1
|
All living cells are cognitive. Biochem Biophys Res Commun 2020; 564:134-149. [PMID: 32972747 DOI: 10.1016/j.bbrc.2020.08.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
All living cells sense and respond to changes in external or internal conditions. Without that cognitive capacity, they could not obtain nutrition essential for growth, survive inevitable ecological changes, or correct accidents in the complex processes of reproduction. Wherever examined, even the smallest living cells (prokaryotes) display sophisticated regulatory networks establishing appropriate adaptations to stress conditions that maximize the probability of survival. Supposedly "simple" prokaryotic organisms also display remarkable capabilities for intercellular signalling and multicellular coordination. These observations indicate that all living cells are cognitive.
Collapse
|
2
|
Berger FD, Manderville RA, Sturla SJ. Adduct Fluorescence as a Tool to Decipher Sequence Impact on Frameshift Mutations Mediated by a C-Linked C8-Biphenyl-Guanine Lesion. Chem Res Toxicol 2019; 32:784-791. [PMID: 30785283 DOI: 10.1021/acs.chemrestox.9b00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatic chemicals can undergo metabolic activation to afford electrophilic species that react at the C8-site of 2'-deoxyguanosine (dG) to generate bulky C8-dG adducts as a basis of initiating carcinogenesis. These DNA lesions have served as models to understand the mechanism of frameshift mutagenesis, especially within CG-dinucleotide repeat sequences, such as NarI (5'-GGCXCC-3', where X = C8-dG adduct), however there is still limited capacity to predict the likelihood of mutation arising within particular contexts, and hence chemistry-based strategies are needed for probing relationships between nucleic acid sequence and structure with replication errors. In the NarI sequence, certain C8-dG adducts may trigger in the course of DNA synthesis the formation of a slipped mutagenic intermediate (SMI) that contains a two nucleotide (XC) bulge in the template strand that can form upstream of the polymerase active site. This distortion facilitates polymerization but affords a GC dinucleotide deletion product (-2 frameshift mutation). In the current study, incorporating the fluorescent C-linked 4-fluorobiphenyl-dG (FBP-dG) adduct into two 22-mer templates containing CG-dinucleotide repeats ( NarI: 3'-CXCGGC-5' and CG3: 3'-CXCGCG-5', X = FBP-dG) and performing primer extension reactions using DNA polymerase I, Klenow fragment exo- (Kf-) revealed a dramatic sequence-based difference in polymerase bypass efficiency. Primer extension past FBP-dG within the NarI sequence was strongly blocked, whereas Kf- extended the primer past FBP-dG within a CG3 template to afford a full-length product and the GC dinucleotide deletion. To model the nucleotide insertion steps in the fully paired (FP) versus the slipped mutagenic (SM) translesion pathways, adducted template:primer duplexes were constructed and characterized by UV thermal denaturation and fluorescence spectroscopy. The emission intensity of the FBP-dG lesion exhibits sensitivity to SMI formation (turn-on) versus a FP duplex (turn-off), permitting insight into adduct base-pairing within the template:primer duplexes. This fluorescence sensitivity provides a rationale for sequence impact on -2 frameshift mutations mediated by the C-linked FBP-dG lesion.
Collapse
Affiliation(s)
- Florence D Berger
- Department of Health Sciences and Technology , ETH Zurich , 8092 Zurich , Switzerland
| | - Richard A Manderville
- Departments of Chemistry and Toxicology , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - Shana J Sturla
- Department of Health Sciences and Technology , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
3
|
Deatherage DE, Leon D, Rodriguez ÁE, Omar SK, Barrick JE. Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Nucleic Acids Res 2018; 46:9236-9250. [PMID: 30137492 PMCID: PMC6158703 DOI: 10.1093/nar/gky751] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/24/2022] Open
Abstract
Unwanted evolution of designed DNA sequences limits metabolic and genome engineering efforts. Engineered functions that are burdensome to host cells and slow their replication are rapidly inactivated by mutations, and unplanned mutations with unpredictable effects often accumulate alongside designed changes in large-scale genome editing projects. We developed a directed evolution strategy, Periodic Reselection for Evolutionarily Reliable Variants (PResERV), to discover mutations that prolong the function of a burdensome DNA sequence in an engineered organism. Here, we used PResERV to isolate Escherichia coli cells that replicate ColE1-type plasmids with higher fidelity. We found mutations in DNA polymerase I and in RNase E that reduce plasmid mutation rates by 6- to 30-fold. The PResERV method implicitly selects to maintain the growth rate of host cells, and high plasmid copy numbers and gene expression levels are maintained in some of the evolved E. coli strains, indicating that it is possible to improve the genetic stability of cellular chassis without encountering trade-offs in other desirable performance characteristics. Utilizing these new antimutator E. coli and applying PResERV to other organisms in the future promises to prevent evolutionary failures and unpredictability to provide a more stable genetic foundation for synthetic biology.
Collapse
Affiliation(s)
- Daniel E Deatherage
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dacia Leon
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Álvaro E Rodriguez
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Salma K Omar
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Processing closely spaced lesions during Nucleotide Excision Repair triggers mutagenesis in E. coli. PLoS Genet 2017; 13:e1006881. [PMID: 28686598 PMCID: PMC5521853 DOI: 10.1371/journal.pgen.1006881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/21/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022] Open
Abstract
It is generally assumed that most point mutations are fixed when damage containing template DNA undergoes replication, either right at the fork or behind the fork during gap filling. Here we provide genetic evidence for a pathway, dependent on Nucleotide Excision Repair, that induces mutations when processing closely spaced lesions. This pathway, referred to as Nucleotide Excision Repair-induced Mutagenesis (NERiM), exhibits several characteristics distinct from mutations that occur within the course of replication: i) following UV irradiation, NER-induced mutations are fixed much more rapidly (t ½ ≈ 30 min) than replication dependent mutations (t ½ ≈ 80–100 min) ii) NERiM specifically requires DNA Pol IV in addition to Pol V iii) NERiM exhibits a two-hit dose-response curve that suggests processing of closely spaced lesions. A mathematical model let us define the geometry (infer the structure) of the toxic intermediate as being formed when NER incises a lesion that resides in close proximity of another lesion in the complementary strand. This critical NER intermediate requires Pol IV / Pol II for repair, it is either lethal if left unrepaired or mutation-prone when repaired. Finally, NERiM is found to operate in stationary phase cells providing an intriguing possibility for ongoing evolution in the absence of replication. In this paper, we report the surprising finding that in addition to the well-known properties of Nucleotide Excision Repair (NER) in efficiently repairing a large number of DNA lesions, NER entails a mutagenic sub-pathway. Our data suggest that closely spaced lesions are processed by NER into a toxic DNA intermediate, i.e. a gap containing a lesion, that leads either to mutagenesis during its repair or to cell death in the absence of repair. The paper describes a new pathway for the generation of mutations in stationary phase bacteria or quiescent cells; it also provides an additional role for Pol IV, the most widely distributed specialized DNA polymerase in all forms of life.
Collapse
|
5
|
Indiani C, O'Donnell M. A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 2013; 18:312-23. [PMID: 23276924 DOI: 10.2741/4102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosome replication is performed by numerous proteins that function together as a "replisome". The replisome machinery duplicates both strands of the parental DNA simultaneously. Upon DNA damage to the cell, replisome action produces single-strand DNA to which RecA binds, enabling its activity in cleaving the LexA repressor and thus inducing the SOS response. How single-strand DNA is produced by a replisome acting on damaged DNA is not clear. For many years it has been assumed the single-strand DNA is generated by the replicative helicase, which continues unwinding DNA even after DNA polymerase stalls at a template lesion. Recent studies indicate another source of the single-strand DNA, resulting from an inherently dynamic replisome that may hop over template lesions on both leading and lagging strands, thereby leaving single-strand gaps in the wake of the replication fork. These single-strand gaps are proposed to be the origin of the single-strand DNA that triggers the SOS response after DNA damage.
Collapse
Affiliation(s)
- Chiara Indiani
- Manhattan College 4513 Manhattan College Pkwy, Riverdale, NY 10471, USA.
| | | |
Collapse
|
6
|
Chandani S, Loechler EL. Structural model of the Y-Family DNA polymerase V/RecA mutasome. J Mol Graph Model 2012; 39:133-44. [PMID: 23266508 DOI: 10.1016/j.jmgm.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/19/2012] [Accepted: 09/29/2012] [Indexed: 11/18/2022]
Abstract
To synthesize past DNA damaged by chemicals or radiation, cells have lesion bypass DNA polymerases (DNAPs), most of which are in the Y-Family. One class of Y-Family DNAPs includes DNAP η in eukaryotes and DNAP V in bacteria, which have low fidelity when replicating undamaged DNA. In Escherchia coli, DNAP V is carefully regulated to insure it is active for lesion bypass only, and one mode of regulation involves interaction of the polymerase subunit (UmuC) and two regulatory subunits (UmuD') with a RecA-filament bound to ss-DNA. Taking a docking approach, ∼150,000 unique orientations involving UmuC, UmuD' and RecA were evaluated to generate models, one of which was judged best able to rationalize the following published findings. (1) In the UmuD'(2)C/RecA-filament model, R64-UmuC interacts with S117-RecA, which is known to be at the UmuC/RecA interface. (2) At the model's UmuC/RecA interface, UmuC has three basic amino acids (K59/R63/R64) that anchor it to RecA. No other Y-Family DNAP has three basic amino acids clustered in this region, making it a plausible site for UmuC to form its unique interaction with RecA. (3) In the model, residues N32/N33/D34 of UmuC form a second interface with RecA, which is consistent with published findings. (4) Active UmuD' is generated when 24 amino acids in the N-terminal tail of UmuD are proteolyzed, which occurs when UmuD(2)C binds the RecA-filament. When UmuD is included in an UmuD(2)C/RecA-filament model, plausible UmuD/RecA contacts guide the UmuD cleavage site (C24/G25) into the UmuD proteolysis active site (S60/K97). One contact involves E11-UmuD interacting with R243-RecA, where the latter is known to be important for UmuD cleavage. (5) The UmuD(2)C/RecA-filament model rationalizes published findings that at least some UmuD-to-UmuD' cleavage occurs intermolecularly. (6) Active DNAP V is known to be the heterotetramer UmuD'(2)C/RecA, a model of which can be generated by a simple rearrangement of the RecA monomer at the 3'-end of the RecA-filament. The rearranged UmuD'(2)C/RecA model rationalizes published findings about UmuD' residues in proximity to RecA. In summary, docking and molecular simulations are used to develop an UmuD'(2)C/RecA model, whose structure rationalizes much of the known properties of the active form of DNA polymerase V.
