Park MJ, Han JS. Protective Effects of Fermented Soymilk Extract on High Glucose-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells. Prev Nutr Food Sci 2010. [DOI: 10.3746/jfn.2010.15.1.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Zhou X, Zhang P, Zhang C, An B, Zhu Z. Tetracyclines inhibit rat osteoclast formation and activity in vitro and affect bone turnover in young rats in vivo. Calcif Tissue Int 2010; 86:163-71. [PMID: 20033141 DOI: 10.1007/s00223-009-9328-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 11/19/2009] [Indexed: 01/24/2023]
Abstract
An experiment was designed to investigate whether systemic administration of tetracyclines (TCs) as bone fluorochrome labels could interfere with bone modeling in vivo and inhibit osteoclast formation and activity in vitro. Cell cultures of rat bone marrow macrophages revealed that TC and oxytetracycline inhibited osteoclastogenesis and bone resorption and stimulated apoptosis. Forty rats in five groups were treated with saline, calcein green, alizarin red S, TC, or oxytetracycline. Their tibias were used for histomorphometric analysis, including bone static, dynamic, and resorption parameters in the tibial proximal metaphysis. No significant differences in bone volume per tissue volume, trabecular number, trabecular thickness, trabecular separation, bone formation rate per bone surface, mineralizing surface, or mineral apposition rate were observed. TC or oxytetracycline decreased eroded surface, number of osteoclasts per bone perimeter, and osteoclast surface per bone surface by about 50%. The results demonstrated that TC and oxytetracycline inhibit rat osteoclast formation and activity in vitro, and histomorphometric parameters involved in bone turnover may be affected by the use of oxytetracycline and TC as fluorescent bone labels in vivo.
Collapse
Affiliation(s)
- Xiaoxiao Zhou
- Department of Orthopedics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Chen X, Xia S, Li R, Liu H, Huang Y, Qian X, Xiao X, Xu X, Lin X, Tian Y, Zong Y, He D, Chen W, Zhang Y, Shao Q. Doxycycline enhances the Ras-MAPK signaling and proliferation of mouse thymic epithelial cells. J Cell Biochem 2009; 107:494-503. [PMID: 19330805 DOI: 10.1002/jcb.22147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depletion of T-cell-dependent immunity is a major consideration for patients suffering from infections of human immunodeficiency virus (HIV), those undergoing organ transplantation, and those receiving anti-cancer chemotherapy and/or radiotherapy. In general, T-cell regeneration occurs in the thymus through thymopoiesis. We have found that doxycycline (Dox), a tetracycline derivative, enhances the proliferation of mouse thymic epithelial cells, which are unique in their capacity to support positive selection and are essential throughout the development of thymocytes. Cell cycle analysis indicates that the increased cell proliferation is due to a shortened G(0)/G(1) phase. To reveal the underlying mechanisms, we examined the expression of an array of molecules that regulate the cell cycle. The results show that in mouse thymic medullary-type epithelial cell line 1 (MTEC1) Dox leads to elevated levels of H-Ras, phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), cyclin E, cyclin dependent kinase 4/2 (CDK4/CDK2), E2F3, and c-myc. These data, and the observation that the proliferation-enhancing effect is largely abolished following treatment with an ERK inhibitor support an active role of the Ras-ERK/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, the present study reveals a new activity of an old family of antibiotics. The in vivo effect of Dox on immune reconstitution warrants further exploration.
Collapse
Affiliation(s)
- Xun Chen
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Severe sepsis, defined as inflammation and organ failure due to infection, continues to result in a mortality of approximately 30% despite advances in critical care. Current therapy includes timely administration of antibiotics, source control of infection, aggressive fluid resuscitation, support of failing organs, and use of activated protein C where clinically indicated. Bacterial mediators, including endotoxin and superantigens, as well endogenous proinflammatory cytokines are considered important to the pathogenesis of sepsis-induced organ failure and are being targeted with numerous molecules and removal devices. Additional therapeutic strategies are aimed at restoring the natural anticoagulant levels, blocking deleterious effects of the complement cascade, reversing cytopathic hypoxia, and inhibiting excessive lymphocyte apoptosis. Molecules with pluripotent activity, such as interalpha inhibitor proteins and estrogen-receptor ligands, are also being investigated.
