1
|
Mahapatra K, Roy S. SOG1 and BRCA1 Interdependently Regulate RAD54 Expression for Repairing Salinity-Induced DNA Double-Strand Breaks in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:708-728. [PMID: 38242160 DOI: 10.1093/pcp/pcae008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
As sessile organisms, land plants experience various forms of environmental stresses throughout their life span. Therefore, plants have developed extensive and complicated defense mechanisms, including a robust DNA damage response (DDR) and DNA repair systems for maintaining genome integrity. In Arabidopsis, the NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF), CUP-SHAPED COTYLEDON (CUC)] domain family transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) plays an important role in regulating DDR. Here, we show that SOG1 plays a key role in regulating the repair of salinity-induced DNA double-strand breaks (DSBs) via the homologous recombination (HR) pathway in Arabidopsis. The sog1-1 mutant seedlings display a considerably slower rate of repair of salinity-induced DSBs. Accumulation of SOG1 protein increases in wild-type Arabidopsis under salinity stress, and it enhances the expression of HR pathway-related genes, including RAD51, RAD54 and BReast CAncer gene 1 (BRCA1), respectively, as found in SOG1 overexpression lines. SOG1 binds specifically to the AtRAD54 promoter at the 5'-(N)4GTCAA(N)3C-3' consensus sequence and positively regulates its expression under salinity stress. The phenotypic responses of sog1-1/atrad54 double mutants suggest that SOG1 functions upstream of RAD54, and both these genes are essential in regulating DDR under salinity stress. Furthermore, SOG1 interacts directly with BRCA1, an important component of the HR-mediated DSB repair pathway in plants, where BRCA1 appears to facilitate the binding of SOG1 to the RAD54 promoter. At the genetic level, SOG1 and BRCA1 function interdependently in modulating RAD54 expression under salinity-induced DNA damage. Together, our results suggest that SOG1 regulates the repair of salinity-induced DSBs via the HR-mediated pathway through genetic interactions with RAD54 and BRCA1 in Arabidopsis.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| |
Collapse
|
2
|
Keymakh M, Dau J, Hu J, Ferlez B, Lisby M, Crickard JB. Rdh54 stabilizes Rad51 at displacement loop intermediates to regulate genetic exchange between chromosomes. PLoS Genet 2022; 18:e1010412. [PMID: 36099310 PMCID: PMC9506641 DOI: 10.1371/journal.pgen.1010412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) is a double-strand break DNA repair pathway that preserves chromosome structure. To repair damaged DNA, HR uses an intact donor DNA sequence located elsewhere in the genome. After the double-strand break is repaired, DNA sequence information can be transferred between donor and recipient DNA molecules through different mechanisms, including DNA crossovers that form between homologous chromosomes. Regulation of DNA sequence transfer is an important step in effectively completing HR and maintaining genome integrity. For example, mitotic exchange of information between homologous chromosomes can result in loss-of-heterozygosity (LOH), and in higher eukaryotes, the development of cancer. The DNA motor protein Rdh54 is a highly conserved DNA translocase that functions during HR. Several existing phenotypes in rdh54Δ strains suggest that Rdh54 may regulate effective exchange of DNA during HR. In our current study, we used a combination of biochemical and genetic techniques to dissect the role of Rdh54 on the exchange of genetic information during DNA repair. Our data indicate that RDH54 regulates DNA strand exchange by stabilizing Rad51 at an early HR intermediate called the displacement loop (D-loop). Rdh54 acts in opposition to Rad51 removal by the DNA motor protein Rad54. Furthermore, we find that expression of a catalytically inactivate allele of Rdh54, rdh54K318R, favors non-crossover outcomes. From these results, we propose a model for how Rdh54 may kinetically regulate strand exchange during homologous recombination. Homologous recombination is an important pathway in repairing DNA double strand breaks. For the purposes of this study, HR can be divided into two stages. The first is a DNA repair stage in which the broken DNA molecule is fixed. In the second stage, information can move from one DNA molecule to another. Enzymes that use the power of ATP hydrolysis to move along dsDNA aid in regulating both stages of HR. In this work we focused on the understudied DNA motor protein Rdh54. We combined genetic and biochemical approaches to show that Rdh54 regulates HR by stabilizing the recombinase protein Rad51 at early HR intermediates.
Collapse
Affiliation(s)
- Margaret Keymakh
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Jennifer Dau
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Jingyi Hu
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Bryan Ferlez
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - J. Brooks Crickard
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Crickard JB. Discrete roles for Rad54 and Rdh54 during homologous recombination. Curr Opin Genet Dev 2021; 71:48-54. [PMID: 34293661 DOI: 10.1016/j.gde.2021.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Rad54 and Rdh54 are Snf2 DNA motor proteins that function during maintenance of genomic integrity. Though highly related, Rad54 and Rdh54 have different biochemical and genetic functions during maintenance of genomic integrity. Rad54 functions primarily during the homology search and strand invasion steps of homologous recombination, while Rdh54 appears to play a minor role in these processes. More recently it has been shown that Rdh54 functions as a pathway branch point at HR intermediates, and as has a role in cell cycle recovery. Here we will explore recent advances that have improved our understanding of the role these two DNA motor proteins play during DNA repair.