Collapse
Affiliation(s)
- Sushil Chandani
- Biology Department, Boston University, Boston, MA 02215, United States
| | | |
Collapse
|
7
|
Csörgo B, Fehér T, Tímár E, Blattner FR, Pósfai G. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb Cell Fact 2012; 11:11. [PMID: 22264280 PMCID: PMC3280934 DOI: 10.1186/1475-2859-11-11] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/20/2012] [Indexed: 01/24/2023] Open
Abstract
Background Molecular mechanisms generating genetic variation provide the basis for evolution and long-term survival of a population in a changing environment. In stable, laboratory conditions, the variation-generating mechanisms are dispensable, as there is limited need for the cell to adapt to adverse conditions. In fact, newly emerging, evolved features might be undesirable when working on highly refined, precise molecular and synthetic biological tasks. Results By constructing low-mutation-rate variants, we reduced the evolutionary capacity of MDS42, a reduced-genome E. coli strain engineered to lack most genes irrelevant for laboratory/industrial applications. Elimination of diversity-generating, error-prone DNA polymerase enzymes involved in induced mutagenesis achieved a significant stabilization of the genome. The resulting strain, while retaining normal growth, showed a significant decrease in overall mutation rates, most notably under various stress conditions. Moreover, the error-prone polymerase-free host allowed relatively stable maintenance of a toxic methyltransferase-expressing clone. In contrast, the parental strain produced mutant clones, unable to produce functional methyltransferase, which quickly overgrew the culture to a high ratio (50% of clones in a 24-h induction period lacked functional methyltransferase activity). The surprisingly large stability-difference observed between the strains was due to the combined effects of high stress-induced mutagenesis in the parental strain, growth inhibition by expression of the toxic protein, and selection/outgrowth of mutants no longer producing an active, toxic enzyme. Conclusions By eliminating stress-inducible error-prone DNA-polymerases, the genome of the mobile genetic element-free E. coli strain MDS42 was further stabilized. The resulting strain represents an improved host in various synthetic and molecular biological applications, allowing more stable production of growth-inhibiting biomolecules.
Collapse
Affiliation(s)
- Bálint Csörgo
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 62 Temesvári krt, H6726 Szeged, Hungary
| | | | | | | | | |
Collapse
|
8
|
Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced-mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:19311-6. [PMID: 22084087 DOI: 10.1073/pnas.1113664108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exposure of Escherichia coli to UV light increases expression of NrdAB, the major ribonucleotide reductase leading to a moderate increase in dNTP levels. The role of elevated dNTP levels during translesion synthesis (TLS) across specific replication-blocking lesions was investigated. Here we show that although the specialized DNA polymerase PolV is necessary for replication across UV-lesions, such as cyclobutane pyrimidine dimers or pyrimidine(6-4)pyrimidone photoproduct, Pol V per se is not sufficient. Indeed, efficient TLS additionally requires elevated dNTP levels. Similarly, for the bypass of an N-2-acetylaminofluorene-guanine adduct that requires Pol II instead of PolV, efficient TLS is only observed under conditions of high dNTP levels. We suggest that increased dNTP levels transiently modify the activity balance of Pol III (i.e., increasing the polymerase and reducing the proofreading functions). Indeed, we show that the stimulation of TLS by elevated dNTP levels can be mimicked by genetic inactivation of the proofreading function (mutD5 allele). We also show that spontaneous mutagenesis increases proportionally to dNTP pool levels, thus defining a unique spontaneous mutator phenotype. The so-called "dNTP mutator" phenotype does not depend upon any of the specialized DNA polymerases, and is thus likely to reflect an increase in Pol III's own replication errors because of the modified activity balance of Pol III. As up-regulation of the dNTP pool size represents a common physiological response to DNA damage, the present model is likely to represent a general and unique paradigm for TLS pathways in many organisms.
Collapse
|
9
|
Sidorenko J, Jatsenko T, Saumaa S, Teras R, Tark-Dame M, Hõrak R, Kivisaar M. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida. Mutat Res 2011; 714:63-77. [PMID: 21763330 DOI: 10.1016/j.mrfmmm.2011.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/15/2011] [Accepted: 06/28/2011] [Indexed: 05/31/2023]
Abstract
The majority of bacteria possess a different set of specialized DNA polymerases than those identified in the most common model organism Escherichia coli. Here, we have studied the ability of specialized DNA polymerases to substitute Pol I in DNA replication in Pseudomonas putida. Our results revealed that P. putida Pol I-deficient cells have severe growth defects in LB medium, which is accompanied by filamentous cell morphology. However, growth of Pol I-deficient bacteria on solid rich medium can be restored by reduction of reactive oxygen species in cells. Also, mutants with improved growth emerge rapidly. Similarly to the initial Pol I-deficient P. putida, its adapted derivatives express a moderate mutator phenotype, which indicates that DNA replication carried out in the absence of Pol I is erroneous both in the original Pol I-deficient bacteria and the adapted derivatives. Analysis of the spectra of spontaneous Rif(r) mutations in P. putida strains lacking different DNA polymerases revealed that the presence of specialized DNA polymerases Pol II and Pol IV influences the frequency of certain base substitutions in Pol I-proficient and Pol I-deficient backgrounds in opposite ways. Involvement of another specialized DNA polymerase DnaE2 in DNA replication in Pol I-deficient bacteria is stimulated by UV irradiation of bacteria, implying that DnaE2-provided translesion synthesis partially substitutes the absence of Pol I in cells containing heavily damaged DNA.
Collapse
Affiliation(s)
- Julia Sidorenko
- Department of Genetics, Tartu University and Estonian Biocentre, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
10
|
Schalow BJ, Courcelle CT, Courcelle J. Escherichia coli Fpg glycosylase is nonrendundant and required for the rapid global repair of oxidized purine and pyrimidine damage in vivo. J Mol Biol 2011; 410:183-93. [PMID: 21601577 DOI: 10.1016/j.jmb.2011.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 01/13/2023]
Abstract
Endonuclease (Endo) III and formamidopyrimidine-N-glycosylase (Fpg) are two of the predominant DNA glycosylases in Escherichia coli that remove oxidative base damage. In cell extracts and purified form, Endo III is generally more active toward oxidized pyrimidines, while Fpg is more active towards oxidized purines. However, the substrate specificities of these enzymes partially overlap in vitro. Less is known about the relative contribution of these enzymes in restoring the genomic template following oxidative damage. In this study, we examined how efficiently Endo III and Fpg repair their oxidative substrates in vivo following treatment with hydrogen peroxide. We found that Fpg was nonredundant and required to rapidly remove its substrate lesions on the chromosome. In addition, Fpg also repaired a significant portion of the lesions recognized by Endo III, suggesting that it plays a prominent role in the global repair of both purine damage and pyrimidine damage in vivo. By comparison, Endo III did not affect the repair rate of Fpg substrates and was only responsible for repairing a subset of its own substrate lesions in vivo. The absence of Endo VIII or nucleotide excision repair did not significantly affect the global repair of either Fpg or Endo III substrates in vivo. Surprisingly, replication recovered after oxidative DNA damage in all mutants examined, even when lesions persisted in the DNA, suggesting the presence of an efficient mechanism to process or overcome oxidative damage encountered during replication.
Collapse
Affiliation(s)
- Brandy J Schalow
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA.
| | | | | |
Collapse
|
11
|
Wang F, Yang W. Structural insight into translesion synthesis by DNA Pol II. Cell 2009; 139:1279-89. [PMID: 20064374 PMCID: PMC3480344 DOI: 10.1016/j.cell.2009.11.043] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 09/04/2009] [Accepted: 11/13/2009] [Indexed: 01/08/2023]
Abstract
E. coli DNA Pol II and eukaryotic Rev3 are B-family polymerases that can extend primers past a damaged or mismatched site when the high-fidelity replicative polymerases in the same family are ineffective. We report here the biochemical and structural properties of DNA Pol II that facilitate this translesion synthesis. DNA Pol II can extend primers past lesions either directly or by template skipping, in which small protein cavities outside of the active site accommodate looped-out template nucleotides 1 or 2 bp upstream. Because of multiple looping-out alternatives, mutation spectra of bypass synthesis are complicated. Moreover, translesion synthesis is enhanced by altered partitioning of DNA substrate between the polymerase active site and the proofreading exonuclease site. Compared to the replicative B family polymerases, DNA Pol II has subtle amino acid changes remote from the active site that allow it to replicate normal DNA with high efficiency yet conduct translesion synthesis when needed.