Collapse
Affiliation(s)
- Steven P LaRosa
- Warren Alpert School of Medicine, Brown University, Providence, RI, USA.
| | | |
Collapse
|
27
|
Bastos LFS, Angusti A, Vilaça MC, Merlo LA, Nascimento EB, Rocha LTS, Godin AM, Solano AGR, Jarussophon S, Nunan EA, Konishi Y, Coelho MM. A novel non-antibacterial, non-chelating hydroxypyrazoline derivative of minocycline inhibits nociception and oedema in mice. Br J Pharmacol 2008; 155:714-21. [PMID: 18660827 DOI: 10.1038/bjp.2008.303] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Many in vitro and fewer in vivo studies have shown that tetracyclines present anti-inflammatory activity. We investigated if a novel non-antibacterial, non-chelating hydroxypyrazoline derivative of minocycline, 12S-hydroxy-1,12-pyrazolinominocycline (PMIN), also induced antinociceptive and anti-inflammatory effects. EXPERIMENTAL APPROACH Antibacterial effects against a minocycline-sensitive Staphylococcus aureus strain were evaluated by applying a cylinder-plate agar diffusion technique. Antibacterial effects of diluted serum from mice pre-treated with minocycline or PMIN were also evaluated. Ca2+ binding activity was assessed by spectrophotometry. Formalin-induced nociceptive responses and carrageenan-induced paw oedema were evaluated in mice. The rota-rod apparatus was used to evaluate motor coordination. KEY RESULTS Minocycline, but not PMIN, inhibited bacterial growth. Serum from mice treated with minocycline, but not with PMIN, also induced such an effect. The UV absorption spectrum of solutions of minocycline, but not those of PMIN, was markedly changed in the presence of Ca2+. Minocycline or PMIN inhibited both phases of formalin-induced nociception and carrageenan-induced paw oedema. It is unlikely that antinociception resulted from lack of motor coordination, as tetracycline did not impair the performance of mice on the rotating rod. CONCLUSIONS AND IMPLICATIONS These results indicate that inhibition of nociception and oedema by tetracyclines is neither necessarily linked to antibacterial nor to Ca2+ chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the treatment of painful and inflammatory diseases, as its lack of antibacterial and Ca2+ chelating activities might confer greater safety over conventional tetracyclines.
Collapse
Affiliation(s)
- L F S Bastos
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kielian T, Esen N, Liu S, Phulwani NK, Syed MM, Phillips N, Nishina K, Cheung AL, Schwartzman JD, Ruhe JJ. Minocycline modulates neuroinflammation independently of its antimicrobial activity in staphylococcus aureus-induced brain abscess. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1199-214. [PMID: 17717149 PMCID: PMC1988870 DOI: 10.2353/ajpath.2007.070231] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 06/19/2007] [Indexed: 12/31/2022]
Abstract
Minocycline exerts beneficial immune modulatory effects in several noninfectious neurodegenerative disease models; however, its potential to influence the host immune response during central nervous system bacterial infections, such as brain abscess, has not yet been investigated. Using a minocycline-resistant strain of Staphylococcus aureus to dissect the antibiotic's bacteriostatic versus immune modulatory effects in a mouse experimental brain abscess model, we found that minocycline significantly reduced mortality rates within the first 24 hours following bacterial exposure. This protection was associated with a transient decrease in the expression of several proinflammatory mediators, including interleukin-1beta and CCL2 (MCP-1). Minocycline was also capable of protecting the brain parenchyma from necrotic damage as evident by significantly smaller abscesses in minocycline-treated mice. In addition, minocycline exerted anti-inflammatory effects when administered as late as 3 days following S. aureus infection, which correlated with a significant decrease in brain abscess size. Finally, minocycline was capable of partially attenuating S. aureus-dependent microglial and astrocyte activation. Therefore, minocycline may afford additional therapeutic benefits extending beyond its antimicrobial activity for the treatment of central nervous system infectious diseases typified by a pathogenic inflammatory component through its ability to balance beneficial versus detrimental inflammation.