Collapse
Affiliation(s)
- Feng Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Building 5, Room B1-03, Bethesda, MD 20892, USA
| | | |
Collapse
|
12
|
Nieminuszczy J, Mielecki D, Sikora A, Wrzesiński M, Chojnacka A, Krwawicz J, Janion C, Grzesiuk E. Mutagenic potency of MMS-induced 1meA/3meC lesions in E. coli. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:791-799. [PMID: 19449394 DOI: 10.1002/em.20497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The mutagenic activity of MMS in E. coli depends on the susceptibility of DNA bases to methylation and their repair by cellular defense systems. Among the lesions in methylated DNA is 1meA/3meC, which is recently recognized as being mutagenic. In this report, special attention is focused on the mutagenic properties of 1meA/3meC which, by the activity of AlkB-dioxygenase, are quickly and efficiently converted to natural A/C bases in the DNA of E. coli alkB(+) strains, preventing 1meA/3meC-induced mutations. We have found that in the absence of AlkB-mediated repair, MMS treatment results in an increased frequency of four types of base substitutions: GC-->CG, GC-->TA, AT-->CG, and AT-->TA, whereas overproduction of PolV in CC101-106 alkB(-)/pRW134 strains leads to a markedly elevated level of GC-->TA, GC-->CG, and AT-->TA transversions. It has been observed that in the case of AB1157 alkB(-) strains, the MMS-induced and 1meA/3meC-dependent argE3-->Arg(+) reversion occurs efficiently, whereas lacZ(-)--> Lac(+) reversion in a set of CC101-106 alkB(-) strains occurs with much lower frequency. We considered several reasons for this discrepancy, namely, the possible variance in the level of the PolV activity, the effect of the PolIV contents that is higher in CC101-106 than in AB1157 strains and the different genetic cell backgrounds in CC101-106 alkB(-) and AB1157 alkB(-) strains, respectively. We postulate that the difference in the number of targets undergoing mutation and different reactivity of MMS with ssDNA and dsDNA are responsible for the high (argE3-->Arg(+)) and low (lacZ(-) --> Lac(+)) frequency of MMS-induced mutations.
Collapse
Affiliation(s)
- Jadwiga Nieminuszczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Makiela-Dzbenska K, Jaszczur M, Banach-Orlowska M, Jonczyk P, Schaaper RM, Fijalkowska IJ. Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Mol Microbiol 2009; 74:1114-27. [PMID: 19843230 DOI: 10.1111/j.1365-2958.2009.06921.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3'-->5' exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5- to 4-fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error-producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand.
Collapse
Affiliation(s)
- Karolina Makiela-Dzbenska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
14
|
Wagner J, Etienne H, Fuchs RP, Cordonnier A, Burnouf D. Distinct beta-clamp interactions govern the activities of the Y family PolIV DNA polymerase. Mol Microbiol 2009; 74:1143-51. [PMID: 19843218 DOI: 10.1111/j.1365-2958.2009.06920.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The prototypic Y family DNA polymerase IV (PolIV) of Escherichia coli is involved in multiple replication-associated processes including spontaneous mutagenesis, translesion synthesis (TLS), cell fitness, survival under stressful conditions and checkpoint like functions. It interacts physically and functionally with the replisome's beta processivity clamp through the canonical PolIV C-terminal peptide (CTP). A second interaction that involves a portion of the little finger (LF) domain of PolIV has been structurally described. Here we show that the LF-beta interaction stabilizes the clamp-polymerase complex in vitro and is necessary for the access of PolIV to ongoing replication forks in vivo. However, in contrast to the CTP-beta, the LF-beta interaction is dispensable for the role of the polymerase in TLS. This discloses two independent modes of action for PolIV and, in turn, uncovers a novel way by which the cell may regulate the potentially deleterious effect of such low fidelity polymerases during replication.
Collapse
Affiliation(s)
- Jérôme Wagner
- CNRS FRE3211, ESBS, Université de Strasbourg, BP 10413, 67412 Strasbourg Cedex, France.
| | | | | | | | | |
Collapse
|
15
|
Dwyer DJ, Kohanski MA, Collins JJ. Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol 2009; 12:482-9. [PMID: 19647477 PMCID: PMC2761529 DOI: 10.1016/j.mib.2009.06.018] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/26/2009] [Accepted: 06/30/2009] [Indexed: 12/21/2022]
Abstract
The alarming spread of bacterial strains exhibiting resistance to current antibiotic therapies necessitates that we elucidate the specific genetic and biochemical responses underlying drug-mediated cell killing, so as to increase the efficacy of available treatments and develop new antibacterials. Recent research aimed at identifying such cellular contributions has revealed that antibiotics induce changes in metabolism that promote the formation of reactive oxygen species, which play a role in cell death. Here we discuss the relationship between drug-induced oxidative stress, the SOS response and their potential combined contribution to resistance development. Additionally, we describe ways in which these responses are being taken advantage to combat bacterial infections and arrest the rise of resistant strains.
Collapse
Affiliation(s)
- Daniel J Dwyer
- Howard Hughes Medical Institute, Department of Biomedical Engineering, Center for BioDynamics and Center for Advanced Biotechnology, Boston University, 44 Cummington Street, Boston, MA 02215, USA.
| | | | | |
Collapse
|
16
|
Coordinating DNA polymerase traffic during high and low fidelity synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1167-79. [PMID: 19540941 DOI: 10.1016/j.bbapap.2009.06.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 02/08/2023]
Abstract
With the discovery that organisms possess multiple DNA polymerases (Pols) displaying different fidelities, processivities, and activities came the realization that mechanisms must exist to manage the actions of these diverse enzymes to prevent gratuitous mutations. Although many of the Pols encoded by most organisms are largely accurate, and participate in DNA replication and DNA repair, a sizeable fraction display a reduced fidelity, and act to catalyze potentially error-prone translesion DNA synthesis (TLS) past lesions that persist in the DNA. Striking the proper balance between use of these different enzymes during DNA replication, DNA repair, and TLS is essential for ensuring accurate duplication of the cell's genome. This review highlights mechanisms that organisms utilize to manage the actions of their different Pols. A particular emphasis is placed on discussion of current models for how different Pols switch places with each other at the replication fork during high fidelity replication and potentially error-pone TLS.
Collapse
|
17
|
|
18
|
Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae. Genetics 2008; 178:633-47. [PMID: 18245343 DOI: 10.1534/genetics.107.082818] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most replicases are multi-subunit complexes. DNA polymerase epsilon from Saccharomyces cerevisiae is composed of four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol2p and Dpb2p are essential. To investigate a possible role for the Dpb2p subunit in maintaining the fidelity of DNA replication, we isolated temperature-sensitive mutants in the DPB2 gene. Several of the newly isolated dpb2 alleles are strong mutators, exhibiting mutation rates equivalent to pol2 mutants defective in the 3' --> 5' proofreading exonuclease (pol2-4) or to mutants defective in mismatch repair (msh6). The dpb2 pol2-4 and dpb2 msh6 double mutants show a synergistic increase in mutation rate, indicating that the mutations arising in the dpb2 mutants are due to DNA replication errors normally corrected by mismatch repair. The dpb2 mutations decrease the affinity of Dpb2p for the Pol2p subunit as measured by two-hybrid analysis, providing a possible mechanistic explanation for the loss of high-fidelity synthesis. Our results show that DNA polymerase subunits other than those housing the DNA polymerase and 3' --> 5' exonuclease are essential in controlling the level of spontaneous mutagenesis and genetic stability in yeast cells.
Collapse
|
19
|
Arad G, Hendel A, Urbanke C, Curth U, Livneh Z. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem 2008; 283:8274-82. [PMID: 18223256 DOI: 10.1074/jbc.m710290200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translesion DNA synthesis (TLS) by DNA polymerase V (polV) in Escherichia coli involves accessory proteins, including RecA and single-stranded DNA-binding protein (SSB). To elucidate the role of SSB in TLS we used an in vitro exonuclease protection assay and found that SSB increases the accessibility of 3' primer termini located at abasic sites in RecA-coated gapped DNA. The mutant SSB-113 protein, which is defective in protein-protein interactions, but not in DNA binding, was as effective as wild-type SSB in increasing primer termini accessibility, but deficient in supporting polV-catalyzed TLS. Consistently, the heterologous SSB proteins gp32, encoded by phage T4, and ICP8, encoded by herpes simplex virus 1, could replace E. coli SSB in the TLS reaction, albeit with lower efficiency. Immunoprecipitation experiments indicated that polV directly interacts with SSB and that this interaction is disrupted by the SSB-113 mutation. Taken together our results suggest that SSB functions to recruit polV to primer termini on RecA-coated DNA, operating by two mechanisms: 1) increasing the accessibility of 3' primer termini caused by binding of SSB to DNA and 2) a direct SSB-polV interaction mediated by the C terminus of SSB.
Collapse
Affiliation(s)
- Gali Arad
- Department of Biological Chemistry, Weizmann Institute of Science, Hertzl St, Rehovot, Israel
| | | | | | | | | |
Collapse
|
20
|
Cirz RT, Romesberg FE. Controlling mutation: intervening in evolution as a therapeutic strategy. Crit Rev Biochem Mol Biol 2008; 42:341-54. [PMID: 17917871 DOI: 10.1080/10409230701597741] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mutation is the driving force behind many processes linked to human disease, including cancer, aging, and the evolution of drug resistance. Mutations have traditionally been considered the inevitable consequence of replicating large genomes with polymerases of finite fidelity. Observations over the past several decades, however, have led to a new perspective on the process of mutagenesis. It has become clear that, under some circumstances, mutagenesis is a regulated process that requires the induction of pro-mutagenic enzymes and that, at least in bacteria, this induction may facilitate evolution. Herein, we review what is known about induced mutagenesis in bacteria as well as evidence that it contributes to the evolution of antibiotic resistance. Finally, we discuss the possibility that components of induced mutation pathways might be targeted for inhibition as a novel therapeutic strategy to prevent the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Ryan T Cirz
- The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
21
|
Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant. J Bacteriol 2007; 190:1730-42. [PMID: 18156258 DOI: 10.1128/jb.01463-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dnaX36(TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (-1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the tau subunit of DNA polymerase III (Pol III) holoenzyme, the enzyme responsible for replication of the bacterial chromosome. The dnaX36 defect resides in the C-terminal domain V of tau, essential for interaction of tau with the alpha (polymerase) subunit, suggesting that the mutator phenotype is caused by an impaired or altered alpha-tau interaction. We previously proposed that the mutator activity results from aberrant processing of terminal mismatches created by Pol III insertion errors. The present results, including lack of interaction of dnaX36 with mutM, mutY, and recA defects, support our assumption that dnaX36-mediated mutations originate as errors of replication rather than DNA damage-related events. Second, an important role is described for DNA Pol II and Pol IV in preventing and producing, respectively, the mutations. In the system used, a high fraction of the mutations is dependent on the action of Pol IV in a (dinB) gene dosage-dependent manner. However, an even larger but opposing role is deduced for Pol II, revealing Pol II to be a major editor of Pol III mediated replication errors. Overall, the results provide insight into the interplay of the various DNA polymerases, and of tau subunit, in securing a high fidelity of replication.
Collapse
|
22
|
Maul RW, Ponticelli SKS, Duzen JM, Sutton MD. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Mol Microbiol 2007; 65:811-27. [PMID: 17635192 DOI: 10.1111/j.1365-2958.2007.05828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli strains expressing the mutant beta159-sliding clamp protein (containing both a G66E and a G174A substitution) are temperature sensitive for growth and display altered DNA polymerase (pol) usage. We selected for suppressors of the dnaN159 allele able to grow at 42 degrees C, and identified four intragenic suppressor alleles. One of these alleles (dnaN780) contained only the G66E substitution, while a second (dnaN781) contained only the G174A substitution. Genetic characterization of isogenic E. coli strains expressing these alleles indicated that certain phenotypes were dependent upon only the G174A substitution, while others required both the G66E and G174A substitutions. In order to understand the individual contributions of the G66E and the G174A substitution to the dnaN159 phenotypes, we utilized biochemical approaches to characterize the purified mutant beta159 (G66E and G174A), beta780 (G66E) and beta781 (G174A) clamp proteins. The G66E substitution conferred a more pronounced effect on pol IV replication than it did pol II or pol III, while the G174A substitution conferred a greater effect on pol III and pol IV than it did pol II. Taken together, these findings indicate that pol II, pol III and pol IV interact with distinct, albeit overlapping surfaces of the beta clamp.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
23
|
Garcia-Diaz M, Bebenek K. Multiple functions of DNA polymerases. CRITICAL REVIEWS IN PLANT SCIENCES 2007; 26:105-122. [PMID: 18496613 PMCID: PMC2391090 DOI: 10.1080/07352680701252817] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The primary role of DNA polymerases is to accurately and efficiently replicate the genome in order to ensure the maintenance of the genetic information and its faithful transmission through generations. This is not a simple task considering the size of the genome and its constant exposure to endogenous and environmental DNA damaging agents. Thus, a number of DNA repair pathways operate in cells to protect the integrity of the genome. In addition to their role in replication, DNA polymerases play a central role in most of these pathways. Given the multitude and the complexity of DNA transactions that depend on DNA polymerase activity, it is not surprising that cells in all organisms contain multiple highly specialized DNA polymerases, the majority of which have only recently been discovered. Five DNA polymerases are now recognized in Escherichia coli, 8 in Saccharomyces cerevisiae, and at least 15 in humans. While polymerases in bacteria, yeast and mammalian cells have been extensively studied much less is known about their counterparts in plants. For example, the plant model organism Arabidopsis thaliana is thought to contain 12 DNA polymerases, whose functions are mostly unknown. Here we review the properties and functions of DNA polymerases focusing on yeast and mammalian cells but paying special attention to the plant enzymes and the special circumstances of replication and repair in plant cells.
Collapse
Affiliation(s)
- Miguel Garcia-Diaz
- Laboratory of Structural Biology and Laboratory of Molecular Genetics NIEHS, NIH, DHHS, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
24
|
Chandani S, Loechler EL. Molecular modeling benzo[a]pyrene N2-dG adducts in the two overlapping active sites of the Y-family DNA polymerase Dpo4. J Mol Graph Model 2007; 25:658-70. [PMID: 16782374 DOI: 10.1016/j.jmgm.2006.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 11/18/2022]
Abstract
The potent, ubiquitous environmental mutagen/carcinogen benzo[a]pyrene (B[a]P) induces a single major adduct [+ta]-B[a]P-N2-dG, whose bypass in most cases results in either no mutation (dCTP insertion) or a G-->T mutation (dATP insertion). Translesion synthesis (TLS) of [+ta]-B[a]P-N2-dG generally requires DNA polymerases (DNAPs) in the Y-family, which exist in cells to bypass DNA damage caused by chemicals and radiation. A molecular dynamics (MD) study is described with dCTP opposite [+ta]-B[a]P-N2-dG in Dpo4, which is the best studied Y-family DNAP from a structural point of view. Two orientations of B[a]P-N2-dG (BPmi5 and BPmi3) are considered, along with two orientations of the dCTP (AS1 and AS2), as outlined next. Based on NMR studies, the pyrene moiety of B[a]P-N2-dG is in the minor groove, when paired with dC, and can point toward either the base on the 5'-side (BPmi5) or the 3'-side (BPmi3). Based on published X-ray structures, Dpo4 appears to have two partially overlapping active sites. The architecture of active site 1 (AS1) is similar to all other families of DNAPs (e.g., the shape of the dNTP). Active site 2 (AS2), however, is non-canonical (e.g., the beta- and gamma-phosphates in AS2 are approximately where the alpha- and beta-phosphates are in AS1). In the Dpo4 models generated herein, using the BPmi3 orientation the pyrene moiety of [+ta]-B[a]P-N2-dG points toward the duplex region of the DNA, and is accommodated without distortions in AS1, but with distortions in AS2. Considering the BPmi5 orientation, the pyrene moiety points toward the ss-region of DNA in Dpo4, and sits in a hole defined by the fingers and little fingers domain ("chimney"); BPmi5 is accommodated in AS2 without significant distortions, but poorly in AS1. In summary, when dCTP is paired with [+ta]-B[a]P-N2-dG in the two overlapping active sites in Dpo4, the pyrene in the BPmi3 orientation is accommodated better in active site 1 (AS1), while the pyrene in the BPmi5 orientation is accommodated better in AS2. Finally, we discuss why Y-family DNAPs might have two catalytic active sites.
Collapse
Affiliation(s)
- Sushil Chandani
- Biology Department, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
25
|
Bellon S, Gasparutto D, Saint-Pierre C, Cadet J. Guanine-thymine intrastrand cross-linked lesion containing oligonucleotides: from chemical synthesis to in vitro enzymatic replication. Org Biomol Chem 2006; 4:3831-7. [PMID: 17024291 DOI: 10.1039/b609460k] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intrastrand cross-link lesion, in which two neighboring nucleobases are covalently tethered, has been site-specifically synthesized into defined sequence oligonucleotides in order to perform in vitro replication studies using either bacterial replicative or translesional synthesis polymerases. The investigated tandem base lesion that involves a cross-link between the methylene group of thymine and the C8 of an adjacent guanine residue has been prepared by UV-photolysis under anaerobic condition of the photolabile precursor 5-(phenylthiomethyl)-2'-deoxyuridine that has been site-specifically incorporated into a 9-mer oligonucleotide. After ligation, the lesion-containing modified oligonucleotide was used as a DNA template in primer extension reactions catalyzed by several DNA polymerases including the fragment Klenow exo-(Kf-) of E. coli polymerase I, the Thermus aquaticus polymerase (Taq pol) and the E. coli translesional DNA polymerase Pol IV (dinB). It was found that the primer extension reaction was stopped after the incorporation of the correct nucleotide dAMP opposite the 3'-thymine residue of guanine(C8-CH2) thymine lesion by Kf- and Pol IV; however it was noted that the efficiency of the nucleotide incorporation was reduced. In contrast, the Taq polymerase was totally blocked at the nucleotide preceding the tandem lesion. These results are strongly suggestive that the present intrastrand cross-link lesion, if not repaired, would constitute a blocking lesion for prokaryotic DNA polymerases, being likely lethal for the cell.
Collapse
Affiliation(s)
- Sophie Bellon
- Service de Chimie Inorganique et Biologique UMR E3 CEA UJF, Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 Avenue des Martyrs, F-38054, Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
26
|
Kuban W, Banach-Orlowska M, Schaaper RM, Jonczyk P, Fijalkowska IJ. Role of DNA polymerase IV in Escherichia coli SOS mutator activity. J Bacteriol 2006; 188:7977-80. [PMID: 16980447 PMCID: PMC1636302 DOI: 10.1128/jb.01088-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Constitutive expression of the SOS regulon in Escherichia coli recA730 strains leads to a mutator phenotype (SOS mutator) that is dependent on DNA polymerase V (umuDC gene product). Here we show that a significant fraction of this effect also requires DNA polymerase IV (dinB gene product).
Collapse
Affiliation(s)
- Wojciech Kuban
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02 106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
27
|
Kroeger KM, Kim J, Goodman MF, Greenberg MM. Replication of an oxidized abasic site in Escherichia coli by a dNTP-stabilized misalignment mechanism that reads upstream and downstream nucleotides. Biochemistry 2006; 45:5048-56. [PMID: 16605273 PMCID: PMC1447609 DOI: 10.1021/bi052276v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abasic sites (AP) and oxidized abasic lesions are often referred to as noninstructive lesions because they cannot participate in Watson-Crick base pairing. The aptness of the term noninstructive for describing AP site replication has been called into question by recent investigations in E. coli using single-stranded shuttle vectors. These studies revealed that the replication of templates containing AP sites or the oxidized abasic lesions resulting from C1'- (L) and C4'-oxidation (C4-AP) are distinct from one another, suggesting that structural features other than Watson-Crick hydrogen bonds contribute to controlling replication. The first description of the replication of the abasic site resulting from formal C2'-oxidation (C2-AP) is presented here. Full-length and single-nucleotide deletion products are observed when templates containing C2-AP are replicated in E. coli. Single nucleotide deletion formation is largely dependent upon the concerted effort of pol II and pol IV, whereas pol V suppresses frameshift product formation. Pol V utilizes the A-rule when bypassing C2-AP. In contrast, pol II and pol IV utilize a dNTP-stabilized misalignment mechanism to read the upstream and downstream nucleotides when bypassing C2-AP. This is the first example in which the identity of the 3'-adjacent nucleotide is read during the replication of a DNA lesion. The results raise further questions as to whether abasic lesions are noninstructive lesions. We suggest that abasic site bypass is affected by the local biopolymer structure in addition to the structure of the lesion.