Collapse
Affiliation(s)
- Tammy Kielian
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 846, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bastos LFS, Merlo LA, Rocha LTS, Coelho MM. Characterization of the antinociceptive and anti-inflammatory activities of doxycycline and minocycline in different experimental models. Eur J Pharmacol 2007; 576:171-9. [PMID: 17719028 DOI: 10.1016/j.ejphar.2007.07.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 07/03/2007] [Accepted: 07/23/2007] [Indexed: 11/19/2022]
Abstract
Tetracyclines induce anti-inflammatory effects unrelated to their antimicrobial activities. We investigated the effect induced by minocycline and doxycycline in models of nociceptive and inflammatory pain, edema, fever, cell migration and formation of fibrovascular tissue, as these effects have not been fully investigated. Tetracyclines were administered via intraperitoneal route 1 h before the tests. Minocycline and doxycycline (100 mg/kg) inhibited the second phase of the formalin-induced nociceptive response in mice. Doxycycline (100 mg/kg) also inhibited the first phase. The nociceptive response induced by phorbol 12,13-didecanoate (PDD) in mice was inhibited by doxycycline (100 mg/kg). Furthermore, carrageenan-induced mechanical allodynia in rats was inhibited by doxycycline and minocycline (50 or 100 mg/kg). However, they did not enhance the latency in the hot-plate test. It is unlikely that antinociception resulted from motor incoordination or muscle relaxing effect, as both tetracyclines (100 mg/kg) did not impair the motor activity of mice in the rota-rod test. Doxycycline (50 or 100 mg/kg) or minocycline (50 or 100 mg/kg) inhibited carrageenan-induced paw edema in rats. However, only minocycline (100 mg/kg) inhibited PDD-induced edema. Carrageenan-induced leukocyte migration into the peritoneal cavity of rats was inhibited by both tetracyclines (100 mg/kg). Endotoxin-induced fever in rats was also inhibited by doxycycline (50 or 100 mg/kg) or minocycline (100 mg/kg). Finally, formation of fibrovascular tissue induced by subcutaneous implant of a cotton pellet in mice was inhibited by a 6-day administration of both tetracyclines (50 or 100 mg/kg day). Concluding, this study clearly shows the antinociceptive and anti-inflammatory activities of these second-generation tetracyclines.
Collapse
Affiliation(s)
- Leandro Francisco S Bastos
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
30
|
Mulè F, Zizzo MG, Amato A, Feo S, Serio R. Evidence for a role of inducible nitric oxide synthase in gastric relaxation of mdx mice. Neurogastroenterol Motil 2006; 18:446-54. [PMID: 16700724 DOI: 10.1111/j.1365-2982.2006.00782.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alterations of gastric mechanical activity have been reported in mdx mouse, animal model for Duchenne muscular dystrophy. This study examined if alterations in the vasoactive intestinal polypeptide (VIP) system are present in mdx stomach. Gastric mechanical activity was recorded in vitro as changes of endoluminal pressure and neurally or pharmacologically evoked relaxations were analysed in mdxvs normal stomach. Reverse-transcription polymerase chain reaction was used to detect inducible nitric oxide synthase (iNOS) expression. Relaxations to sodium nitroprusside in mdx stomach showed no difference in comparison with normal preparations. In normal stomach, VIP produced relaxation, which was reduced by VIP6-28, antagonist of VIP receptors, but was not modified by Nomega-nitro-L-arginine methyl ester (L-NAME), 1-H-oxodiazol-[1,2,4]-[4,3-a]quinoxaline-1-one (ODQ) or by N-(3-(aminomethyl)-benzyl)acetamidine (1400W) and aminoguanidine, inhibitors of iNOS. In contrast, in mdx stomach VIP responses were antagonized not only by VIP6-28, but also by L-NAME, ODQ, 1400W or aminoguanidine. In normal stomach, the slow relaxation evoked by stimulation at high frequency was reduced by VIP6-28, but it was unaffected by 1400W or aminoguanidine. In mdx stomach, it was reduced by VIP6-28 or 1400W, which did not show additive effects. iNOS mRNA was expressed only in mdx stomach. The results suggest that in mdx gastric preparations, iNOS is functionally expressed, being involved in the slow relaxation induced by VIP.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia Generale, Università di Palermo, Palermo, Italy.
| | | | | | | | | |
Collapse
|
31
|
Cho HY, Cho CW, Song YS. Antioxidative and Anti-Inflammatory Effects of Saururus chinensis Methanol Extract in RAW 264.7 Macrophages. J Med Food 2005; 8:190-7. [PMID: 16117611 DOI: 10.1089/jmf.2005.8.190] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Natural products are known to be sources of bioactive components exerting antioxidative and anti-inflammatory activities. We evaluated the suppressive effects of the methanol extract (0-45 microg/mL) of the aerial parts of Saururus chinensis (Lour.) Baill (Saururaceae) on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production and oxidative stress buildup in the RAW 264.7 murine macrophages. Treatment of RAW 264.7 cells with S. chinensis methanol extract (SME) significantly reduced LPS-stimulated NO production in a concentration-dependent manner. Treatment with SME reduced thiobarbituric acid-reactive substances accumulation and enhanced glutathione levels and activities of antioxidative enzymes, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, in LPS-stimulated macrophages compared with LPS-only treated cells. Expression of inducible NO synthase (iNOS) mRNA was also suppressed in SMEtreated cells. The specific DNA binding activities of nuclear factor kappaB (NFkappaB) on nuclear extracts from SME-treated cells were significantly suppressed. These results suggest that SME has antioxidative and anti-inflammatory activities by enhancing antioxidative defense systems and suppressing NO production via the down-regulation of iNOS expression and NFkappaB activity.