Collapse
Affiliation(s)
| | | | | | - Marc M. Greenberg
- * To whom correspondence should addressed. Tel: 410-516-8095. Fax: 410-516-7044. E-mail:
| |
Collapse
|
28
|
Schlacher K, Pham P, Cox MM, Goodman MF. Roles of DNA polymerase V and RecA protein in SOS damage-induced mutation. Chem Rev 2006; 106:406-19. [PMID: 16464012 DOI: 10.1021/cr0404951] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Katharina Schlacher
- Department of Biological Sciences, University of Southern California, Los Angeles, 90089-1340, USA
| | | | | | | |
Collapse
|
29
|
Delmas S, Matic I. Interplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases. Proc Natl Acad Sci U S A 2006; 103:4564-9. [PMID: 16537389 PMCID: PMC1450211 DOI: 10.1073/pnas.0509012103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination (HR) and translesion synthesis (TLS) are two pathways involved in the tolerance of lesions that block the replicative DNA polymerase. However, whereas TLS is frequently error-prone and, therefore, can be deleterious, HR is generally error-free. Furthermore, because the recombination enzymes and alternative DNA polymerases that perform TLS may use the same substrate, their coordination might be important to assure cell fitness and survival. This study aimed to determine whether and how these pathways are coordinated in Escherichia coli cells by using conjugational replication and recombination as a model system. The role of the three alternative DNA polymerases that are regulated by the SOS system was tested in DNA polymerase III holoenzyme-proficient and -deficient mutants. When PolIII is inactive, the alternative DNA polymerases copy DNA in the following order: PolII, PolIV, and PolV. The observed hierarchy corresponds to the selective constraints imposed on the genes coding for alternative DNA polymerases observed in natural populations of E. coli, suggesting that this hierarchy depends on the frequency of specific damages encountered during the evolutionary history of E. coli. We also found that DNA replication and HR are in competition and that they can precede each other. Our results suggest that there is probably not an active choice of which pathway to use, but, rather, the nature and concentration of lesions that lead to formation of ssDNA and the level of SOS induction that they engender might determine the outcome of the competition between HR and alternative DNA polymerases.
Collapse
Affiliation(s)
- Stéphane Delmas
- Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médecine “Necker-Enfants Malades” Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Ivan Matic
- Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médecine “Necker-Enfants Malades” Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Abstract
Hypermutable tandem repeat sequences (TRSs) are present in the genomes of both prokaryotic and eukaryotic organisms. Numerous studies have been conducted in several laboratories over the past decade to investigate the mechanisms responsible for expansions and contractions of microsatellites (a subset of TRSs with a repeat length of 1-6 nucleotides) in the model prokaryotic organism Escherichia coli. Both the frequency of tandem repeat instability (TRI), and the types of mutational events that arise, are markedly influenced by the DNA sequence of the repeat, the number of unit repeats, and the types of cellular pathways that process the TRS. DNA strand slippage is a general mechanism invoked to explain instability in TRSs. Misaligned DNA sequences are stabilized both by favorable base pairing of complementary sequences and by the propensity of TRSs to form relatively stable secondary structures. Several cellular processes, including replication, recombination and a variety of DNA repair pathways, have been shown to interact with such structures and influence TRI in bacteria. This paper provides an overview of our current understanding of mechanisms responsible for TRI in bacteria, with an emphasis on studies that have been carried out in E. coli. In addition, new experimental data are presented, suggesting that TLS polymerases (PolII, PolIV and PolV) do not contribute significantly to TRI in E. coli.
Collapse
Affiliation(s)
- M Bichara
- Département Intégrité du Génome de l'UMR 7175, PolAP1, Boulevard Sébastien Brant 67400, Strasbourg-Illkirch, France
| | | | | |
Collapse
|
31
|
Zhang X, Lee I, Zhou X, Berdis AJ. Hydrophobicity, shape, and pi-electron contributions during translesion DNA synthesis. J Am Chem Soc 2006; 128:143-9. [PMID: 16390141 DOI: 10.1021/ja0546830] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translesion DNA synthesis, the ability of a DNA polymerase to misinsert a nucleotide opposite a damaged DNA template, represents a common route toward mutagenesis and possibly disease development. To further define the mechanism of this promutagenic process, we synthesized and tested the enzymatic incorporation of two isosteric 5-substituted indolyl-2'deoxyriboside triphosphates opposite an abasic site. The catalytic efficiency for the incorporation of the 5-cyclohexene-indole derivative opposite an abasic site is 75-fold greater than that for the 5-cyclohexyl-indole derivative. The higher efficiency reflects a substantial increase in the k(pol) value (compare 25 versus 0.5 s(-1), respectively) as opposed to an influence on ground-state binding of either non-natural nucleotide. The faster k(pol) value for the 5-cyclohexene-indole derivative indicates that pi-electron density enhances the rate of the enzymatic conformational change step required for insertion opposite the abasic site. However, the kinetic dissociation constants for the non-natural nucleotides are identical and indicate that pi-electron density does not directly influence ground-state binding opposite the DNA lesion. Surprisingly, each non-natural nucleotide can be incorporated opposite natural templating bases, albeit with a greatly reduced catalytic efficiency. In this instance, the lower catalytic efficiency is caused by a substantial decrease in the k(pol) value rather than perturbations in ground-state binding. Collectively, these data indicate that the rate of the conformational change during translesion DNA synthesis depends on pi-electron density, while the enhancement in ground-state binding appears related to the size and shape of the non-natural nucleotide.
Collapse
Affiliation(s)
- Xuemei Zhang
- Departments of Pharmacology and Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
32
|
Upton DC, Wang X, Blans P, Perrino FW, Fishbein JC, Akman SA. Mutagenesis by exocyclic alkylamino purine adducts in Escherichia coli. Mutat Res 2006; 599:1-10. [PMID: 16488449 DOI: 10.1016/j.mrfmmm.2005.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 12/01/2005] [Accepted: 12/28/2005] [Indexed: 10/25/2022]
Abstract
Exocyclic alkylamino purine adducts, including N(2)-ethyldeoxyguanosine, N(2)-isopropyldeoxyguanosine, and N(6)-isopropyldeoxyadenosine, occur as a consequence of reactions of DNA with toxins such as the ethanol metabolite acetaldehyde, diisopropylnitrosamine, and diisopropyltriazene. However, there are few data addressing the biological consequences of these adducts when present in DNA. Therefore, we assessed the mutagenicities of these single, chemically synthesized exocyclic amino adducts when placed site-specifically in the supF gene in the reporter plasmid pLSX and replicated in Escherichia coli, comparing the mutagenic potential of these exocyclic amino adducts to that of O(6)-ethyldeoxyguanosine. Inclusion of deoxyuridines on the strand complementary to the adducts at 5' and 3' flanking positions resulted in mutant fractions of N(2)-ethyldeoxyguanosine and N(2)-isopropyldeoxyguanosine-containing plasmid of 1.4+/-0.5% and 5.7+/-2.5%, respectively, both of which were significantly greater than control plasmid containing deoxyuridines but no adduct (p=0.04 and 0.003, respectively). The mutagenicities of the three exocyclic alkylamino purine adducts tested were of smaller magnitude than O(6)-ethyldeoxyguanosine (mutant fraction=21.2+/-1.2%, p=0.00001) with the N(6)-isopropyldeoxyadenosine being the least mutagenic (mutant fraction=1.2+/-0.5%, p=0.13). The mutation spectrum generated by the N(2)-ethyl and -isopropyldeoxyguanosine adducts included adduct site-targeted G:C-->T:A transversions, adduct site single base deletions, and single base deletions three bases downstream from the adduct, which contrasted sharply with the mutation spectrum generated by the O(6)-ethyldeoxyguanosine lesion of 95% adduct site-targeted transitions. We conclude that N(2)-ethyl and -isopropyldeoxyguanosine are mutagenic adducts in E. coli whose mutation spectra differ markedly from that of O(6)-ethyldeoxyguanosine.
Collapse
Affiliation(s)
- Dana C Upton
- Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | | | | | | | | | | |
Collapse
|
33
|
Seo KY, Nagalingam A, Miri S, Yin J, Chandani S, Kolbanovskiy A, Shastry A, Loechler EL. Mirror image stereoisomers of the major benzo[a]pyrene N2-dG adduct are bypassed by different lesion-bypass DNA polymerases in E. coli. DNA Repair (Amst) 2006; 5:515-22. [PMID: 16483853 DOI: 10.1016/j.dnarep.2005.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/05/2005] [Accepted: 12/14/2005] [Indexed: 11/25/2022]
Abstract
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g., G-to-T, G-to-A, -1 frameshifts, etc.) via its major adduct [+ta]-B[a]P-N2-dG. We recently showed that the dominant G-to-T mutation depends on DNA polymerase V (DNAP V), but not DNAPs IV or II, when studied in a 5'-TG sequence in E. coli. Herein we investigate what DNAPs are responsible for non-mutagenic bypass with [+ta]-B[a]P-N2-dG, along with its mirror image adduct [-ta]-B[a]P-N2-dG. Each adduct is built into a 5'-TG sequence in a single stranded M13 phage vector, which is then transformed into eight different E. coli strains containing all combinations of proficiency and deficiency in the three lesion-bypass DNAPs II, IV and V. Based on M13 progeny output, non-mutagenic bypass with [-ta]-B[a]P-N2-dG depends on DNAP IV. In contrast, non-mutagenic bypass with [+ta]-B[a]P-N2-dG depends on both DNAPs IV and V, where arguments suggest that DNAP IV is involved in dCTP insertion, while DNAP V is involved in extension of the adduct-G:C base pair. Numerous findings indicate that DNAP II has a slight inhibitory effect on the bypass of [+ta]- and [-ta]-B[a]P-N2-dG in the case of both DNAPs IV and V. In conclusion, for efficient non-mutagenic bypass (dCTP insertion) in E. coli, [+ta]-B[a]P-N2-dG requires DNAPs IV and V, [-ta]-B[a]P-N2-dG requires only DNAP IV, while DNAP II is inhibitory to both, and experiments to investigate these differences should provide insights into the mechanism and purpose of these lesion-bypass DNAPs.