Collapse
Affiliation(s)
- Hye-Yeon Cho
- School of Food and Life Science, Biohealth Products Research Center and Food Science Institute, Korea
| | | | | |
Collapse
|
32
|
Maitra SR, Bhaduri S, Chen E, Shapiro MJ. Role of chemically modified tetracycline on TNF-alpha and mitogen-activated protein kinases in sepsis. Shock 2005; 22:478-81. [PMID: 15489642 DOI: 10.1097/01.shk.0000140298.40440.51] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemically modified tetracyclines are orally active inhibitors of multiple proteases and cytokines. In this study, we focused on the regulation of tumor necrosis factor (TNF)-alpha and mitogen-activated protein kinases (MAPKs) in sepsis and their reduction by treatment with nonantimicrobial chemically modified tetracycline-3 (CMT-3), which retains their antiinflammatory activity. Sepsis was induced in rats by cecal ligation and puncture (CLP). At 24 h and 1 h before CLP, treated rats received CMT-3 (25 mg/kg), and untreated rats received saline by gavage. At 0 h, 0.5 h, 1.5 h, and 24 h after CLP, blood and liver samples were collected. TNF-alpha was determined by ELISA, and MAPKs were determined by Western blot analysis. A significant activation of p38 MAPK was observed after 0.5 h and 1.5 h of sepsis that appeared to coincide with the increased circulating TNF-alpha level. The activation of p42/44 was increased after 24 h of sepsis, whereas that of SAPK/JNK was unaltered throughout the course of sepsis. CMT-3 pretreatment inhibited the TNF-alpha level as well as p38 MAPK activation seen after 0.5 and 1.5 h of CLP and also suppressed the activation of p42/44 after 24 h post-CLP. These results indicate increased activity of TNF-alpha and MAPK following sepsis and demonstrate the beneficial effect of CMT-3 in preventing the increase in TNF-alpha, p38 MAPK, p42/44 MAPK, and the progression of septic shock.
Collapse
Affiliation(s)
- Subir R Maitra
- Trauma Research Laboratory, Department of Emergency Medicine, School of Medicine, State University of New York, Stony Brook, NY 11794-7400, USA.
| | | | | | | |
Collapse
|
33
|
|
34
|
Park JY, Cho HY, Kim JK, Noh KH, Yang JR, Ahn JM, Lee MO, Song YS. Chlorella dichloromethane extract ameliorates NO production and iNOS expression through the down-regulation of NFκB activity mediated by suppressed oxidative stress in RAW 264.7 macrophages. Clin Chim Acta 2005; 351:185-96. [PMID: 15563889 DOI: 10.1016/j.cccn.2004.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/20/2004] [Accepted: 09/20/2004] [Indexed: 11/20/2022]
Abstract
BACKGROUND It has been proposed that chlorella extracts have antioxidative and anti-inflammatory effects. METHODS RAW 264.7 murine macrophage cell line was preincubated with various concentrations (0-100 mug/ml) of chlorella dichloromethane extract (CDE) and stimulated with lipopolysaccharide (LPS) to induce oxidative stress and inflammation. RESULTS Treatments of CDE reduced thiobarbituric acid-reactive substances (TBARS) accumulation, enhancing glutathione level and activities of antioxidative enzymes including superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-px), and glutathione reductase in LPS-stimulated macrophages than LPS-only treated cells. Nitric oxide (NO) production was significantly suppressed in a dose-dependent manner (p<0.05) with an IC(50) of 30.5 microg/ml. Treatment of CDE at 50 microg/ml suppressed NO production to 6% of LPS-control. Treatment with CDE suppressed the levels of inducible nitric oxide synthase (iNOS) protein and mRNA expressions. The specific DNA binding activities of nuclear factor kappa B (NF kappa B) on nuclear extracts from CDE treatments were significantly suppressed with an IC(50) of 62.7 mug/ml in a dose-dependent manner. CONCLUSIONS CDE ameliorates NO production and iNOS expression through the down-regulation of NF kappa B activity, which may be mediated by attenuated oxidative stress in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ji-Young Park
- School of Food and Life Science, Biohealth Product Research Center and Food Science Institute, Inje University, 607 Obang-dong, Kimhae 621-749, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Acharya MR, Venitz J, Figg WD, Sparreboom A. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resist Updat 2004; 7:195-208. [PMID: 15296861 DOI: 10.1016/j.drup.2004.04.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 04/26/2004] [Indexed: 11/15/2022]
Abstract
Matrix metalloproteinases belong to a diverse group of enzymes that are not only involved in restructuring the extracellular matrix, but also play a major role in various pathophysiological conditions by virtue of their complicated expression, activation, and regulation processes. They have been widely implicated to function as major contenders in cancer progression, frequently due to their role in invasion, proliferation and metastasis. MMP inhibitors have been specifically designed to target these altered activities of MMPs, mostly by means of inhibiting their function and by diminishing their increased expression in various disease states, particularly cancer. Tetracyclines and chemically modified tetracyclines (CMTs) have been rationally designed to inhibit the activity of MMPs and thus decrease the potential risk of spread of tumor cells to distant sites by invasion and metastasis. Pre-clinical and early clinical data for one of these CMTs, COL-3 (formerly CMT-3) indicate considerable potential for this group of anticancer agents. Further testing and rational modifications of these CMT analogues might lead to new anticancer agents.
Collapse
Affiliation(s)
- Milin R Acharya
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | |
Collapse
|
36
|
Song YS, Choi CY, Suh H, Song YO. 3-(4′-hydroxyl-3′, 5′-dimethoxyphenyl) Propionic Acid Suppresses NO Production and Elevates GSH Levels in Murine Macrophages. Prev Nutr Food Sci 2004. [DOI: 10.3746/jfn.2004.9.3.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Vandenbroeck K, Alloza I, Gadina M, Matthys P. Inhibiting cytokines of the interleukin-12 family: recent advances and novel challenges. J Pharm Pharmacol 2004; 56:145-60. [PMID: 15005873 DOI: 10.1211/0022357022962] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Interleukin-12 (IL-12) and the more recently discovered IL-23 and IL-27 constitute a unique family of structurally related, heterodimeric cytokines that regulate cell-mediated immune responses and T helper 1 (Th1)-type inflammatory reactions. Not surprisingly, the potentiality of treating conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA) through pharmacological interference with IL-12 pathways has received widespread attention. In this review we have examined over 50 substances with reported IL-12 inhibitory effects. We demonstrate that a majority of these belong to a limited number of major functional classes, each of which targets discrete events in the IL-12 biological pathway. Thus, most IL-12 inhibitory substances appear to work either through inhibition of transcription factor NF-kappa B activation, up-regulation of intracellular cAMP, blockage of posttranslational processing or interference with signal transduction pathways. In addition, cyclophilin-binding drugs, and generic inhibitors of nuclear histone deacetylases, and of ion channels, pumps and antiporters are emerging as potential leads to novel targets for interference with IL-12 production. Many inhibitors of NF-kappa B and of IL-12 signal transduction have been proven effective in limiting or preventing disease in experimental autoimmune encephalomyelitis (EAE) models of MS. The sharing of the p40 subunit, the IL-12R beta 1 and components of the signal transduction pathways between IL-12 and IL-23 raises the question as to whether the beneficial effects of various drugs previously ascribed to inhibition of IL-12 may, in fact, have been due to concurrent blockage of both cytokines, or of IL-23, rather than IL-12. Moreover, the homodimeric beta(2)-form of IL-12, though originally considered to display only antagonistic effects, is now emerging as a pronounced agonist in a variety of inflammatory processes. Reassessment of IL-12 inhibitory compounds is therefore needed to scrutinize their effects on IL-12 alpha beta, beta(2) and IL-23 formation. This is likely to open exciting perspectives to the identification of drugs that target these cytokines either indiscriminately or selectively. The functional diversity of presently available inhibitors should facilitate an unprecedented flexibility in designing future trials for the treatment of IL-12- and IL-23-mediated disorders.