Collapse
Affiliation(s)
- Kwang Young Seo
- Biology Department, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pham PT, Zhao W, Schaaper RM. Mutator mutants of Escherichia coli carrying a defect in the DNA polymerase III tau subunit. Mol Microbiol 2006; 59:1149-61. [PMID: 16430690 DOI: 10.1111/j.1365-2958.2005.05011.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the possible role of accessory subunits of Escherichia coli DNA polymerase III holoenzyme (HE) in determining chromosomal replication fidelity, we have investigated the role of the dnaX gene. This gene encodes both the tau and gamma subunits of HE, which play a central role in the organization and functioning of HE at the replication fork. We find that a classical, temperature-sensitive dnaX allele, dnaX36, displays a pronounced mutator effect, characterized by an unusual specificity: preferential enhancement of transversions and -1 frameshifts. The latter occur predominantly at non-run sequences. The dnaX36 defect does not affect the gamma subunit, but produces a tau subunit carrying a missense substitution (E601K) in its C-terminal domain (domain V) that is involved in interaction with the Pol III alpha subunit. A search for new mutators in the dnaX region of the chromosome yielded six additional dnaX mutators, all carrying a specific tau subunit defect. The new mutators displayed phenotypes similar to dnaX36: strong enhancement of transversions and frameshifts and only weak enhancement for transitions. The combined findings suggest that the tau subunit of HE plays an important role in determining the fidelity of the chromosomal replication, specifically in the avoidance of transversions and frameshift mutations.
Collapse
Affiliation(s)
- Phuong T Pham
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
35
|
Lee CH, Chandani S, Loechler EL. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs. J Mol Graph Model 2006; 25:87-102. [PMID: 16386932 DOI: 10.1016/j.jmgm.2005.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/21/2005] [Accepted: 10/21/2005] [Indexed: 01/25/2023]
Abstract
Y-family DNA polymerases (DNAPs) are a superfamily of evolutionarily related proteins that exist in cells to bypass DNA damage caused by both radiation and chemicals. Cells have multiple Y-family DNAPs, presumably to conduct translesion synthesis (TLS) on DNA lesions of varying structure and conformation. The potent, ubiquitous environmental mutagen/carcinogen benzo[a]pyrene (B[a]P) induces all classes of mutations with G-->T base substitutions predominating. We recently showed that a G-->T mutagenesis pathway for the major adduct of B[a]P ([+ta]-B[a]P-N2-dG) in Escherichia coli depends on Y-family member DNAP V. Since no X-ray crystal study for DNAP V has been reported, no structure is available to help in understanding the structural basis for dATP insertion associated with G-->T mutations from [+ta]-B[a]P-N2-dG. Herein, we do homology modeling to construct a model for UmuC, which is the polymerase subunit of DNAP V. The sequences of eight Y-family DNAPs were aligned based on the positioning of conserved amino acids and an analysis of conserved predicted secondary structure, as well as insights gained from published X-ray structures of five Y-family members. Starting coordinates for UmuC were generated from the backbone coordinates for the Y-family polymerase Dpo4 for reasons discussed, and were refined using molecular dynamics with CHARMM 27. A survey of the literature revealed that E. coli DNAP V and human DNAP eta show a similar pattern of dNTP insertion opposite a variety of DNA lesions. Furthermore, E. coli DNAP IV and human DNAP kappa show a similar dNTP insertional pattern with these same DNA lesions, although the insertional pattern for DNAP IV/kappa differs from the pattern for DNAPs V/eta. These comparisons prompted us to construct and refine models for E. coli DNAP IV and human DNAPs eta and kappa as well. The dNTP/template binding pocket of all four DNAPs was inspected, focusing on the array of seven amino acids that contact the base of the incoming dNTP, as well as the template base. DNAPs V and eta show similarities in this array, and DNAPs IV and kappa also show similarities, although the arrays are different for the two pairs of DNAPs. Thus, there is a correlation between structural similarities and insertional similarities for the pairs DNAPs V/eta and DNAPs IV/kappa. Although the significance of this correlation remains to be elucidated, these observations point the way for future experimental studies.
Collapse
Affiliation(s)
- Chiu Hong Lee
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
36
|
Maul RW, Sutton MD. Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 2005; 187:7607-18. [PMID: 16267285 PMCID: PMC1280315 DOI: 10.1128/jb.187.22.7607-7618.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Escherichia coli beta sliding clamp protein is proposed to play an important role in effecting switches between different DNA polymerases during replication, repair, and translesion DNA synthesis. We recently described how strains bearing the dnaN159 allele, which encodes a mutant form of the beta clamp (beta159), display a UV-sensitive phenotype that is suppressed by inactivation of DNA polymerase IV (M. D. Sutton, J. Bacteriol. 186:6738-6748, 2004). As part of an ongoing effort to understand mechanisms of DNA polymerase management in E. coli, we have further characterized effects of the dnaN159 allele on polymerase usage. Three of the five E.coli DNA polymerases (II, IV, and V) are regulated as part of the global SOS response. Our results indicate that elevated expression of the dinB-encoded polymerase IV is sufficient to result in conditional lethality of the dnaN159 strain. In contrast, chronically activated RecA protein, expressed from the recA730 allele, is lethal to the dnaN159 strain, and this lethality is suppressed by mutations that either mitigate RecA730 activity (i.e., DeltarecR), or impair the activities of DNA polymerase II or DNA polymerase V (i.e., DeltapolB or DeltaumuDC). Thus, we have identified distinct genetic requirements whereby each of the three different SOS-regulated DNA polymerases are able to confer lethality upon the dnaN159 strain, suggesting the presence of multiple mechanisms by which the actions of the cell's different DNA polymerases are managed in vivo.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
37
|
Sweetman WA, Moxon ER, Bayliss CD. Induction of the SOS regulon of Haemophilus influenzae does not affect phase variation rates at tetranucleotide or dinucleotide repeats. MICROBIOLOGY-SGM 2005; 151:2751-2763. [PMID: 16079351 DOI: 10.1099/mic.0.27996-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Haemophilus influenzae has microsatellite repeat tracts in 5' coding regions or promoters of several genes that are important for commensal and virulence behaviour. Changes in repeat number lead to switches in expression of these genes, a process referred to as phase variation. Hence, the virulence behaviour of this organism may be influenced by factors that alter the frequency of mutations in these repeat tracts. In Escherichia coli, induction of the SOS response destabilizes dinucleotide repeat tracts. H. influenzae encodes a homologue of the E. coli SOS repressor, LexA. The H. influenzae genome sequence was screened for the presence of the minimal consensus LexA-binding sequence from E. coli, CTG(N)(10)CAG, in order to identify genes with the potential to be SOS regulated. Twenty-five genes were identified that had LexA-binding sequences within 200 bp of the start codon. An H. influenzae non-inducible LexA mutant (lexA(NI)) was generated by site-directed mutagenesis. This mutant showed increased sensitivity, compared with wild-type (WT) cells, to both UV irradiation and mitomycin C (mitC) treatment. Semi-quantitative RT-PCR studies confirmed that H. influenzae mounts a LexA-regulated SOS response following DNA assault. Transcript levels of lexA, recA, recN, recX, ruvA and impA were increased in WT cells following DNA damage but not in lexA(NI) cells. Induction of the H. influenzae SOS response by UV irradiation or mitC treatment did not lead to any observable SOS-dependent changes in phase variation rates at either dinucleotide or tetranucleotide repeat tracts. Treatment with mitC caused a small increase in phase variation rates in both repeat tracts, independently of an SOS response. We suggest that the difference between H. influenzae and E. coli with regard to the effect of the SOS response on dinucleotide phase variation rates is due to the absence of any of the known trans-lesion synthesis DNA polymerases in H. influenzae.
Collapse
Affiliation(s)
- Wendy A Sweetman
- Paediatric Molecular Infectious Diseases Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - E Richard Moxon
- Paediatric Molecular Infectious Diseases Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Christopher D Bayliss
- Paediatric Molecular Infectious Diseases Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| |
Collapse
|
38
|
Seo KY, Nagalingam A, Tiffany M, Loechler EL. Mutagenesis studies with four stereoisomeric N2-dG benzo[a]pyrene adducts in the identical 5′-CGC sequence used in NMR studies: G→T mutations dominate in each case. Mutagenesis 2005; 20:441-8. [PMID: 16311255 DOI: 10.1093/mutage/gei061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon (PAH) and a potent mutagen/carcinogen found ubiquitously in the environment. B[a]P is primarily metabolized to diol epoxides, which react principally at N2-dG in DNA. B[a]P-N2-dG adducts have been shown to induce a variety of mutations, notably G-->T, G-->A, G-->C and -1 frameshifts. Four stereoisomers of B[a]P-N2-dG (designated: [+ta]-;, [+ca]-, [-ta] and [-ca]) were studied by NMR in duplex 11mers in a 5'-CGC sequence context, and each adopted a different adduct conformation (Geacintov, et al. (1997) Chem. Res. Toxicol., 10, 111). Herein these four identical B[a]P-containing 11mers are built into duplex plasmid genomes and mutagenesis studied in Escherichia coli following SOS-induction. In nucleotide excision repair (NER) proficient E.coli, no adduct-derived mutants are detected. In NER deficient E.coli, G-->T mutations dominate for all four stereoisomers [+ta]-, [+ca]-, [-ta] and [-ca]-B[a]P-N(2)-dG, and mutation frequency is similar. Thus, the mutagenic pattern for these four B[a]P-N2-dG stereoisomers is the same, in spite of the fact that they adopt dramatically different conformations in ds-oligonucleotides as determined by NMR. These findings suggest that adduct conformation must be fluid enough in the 5'-CGC sequence that the duplex DNA conformation can interconvert to mutagenic and non-mutagenic conformations during lesion-bypass. A comparison of all published studies with these four B[a]P-N2-dG stereoisomers in E.coli reveals that B[a]P-N2-dG adduct stereochemistry tends to have a lesser impact on mutagenic pattern (e.g. G-->T versus G-->A mutations) than does DNA sequence context, which is discussed.
Collapse
Affiliation(s)
- Kwang-Young Seo
- Biology Department, Boston University, 24 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
39
|
Kanuri M, Nechev LV, Kiehna SE, Tamura PJ, Harris CM, Harris TM, Lloyd RS. Evidence for Escherichia coli polymerase II mutagenic bypass of intrastrand DNA crosslinks. DNA Repair (Amst) 2005; 4:1374-80. [PMID: 16257273 DOI: 10.1016/j.dnarep.2005.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The mutagenic potentials of DNAs containing site- and stereospecific intrastrand DNA crosslinks were evaluated in Escherichia coli cells that contained a full complement of DNA polymerases or were deficient in either polymerases II, IV, or V. Crosslinks were made between adjacent N(6)-N(6) adenines and consisted of R,R- and S,S-butadiene crosslinks and unfunctionalized 2-, 3-, and 4-carbon tethers. Although replication of single-stranded DNAs containing the unfunctionalized 3- and 4-carbon tethers were non-mutagenic in all strains tested, replication past all the other intrastrand crosslinks was mutagenic in all E. coli strains, except the one deficient in polymerase II in which no mutations were ever detected. However, when mutagenesis was analyzed in cells induced for SOS, mutations were not detected, suggesting a possible change in the overall fidelity of polymerase II under SOS conditions. These data suggest that DNA polymerase II is responsible for the in vivo mutagenic bypass of these lesions in wild-type E. coli.
Collapse
Affiliation(s)
- Manorama Kanuri
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, 77550, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Al Mamun AAM, Humayun MZ. Escherichia coli DNA polymerase II can efficiently bypass 3,N(4)-ethenocytosine lesions in vitro and in vivo. Mutat Res 2005; 593:164-76. [PMID: 16171831 DOI: 10.1016/j.mrfmmm.2005.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 07/07/2005] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
Escherichia coli DNA polymerase II (pol-II) is a highly conserved protein that appears to have a role in replication restart, as well as in translesion synthesis across specific DNA adducts under some conditions. Here, we have investigated the effects of elevated expression of pol-II (without concomitant SOS induction) on translesion DNA synthesis and mutagenesis at 3,N(4)-ethenocytosine (varepsilonC), a highly mutagenic DNA lesion induced by oxidative stress as well as by exposure to industrial chemicals such as vinyl chloride. In normal cells, survival of transfected M13 single-stranded DNA bearing a single varepsilonC residue (varepsilonC-ssDNA) is about 20% of that of control DNA, with about 5% of the progeny phage bearing a mutation at the lesion site. Most mutations are C-->A and C-->T, with a slight predominance of transversions over transitions. In contrast, in cells expressing elevated levels of pol-II, survival of varepsilonC-ssDNA is close to 100%, with a concomitant mutation frequency of almost 99% suggesting highly efficient translesion DNA synthesis. Furthermore, an overwhelming majority of mutations at varepsilonC are C-->T transitions. Purified pol-II efficiently catalyzes translesion synthesis at varepsilonC in vitro, accompanied by high levels of mutagenesis with the same specificity. These results suggest that the observed in vivo effects in pol-II over-expressing cells are due to pol-II-mediated DNA synthesis. Introduction of mutations in the carboxy terminus region (beta interaction domain) of polB eliminates in vivo translesion synthesis at varepsilonC, suggesting that the ability of pol-II to compete with pol-III requires interaction with the beta processivity subunit of pol-III. Thus, pol-II can compete with pol-III for translesion synthesis.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, 225 Warren Street, Newark, NJ 07101-1709, USA
| | | |
Collapse
|
41
|
Duigou S, Ehrlich SD, Noirot P, Noirot-Gros MF. DNA polymerase I acts in translesion synthesis mediated by the Y-polymerases in Bacillus subtilis. Mol Microbiol 2005; 57:678-90. [PMID: 16045613 DOI: 10.1111/j.1365-2958.2005.04725.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Translesion synthesis (TLS) across damaged DNA bases is most often carried out by the ubiquitous error-prone DNA polymerases of the Y-family. Bacillus subtilis encodes two Y-polymerases, Pol Y1 and Pol Y2, that mediate TLS resulting in spontaneous and ultraviolet light (UV)-induced mutagenesis respectively. Here we show that TLS is a bipartite dual polymerase process in B. subtilis, involving not only the Y-polymerases but also the A-family polymerase, DNA polymerase I (Pol I). Both the spontaneous and the UV-induced mutagenesis are abolished in Pol I mutants affected solely in the polymerase catalytic site. Physical interactions between Pol I and either of the Pol Y polymerases, as well as formation of a ternary complex between Pol Y1, Pol I and the beta-clamp, were detected by yeast two- and three-hybrid assays, supporting the model of a functional coupling between the A- and Y-family polymerases in TLS. We suggest that the Pol Y carries the synthesis across the lesion, and Pol I takes over to extend the synthesis until the functional replisome resumes replication. This key role of Pol I in TLS uncovers a new function of the A-family DNA polymerases.
Collapse
Affiliation(s)
- Stéphane Duigou
- Laboratoire de Génétique Microbienne, Domaine de Vilvert, INRA, 78352 Jouy en Josas Cedex, France
| | | | | | | |
Collapse
|
42
|
Friedberg EC, Lehmann AR, Fuchs RPP. Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol Cell 2005; 18:499-505. [PMID: 15916957 DOI: 10.1016/j.molcel.2005.03.032] [Citation(s) in RCA: 305] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/21/2005] [Accepted: 03/23/2005] [Indexed: 11/30/2022]
Abstract
The replicative bypass of base damage in DNA (translesion DNA synthesis [TLS]) is a ubiquitous mechanism for relieving arrested DNA replication. The process requires multiple polymerase switching events during which the high-fidelity DNA polymerase in the replication machinery arrested at the primer terminus is replaced by one or more polymerases that are specialized for TLS. When replicative bypass is fully completed, the primer terminus is once again occupied by high-fidelity polymerases in the replicative machinery. This review addresses recent advances in our understanding of DNA polymerase switching during TLS in bacteria such as E. coli and in lower and higher eukaryotes.
Collapse
Affiliation(s)
- Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | |
Collapse
|
43
|
Nowosielska A, Wrzesiński M, Nieminuszczy J, Janion C, Grzesiuk E. Mutator activity and specificity of Escherichia coli dnaQ49 allele--effect of umuDC products. Mutat Res 2005; 572:113-22. [PMID: 15790494 DOI: 10.1016/j.mrfmmm.2004.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 12/28/2004] [Accepted: 12/30/2004] [Indexed: 10/25/2022]
Abstract
The high fidelity of DNA replication in Escherichia coli is ensured by the alpha (DnaE) and epsilon (DnaQ) subunits of DNA polymerase providing insertion fidelity, 3'-->5' exonuclease proofreading activity, and by the dam-directed mismatch repair system. dnaQ49 is a recessive allele that confers a temperature-sensitive proofreading phenotype resulting in a high rate of spontaneous mutations and chronic induction of the SOS response. The aim of this study was to analyse the mutational specificity of dnaQ49 in umuDC and DeltaumuDC backgrounds at 28 and 37 degrees C in a system developed by J.H. Miller. We confirmed that the mutator activity of dnaQ49 was negligible at 28 degrees C and fully expressed at 37 degrees C. Of the six possible base pair substitutions, only GC-->AT transitions and GC-->TA and AT-->TA transversions were appreciably increased. However, the most numerous mutations were frameshifts, -1G deletions and +1A insertions. All mutations which increased in response to dnaQ49 damage were to a various extent umuDC-dependent, especially -1G deletions. This type of mutations decreased in CC108dnaQ49DeltaumuDC to 10% of the value found in CC108dnaQ49umuDC+ and increased in the presence of plasmids producing UmuD'C or UmuDC proteins. In the recovery of dnaQ49 mutator activity the plasmid harbouring umuD'C genes was more effective than the one harbouring umuDC. Analysis of mutational specificity of pol III with defective epsilon subunit indicates that continuation of DNA replication is allowed past G:T, C:T, T:T (or C:A, G:A, A:A) mismatches but does not allow for acceptance of T:C, C:C, A:C (or A:G, G:G, T:G) (the underlined base is in the template strand).
Collapse
Affiliation(s)
- Anetta Nowosielska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | | | | | | | | |
Collapse
|
44
|
Minesinger BK, Jinks-Robertson S. Roles of RAD6 epistasis group members in spontaneous polzeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 2005; 169:1939-55. [PMID: 15687278 PMCID: PMC1449579 DOI: 10.1534/genetics.104.033894] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 01/14/2005] [Indexed: 11/18/2022] Open
Abstract
DNA lesions that arise during normal cellular metabolism can block the progress of replicative DNA polymerases, leading to cell cycle arrest and, in higher eukaryotes, apoptosis. Alternatively, such blocking lesions can be temporarily tolerated using either a recombination- or a translesion synthesis-based bypass mechanism. In Saccharomyces cerevisiae, members of the RAD6 epistasis group are key players in the regulation of lesion bypass by the translesion DNA polymerase Polzeta. In this study, changes in the reversion rate and spectrum of the lys2DeltaA746 -1 frameshift allele have been used to evaluate how the loss of members of the RAD6 epistasis group affects Polzeta-dependent mutagenesis in response to spontaneous damage. Our data are consistent with a model in which Polzeta-dependent mutagenesis relies on the presence of either Rad5 or Rad18, which promote two distinct error-prone pathways that partially overlap with respect to lesion specificity. The smallest subunit of Poldelta, Pol32, is also required for Polzeta-dependent spontaneous mutagenesis, suggesting a cooperative role between Poldelta and Polzeta for the bypass of spontaneous lesions. A third error-free pathway relies on the presence of Mms2, but may not require PCNA.