Collapse
Affiliation(s)
- Koen Vandenbroeck
- Cytokine Biology and Genetics Programme, Biomolecular Sciences Research Group, School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | | | |
Collapse
|
38
|
Kirkwood K, Martin T, Andreadis ST, Kim YJ. Chemically modified tetracyclines selectively inhibit IL-6 expression in osteoblasts by decreasing mRNA stability. Biochem Pharmacol 2003; 66:1809-19. [PMID: 14563491 DOI: 10.1016/s0006-2952(03)00450-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In bone biology, interleukin (IL)-6 is an autocrine/paracrine cytokine which can induce osteoclasts formation and activation to help mediate inflammatory bone destruction. Previous studies have shown that tetracycline and its derivatives have potentially beneficial therapeutic effects in the prevention and treatment of metabolic bone diseases by modulating osteoblast and osteoclast activities. Our previous studies indicated that non-antimicrobial chemically modified tetracyclines (CMTs) can dose-dependently inhibit IL-1 beta-induced IL-6 secretion in osteoblastic cells. In the present study, we explored the molecular mechanisms underlying the ability of doxycycline analogs CMT-8 and its non-chelating pyrazole derivative, CMT-5 to affect IL-6 gene expression in murine osteoblasts. Steady-state IL-6 mRNA was decreased with CMT-8 (ca. 50%) but not by CMT-5 when stimulated by IL-1 beta. CMT-8 regulation of IL-1 beta-induced IL-6 gene expression was further explored. CMT-8 did not affect IL-6 promoter activity in reporter gene assays. However, the IL-6 mRNA stability was decreased in the presence of CMT-8. These effects require de novo protein synthesis as they were inhibited by cycloheximide. Western blot analysis indicated that CMT-8 did not affect p38 mitogen-activated protein kinase, c-jun NH(2)-terminal kinases, or extracellular signal-regulated kinases (1 and 2) phosphorylation in response to IL-1 beta. These data suggest that CMT-8 can modulate inhibit IL-1 beta-induced IL-6 expression in MC3T3-E1 cells at the post-transcriptional level affecting IL-6 mRNA stability. These observations may offer a novel molecular basis for this treatment of metabolic bone diseases that are mediated by IL-6.
Collapse
Affiliation(s)
- Keith Kirkwood
- Department of Periodontics and Endodontics, State University of New York at Buffalo, 250 Squire Hall, 3435 Main Street, Buffalo, NY 14214-3008, USA.
| | | | | | | |
Collapse
|
39
|
Islam MM, Franco CD, Courtman DW, Bendeck MP. A nonantibiotic chemically modified tetracycline (CMT-3) inhibits intimal thickening. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1557-66. [PMID: 14507662 PMCID: PMC1868303 DOI: 10.1016/s0002-9440(10)63512-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent research has shown that the tetracycline antibiotics are pluripotent drugs that inhibit the activity of matrix metalloproteinases (MMPs) and affect many cellular functions including proliferation, migration, and matrix remodeling. We have shown that doxycycline inhibits MMP activity and intimal thickening after injury of the rat carotid artery, however we do not know whether these effects are because of the antibiotic, anti-MMP, or other actions of doxycycline. Recently, chemically modified tetracyclines have been synthesized that lack antibiotic activity but retain anti-MMP activity (CMT-3), or lack both antibiotic and anti-MMP activity (CMT-5). In the current study we have assessed the effects of treatment with CMT-3 or CMT-5 on intimal thickening after balloon catheter injury of the rat carotid artery. Rats were treated by oral gavage with 15 mg/kg/day CMT-3 or CMT-5. CMT-3 significantly reduced smooth muscle cell (SMC) proliferation in both the medial and intimal layers of the injured rat carotid artery compared to CMT-5. Furthermore, CMT-3 inhibited SMC migration from the media to the intima by 86% at 4 days after injury. CMT-3 also decreased MMP-2 activity. Finally, we found that CMT-3 treatment resulted in a significant reduction in intimal cross-sectional area from 0.23 +/- 0.01 mm(2) in the CMT-5 control group to 0.19 +/- 0.01 mm(2). There was also a reduction in elastin and collagen accumulation within the intima. We conclude that CMT-3 attenuated intimal thickening after arterial injury by inhibiting SMC proliferation, migration and MMP activity, and accumulation of extracellular matrix. The inhibitory effects of CMT-3 were independent of the antibiotic properties, but were dependent on the anti-MMP activity of the tetracycline family.
Collapse
MESH Headings
- Animals
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/metabolism
- Carotid Artery, Common/pathology
- Carotid Artery, Common/physiopathology
- Catheterization/adverse effects
- Cell Movement
- Collagen/metabolism
- Elastin/metabolism
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Tetracycline/pharmacology
- Tetracyclines/pharmacology
- Tunica Intima/drug effects
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Muzharul M Islam
- Departments of Laboratory Medicine and Pathobiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
D'Agostino P, Camemi AR, Caruso R, Arcoleo F, Cascio A, Dolce A, Sacco E, Cangemi G, di Rosa T, Moceo P, Cillari E. Matrix metalloproteinases production in malignant pleural effusions after talc pleurodesis. Clin Exp Immunol 2003; 134:138-42. [PMID: 12974766 PMCID: PMC1808842 DOI: 10.1046/j.1365-2249.2003.02262.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we have evaluated the modifications of matrix metalloproteinases (MMPs) in malignant pleural fluids taken from patients suffering from lung cancer and treated with intrapleural talc instillation to induce pleurodesis. Furthermore, we have analysed the variations of some inflammatory mediators (C-reactive protein, alpha-1 antitrypsin) and of a protein (plasminogen) involved in MMP activation. In all patients the clinical improvement after talc pleurodesis was followed by a reduction in MMP-1, TIMP-1, C-reactive protein, alpha-1 antitrypsin and plasminogen activity. Furthermore, MMP-9 levels were variable; in fact, in some patients they were high at the beginning of treatment, in others they increased a few days after pleurodesis induction. These inhibitory effects of talc on MMP-1 and inflammatory mediators associated with the reduction of pleural effusion could constitute an effective means to evaluate the evolution of the treatment.
Collapse
Affiliation(s)
- P D'Agostino
- Azienda Ospedaliera-Universitaria Policlinico, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ferlazzo V, D'Agostino P, Milano S, Caruso R, Feo S, Cillari E, Parente L. Anti-inflammatory effects of annexin-1: stimulation of IL-10 release and inhibition of nitric oxide synthesis. Int Immunopharmacol 2003; 3:1363-9. [PMID: 12946433 DOI: 10.1016/s1567-5769(03)00133-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Annexin-1 (ANX-1) is an anti-inflammatory protein induced by glucocorticoids. Like glucocorticoids, ANX-1 and derived peptides inhibit eicosanoid synthesis, block leukocyte migration and induce apoptosis of inflammatory cells. Cytokines may possess either pro-inflammatory, i.e. interleukin(IL)-1beta, tumor necrosis factor (TNF)-alpha, IL-12 or anti-inflammatory properties, i.e. IL-4, IL-10. The experiments described in the present study have been performed to answer the question whether the anti-inflammatory action of ANX-1 may be mediated, at least in part, by the release of IL-10. In macrophage (J774) cell line cultures primed with lipolysaccharide (LPS), recombinant ANX-1 stimulated IL-10 release in a dose- and time-dependent manner. In the same cells, the protein and its derived N-terminal peptide (amino acids 2-26) dose-dependently inhibited the release of nitric oxide (NO). Furthermore, both the whole protein and the peptide down-regulated the mRNA expression of the inducible nitric oxide sythase (iNOS). The peptide was also able to inhibit the expression of IL-12 mRNA. These results suggest that some of the anti-inflammatory effects of ANX-1 may be mediated by the release of IL-10, which, in turn, inhibits iNOS mRNA expression and, hence, NO release. In addition, ANX-1-stimulated IL-10 release may also be responsible for the inhibition of IL-12 mRNA expression and, consequently, IL-12 synthesis.
Collapse
Affiliation(s)
- Viviana Ferlazzo
- Department of Bio-Pathology and Bio-Medical Methodologies, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol 2003; 81:289-96. [PMID: 12848850 DOI: 10.1046/j.1440-1711.2003.t01-1-01170.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic obstructive pulmonary disease is a highly prevalent, complex disease, usually caused by cigarette smoke. It causes serious morbidity and mortality and costs the global community billions of dollars per year. While chronic inflammation, extracellular matrix destruction and increased airway epithelial cell apoptosis are reported in chronic obstructive pulmonary disease, the understanding of the basic pathogenesis of the disease is limited and there are no effective treatments. We hypothesized that the accumulation of apoptotic airway epithelial cells chronic obstructive pulmonary disease in could be due to defective phagocytic clearance by alveolar macrophages. There have been no previous studies of the phagocytic capacity of alveolar macrophages in chronic obstructive pulmonary disease using physiologically relevant apoptotic airway epithelial cells as phagocytic targets. We developed a phagocytosis assay whereby cultured 16HBE airway epithelial cells were induced to apoptosis with ultraviolet radiation and stained with mitotracker green. Alveolar macrophages from bronchoalveolar lavage from eight control and six chronic obstructive pulmonary disease subjects were analysed following 1.5 h incubation with apoptotic airway epithelial cells, then staining with macrophage marker anti CD33. CD33+/mitotracker green + events (i.e., alveolar macrophages which had phagocytosed apoptotic airway epithelial cells) were analysed using flow cytometry. Phagocytosis of polystyrene microbeads was investigated in parallel. A significantly reduced proportion of alveolar macrophages from chronic obstructive pulmonary disease subjects ingested apoptotic airway epithelial cells compared with controls (11.6 +/- 4.1% for chronic obstructive pulmonary disease versus 25.6 +/- 9.2% for control group). Importantly, the deficiency was not observed using polystyrene beads, suggesting that the failure to resolve epithelial damage in chronic obstructive pulmonary disease may result, at least partially, from specific defects in phagocytic ability of alveolar macrophages to ingest apoptotic airway epithelial cells.