Collapse
Affiliation(s)
- Brenda K Minesinger
- Biochemistry, Cell and Developmental Biology Program of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
45
|
Martin P, Sun L, Hood DW, Moxon ER. Involvement of genes of genome maintenance in the regulation of phase variation frequencies in Neisseria meningitidis. MICROBIOLOGY-SGM 2005; 150:3001-3012. [PMID: 15347758 DOI: 10.1099/mic.0.27182-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Neisseria meningitidis, the reversible expression of surface antigens, i.e. phase variation, results from changes within repeated simple sequence motifs located in coding or promoter regions of the genes involved in their biosynthesis. The mutation rates of these simple sequences, which have a major influence on the generation of phenotypic diversity, can affect the fitness of the population. The aim of the present study was to investigate the involvement of genetic factors involved (mutS and dam) and not yet analysed (drg and dinB) in the regulation of phase variation frequencies of genes associated with a variety of repeat tracts. The frequency of frameshifts occurring in the polycytidine (polyC) tracts associated with siaD, spr and lgtG and in the tetranucleotide (TAAA) repeat tract associated with nadA was determined by colony immunoblotting or using the lacZ gene as a reporter. Inactivation of mutS increased the frequency of phase variation of genes presenting homopolymeric tracts of diverse length. Overexpression of dinB enhanced the instability of the homopolymeric tract associated with siaD. Investigation of the dam locus in a population of genetically distinct N. meningitidis strains revealed that 27 % of strains associated with invasive disease contained the dam gene. In all strains where a Dam function was absent, the drg gene had been inserted into the dam locus. Disruption of dam and drg in strains representative of each genotype, i.e. dam(+)/drg and dam/drg(+), did not modify phase variation frequencies. In contrast to the effects of certain genes on homopolymeric tracts, none of the genetic factors investigated affected the stability of tetranucleotide repeat tracts.
Collapse
Affiliation(s)
- Patricia Martin
- Molecular Infectious Diseases Group, University of Oxford, Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Li Sun
- Molecular Infectious Diseases Group, University of Oxford, Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Derek W Hood
- Molecular Infectious Diseases Group, University of Oxford, Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - E Richard Moxon
- Molecular Infectious Diseases Group, University of Oxford, Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
46
|
Green CM, Lehmann AR. Translesion synthesis and error-prone polymerases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:199-223. [PMID: 18727502 DOI: 10.1007/1-4020-3764-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Catherine M Green
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK
| | | |
Collapse
|
47
|
Fujii S, Fuchs RP. Defining the position of the switches between replicative and bypass DNA polymerases. EMBO J 2004; 23:4342-52. [PMID: 15470496 PMCID: PMC524402 DOI: 10.1038/sj.emboj.7600438] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 09/15/2004] [Indexed: 11/09/2022] Open
Abstract
Cells contain specialized DNA polymerases that are able to copy past lesions with an associated risk of generating mutations, the major cause of cancer. Here, we reconstitute translesion synthesis (TLS) using the replicative (Pol III) and major bypass (Pol V) DNA polymerases from Escherichia coli in the presence of accessory factors. When the replicative polymerase disconnects from the template in the vicinity of a lesion, Pol V binds the blocked replication intermediate and forms a stable complex by means of a dual interaction with the tip of the RecA filament and the beta-clamp, the processivity factor donated by the blocked Pol III holoenzyme. Both interactions are required to confer to Pol V the processivity that will allow it synthesize, in a single binding event, a TLS patch long enough to support further extension by Pol III. In the absence of these accessory factors, the patch synthesized by Pol V is too short, being degraded by the Pol III-associated exonuclease activity that senses the distortion induced by the lesion, thus leading to an aborted bypass process.
Collapse
Affiliation(s)
- Shingo Fujii
- UPR 9003 du CNRS, Cancerogenese et Mutagenese Moleculaire et Structurale, ESBS, Blvd S Brant Strasbourg, Illkirch, France
| | - Robert P Fuchs
- UPR 9003 du CNRS, Cancerogenese et Mutagenese Moleculaire et Structurale, ESBS, Blvd S Brant Strasbourg, Illkirch, France
- UPR 9003 Cancerogenese & Mutagenese, Moleculaire et Structurale CNRS, ESBS Pole API, Boulevard Sebastien Brant, 67400 Illkirch-Graffenstaden, France. Tel.: +33 390 244 688; Fax: +33 390 244 686; E-mail:
| |
Collapse
|
48
|
Neeley WL, Delaney JC, Henderson PT, Essigmann JM. In Vivo Bypass Efficiencies and Mutational Signatures of the Guanine Oxidation Products 2-Aminoimidazolone and 5-Guanidino-4-nitroimidazole. J Biol Chem 2004; 279:43568-73. [PMID: 15299010 DOI: 10.1074/jbc.m407117200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vivo mutagenic properties of 2-aminoimidazolone and 5-guanidino-4-nitroimidazole, two products of peroxynitrite oxidation of guanine, are reported. Two oligodeoxynucleotides of identical sequence, but containing either 2-aminoimidazolone or 5-guanidino-4-nitroimidazole at a specific site, were ligated into single-stranded M13mp7L2 bacteriophage genomes. Wild-type AB1157 Escherichia coli cells were transformed with the site-specific 2-aminoimidazolone- and 5-guanidino-4-nitroimidazole-containing genomes, and analysis of the resulting progeny phage allowed determination of the in vivo bypass efficiencies and mutational signatures of the DNA lesions. 2-Aminoimidazolone was efficiently bypassed and 91% mutagenic, producing almost exclusively G to C transversion mutations. In contrast, 5-guanidino-4-nitroimidazole was a strong block to replication and 50% mutagenic, generating G to A, G to T, and to a lesser extent, G to C mutations. The G to A mutation elicited by 5-guanidino-4-nitroimidazole implicates this lesion as a novel source of peroxynitrite-induced transition mutations in vivo. For comparison, the error-prone bypass DNA polymerases were overexpressed in the cells by irradiation with UV light (SOS induction) prior to transformation. SOS induction caused little change in the efficiency of DNA polymerase bypass of 2-aminoimidazolone; however, bypass of 5-guanidino-4-nitroimidazole increased nearly 10-fold. Importantly, the mutation frequencies of both lesions decreased during replication in SOS-induced cells. These data suggest that 2-aminoimidazolone and 5-guanidino-4-nitroimidazole in DNA are substrates for one or more of the SOS-induced Y-family DNA polymerases and demonstrate that 2-aminoimidazolone and 5-guanidino-4-nitroimidazole are potent sources of mutations in vivo.
Collapse
Affiliation(s)
- William L Neeley
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
49
|
Fujii S, Gasser V, Fuchs RP. The biochemical requirements of DNA polymerase V-mediated translesion synthesis revisited. J Mol Biol 2004; 341:405-17. [PMID: 15276832 DOI: 10.1016/j.jmb.2004.06.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/04/2004] [Accepted: 06/08/2004] [Indexed: 11/29/2022]
Abstract
In addition to replicative DNA polymerases, cells contain specialized DNA polymerases involved in processes such as lesion tolerance, mutagenesis and immunoglobulin diversity. In Escherichia coli, DNA polymerase V (Pol V), encoded by the umuDC locus, is involved in translesion synthesis (TLS) and mutagenesis. Genetic studies have established that mutagenesis requires both UmuC and a proteolytic product of UmuD (UmuD'). In addition, RecA protein and the replication processivity factor, the beta-clamp, were genetically found to be essential co-factors for mutagenesis. Here, we have reconstituted Pol V-mediated bypass of three common replication-blocking lesions, namely the two major UV-induced lesions and a guanine adduct formed by a chemical carcinogen (G-AAF) under conditions that fulfil these in vivo requirements. Two co-factors are essential for efficient Pol V-mediated lesion bypass: (i) a DNA substrate onto which the beta-clamp is stably loaded; and (ii) an extended single-stranded RecA/ATP filament assembled downstream from the lesion site. For efficient bypass, Pol V needs to interact simultaneously with the beta-clamp and the 3' tip of the RecA filament. Formation of an extended RecA/ATP filament and stable loading of the beta-clamp are best achieved on long single-stranded circular DNA templates. In contrast to previously published data, the single-stranded DNA-binding protein (SSB) is not absolutely required for Pol V-mediated lesion bypass provided ATP, instead of ATPgammaS, activates the RecA filament. Further discrepancies with the existing literature are explainable by the use of either inadequate DNA substrates or a UmuC fusion protein instead of native Pol V.
Collapse
Affiliation(s)
- Shingo Fujii
- UPR 9003 du CNRS, Cancerogenese et Mutagenese Moleculaire et Structurale, 67400 Strasbourg, France
| | | | | |
Collapse
|
50
|
Sommer S, Becherel OJ, Coste G, Bailone A, Fuchs RPP. Altered translesion synthesis in E. coli Pol V mutants selected for increased recombination inhibition. DNA Repair (Amst) 2004; 2:1361-9. [PMID: 14642565 DOI: 10.1016/j.dnarep.2003.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Replication of damaged DNA, also termed as translesion synthesis (TLS), involves specialized DNA polymerases that bypass DNA lesions. In Escherichia coli, although TLS can involve one or a combination of DNA polymerases depending on the nature of the lesion, it generally requires the Pol V DNA polymerase (formed by two SOS proteins, UmuD' and UmuC) and the RecA protein. In addition to being an essential component of translesion DNA synthesis, Pol V is also an antagonist of RecA-mediated recombination. We have recently isolated umuD' and umuC mutants on the basis of their increased capacity to inhibit homologous recombination. Despite the capacity of these mutants to form a Pol V complex and to interact with the RecA polymer, most of them exhibit a defect in TLS. Here, we further characterize the TLS activity of these Pol V mutants in vivo by measuring the extent of error-free and mutagenic bypass at a single (6-4)TT lesion located in double stranded plasmid DNA. TLS is markedly decreased in most Pol V mutants that we analyzed (8/9) with the exception of one UmuC mutant (F287L) that exhibits wild-type bypass activity. Somewhat unexpectedly, Pol V mutants that are partially deficient in TLS are more severely affected in mutagenic bypass compared to error-free synthesis. The defect in bypass activity of the Pol V mutant polymerases is discussed in light of the location of the respective mutations in the 3D structure of UmuD' and the DinB/UmuC homologous protein Dpo4 of Sulfolobus solfataricus.
Collapse
Affiliation(s)
- Suzanne Sommer
- Institut de Génétique et Microbiologie, Bât. 409, Université Paris-Sud, F-91405, Orsay, France.
| | | | | | | | | |
Collapse
|