Collapse
Affiliation(s)
- Sandra Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5001, Australia.
| | | | | | | | | |
Collapse
|
43
|
Park JY, Lee HS, Song YS. Suppressive Effect of Chlorella Methanol Extract on Oxidative Stress and NFkB Activation in RAW 264.7 Macrophages. Prev Nutr Food Sci 2003. [DOI: 10.3746/jfn.2003.8.2.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Elkayam O, Yaron I, Shirazi I, Judovitch R, Caspi D, Yaron M. Active leflunomide metabolite inhibits interleukin 1beta, tumour necrosis factor alpha, nitric oxide, and metalloproteinase-3 production in activated human synovial tissue cultures. Ann Rheum Dis 2003; 62:440-3. [PMID: 12695157 PMCID: PMC1754531 DOI: 10.1136/ard.62.5.440] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Leflunomide is now an approved agent for the management of adult rheumatoid arthritis (RA). Its active metabolite A771726 inhibits de novo pyrimidine biosynthesis. Although considered to be an immunosuppressive agent, its mechanism of action remains obscure. OBJECTIVES Evaluation of the leflunomide active metabolite A771726 (LEF) effect on interleukin 1beta (IL1beta), tumour necrosis factor (TNFalpha), nitric oxide (NO), and stromelysin (metalloproteinase-3 (MMP-3)) production by activated human synovial tissue in culture. METHODS Synovial tissue was obtained during surgery from patients undergoing total knee replacement owing to RA or osteoarthritis (OA), cut into small pieces, and cultured in Petri dishes with test materials as previously described. IL1beta, TNFalpha, NO, and MMP-3 were measured in the culture media after 48 hours incubation with different doses of LEF by methods previously described. RESULTS LEF (0.3, 3, and 9 micro g/ml) inhibited IL1beta production in the presence of lipopolysaccharide (LPS; 3 micro g/ml) in a dose dependent manner (p<0.01) at LEF 0.3 micro g/ml. TNFalpha production in the presence of IL1beta (1 ng/ml) was also inhibited in a dose dependent manner (p<0.05 at LEF 0.3 micro g/ml). NO and MMP-3 production in the presence of LPS (3 micro g/ml) was inhibited as well (p<0.01 at LEF 1 micro g/ml and at LEF 0.3 micro g/ml, respectively). Synovial cell viability evaluated by the tetrazolium salt XTT was unaffected by the LEF concentration used. There was no qualitative difference in the response of OA and RA synovial tissue. CONCLUSION Leflunomide may modulate the rheumatoid articular process by inhibition of local production of IL1beta, TNFalpha, NO, and MMP-3.
Collapse
Affiliation(s)
- O Elkayam
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Israel.
| | | | | | | | | | | |
Collapse
|
45
|
D'Agostino P, Ferlazzo V, Milano S, La Rosa M, Di Bella G, Caruso R, Barbera C, Grimaudo S, Tolomeo M, Feo S, Cillari E. Chemically modified tetracyclines induce cytotoxic effects against J774 tumour cell line by activating the apoptotic pathway. Int Immunopharmacol 2003; 3:63-73. [PMID: 12538035 DOI: 10.1016/s1567-5769(02)00213-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we have studied the effects of chemically modified tetracyclines (CMTs) on apoptosis both at the level of the cytoplasmic proteolytic caspase cascade, and on Bcl-2 and c-myc mRNA expression in the J774 macrophage cell line. The results indicate that CMTs induce morphological changes consistent with apoptotic events, as clearly demonstrated both by the acridine orange and ethidium bromide staining, and by TUNEL and fragmentation ELISA assays. Furthermore, the analysis of the cell cycle by flow cytometry shows an evident apoptotic sub-G0G1 peak, without important modifications in the cell cycle distribution. CMTs induce programmed cell death (PCD) in a dose-dependent manner and CMT-8 is the strongest among them. CMT-1 and CMT-8 activate mainly caspase-8 as attested by the inhibitory effects of Z-VAD-fmk and Z-IEDT-fmk on CMT-induced apoptosis. Part of CMT-induced PCD is due to the activation of caspase-9, since it is reduced by the specific caspase-9 inhibitor, Z-LEHD-fmk. Besides, CMTs increase Bcl-2 and c-myc mRNA expression. Collectively, these data indicate that CMTs are potentially anti-tumour agents, since they strongly trigger apoptosis both activating the proteolytic system of the caspase family and modulating genes involved in PCD regulation.
Collapse
Affiliation(s)
- Pietro D'Agostino
- Department of Immuno-Haematology and Transfusion, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|