Collapse
Affiliation(s)
- John Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Lerksuthirat T, Wikiniyadhanee R, Chitphuk S, Stitchantrakul W, Sampattavanich S, Jirawatnotai S, Jumpathong J, Dejsuphong D. DNA Repair Biosensor-Identified DNA Damage Activities of Endophyte Extracts from Garcinia cowa. Biomolecules 2020; 10:E1680. [PMID: 33339185 PMCID: PMC7765599 DOI: 10.3390/biom10121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022] Open
Abstract
Recent developments in chemotherapy focus on target-specific mechanisms, which occur only in cancer cells and minimize the effects on normal cells. DNA damage and repair pathways are a promising target in the treatment of cancer. In order to identify novel compounds targeting DNA repair pathways, two key proteins, 53BP1 and RAD54L, were tagged with fluorescent proteins as indicators for two major double strand break (DSB) repair pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). The engineered biosensor cells exhibited the same DNA repair properties as the wild type. The biosensor cells were further used to investigate the DNA repair activities of natural biological compounds. An extract from Phyllosticta sp., the endophyte isolated from the medicinal plant Garcinia cowa Roxb. ex Choisy, was tested. The results showed that the crude extract induced DSB, as demonstrated by the increase in the DNA DSB marker γH2AX. The damaged DNA appeared to be repaired through NHEJ, as the 53BP1 focus formation in the treated fraction was higher than in the control group. In conclusion, DNA repair-based biosensors are useful for the preliminary screening of crude extracts and biological compounds for the identification of potential targeted therapeutic drugs.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Rakkreat Wikiniyadhanee
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Somponnat Sampattavanich
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Juangjun Jumpathong
- Center of Excellent in Research for Agricultural Biotechnology and Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Donniphat Dejsuphong
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
5
|
Smits VAJ, Alonso-de Vega I, Warmerdam DO. Chromatin regulators and their impact on DNA repair and G2 checkpoint recovery. Cell Cycle 2020; 19:2083-2093. [PMID: 32730133 DOI: 10.1080/15384101.2020.1796037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Chromatin plays a pivotal role in regulating the DNA damage response and during DNA double-strand break repair. Upon the generation of DNA breaks, the chromatin structure is altered by post-translational modifications of histones and chromatin remodeling. How the chromatin structure, and the epigenetic information that it carries, is reestablished after the completion of DNA break repair remains unclear though. Also, how these processes influence recovery of the cell cycle remains poorly understood. We recently performed a reverse genetic screen for novel chromatin regulators that control checkpoint recovery after DNA damage. Here we discuss the implications of PHD finger protein 6 (PHF6) and additional candidates from the NuA4 ATPase-dependent chromatin-remodeling complex and the Cohesin complex, required for sister chromatid cohesion, in DNA repair and checkpoint recovery in more detail. In addition, the potential role of this novel function of PHF6 in cancer development and treatment is reviewed.
Collapse
Affiliation(s)
- Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias , La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna , Tenerife, Spain.,Universidad Fernando Pessoa Canarias , Las Palmas de Gran Canaria, Spain
| | - Ignacio Alonso-de Vega
- Unidad de Investigación, Hospital Universitario de Canarias , La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna , Tenerife, Spain
| | - Daniël O Warmerdam
- CRISPR Platform, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
6
|
Mason-Osann E, Terranova K, Lupo N, Lock YJ, Carson LM, Flynn RL. RAD54 promotes alternative lengthening of telomeres by mediating branch migration. EMBO Rep 2020; 21:e49495. [PMID: 32337843 PMCID: PMC7271314 DOI: 10.15252/embr.201949495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer cells can activate the alternative lengthening of telomeres (ALT) pathway to promote replicative immortality. The ALT pathway promotes telomere elongation through a homologous recombination pathway known as break‐induced replication (BIR), which is often engaged to repair single‐ended double‐stranded breaks (DSBs). Single‐ended DSBs are resected to promote strand invasion and facilitate the formation of a local displacement loop (D‐loop), which can trigger DNA synthesis, and ultimately promote telomere elongation. However, the exact proteins involved in the maturation, migration, and resolution of D‐loops at ALT telomeres are unclear. In vitro, the DNA translocase RAD54 both binds D‐loops and promotes branch migration suggesting that RAD54 may function to promote ALT activity. Here, we demonstrate that RAD54 is enriched at ALT telomeres and promotes telomeric DNA synthesis through its ATPase‐dependent branch migration activity. Loss of RAD54 leads to the formation of unresolved recombination intermediates at telomeres that form ultra‐fine anaphase bridges in mitosis. These data demonstrate an important role for RAD54 in promoting ALT‐mediated telomere synthesis.
Collapse
Affiliation(s)
- Emily Mason-Osann
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Katherine Terranova
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Nicholas Lupo
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Ying Jie Lock
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Lisa M Carson
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Rachel Litman Flynn
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Crickard JB, Greene EC. Helicase Mechanisms During Homologous Recombination in Saccharomyces cerevisiae. Annu Rev Biophys 2019; 48:255-273. [PMID: 30857400 DOI: 10.1146/annurev-biophys-052118-115418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicases are enzymes that move, manage, and manipulate nucleic acids. They can be subdivided into six super families and are required for all aspects of nucleic acid metabolism. In general, all helicases function by converting the chemical energy stored in the bond between the gamma and beta phosphates of adenosine triphosphate into mechanical work, which results in the unidirectional movement of the helicase protein along one strand of a nucleic acid. The results of this translocation activity can range from separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. In this review, we focus on describing key helicases from the model organism Saccharomyces cerevisiae that contribute to the regulation of homologous recombination, which is an essential DNA repair pathway for fixing damaged chromosomes.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; ,
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; ,
| |
Collapse
|
8
|
van den Tempel N, Zelensky AN, Odijk H, Laffeber C, Schmidt CK, Brandsma I, Demmers J, Krawczyk PM, Kanaar R. On the Mechanism of Hyperthermia-Induced BRCA2 Protein Degradation. Cancers (Basel) 2019; 11:cancers11010097. [PMID: 30650591 PMCID: PMC6356811 DOI: 10.3390/cancers11010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is a designation for a number of pathways that protects our DNA from various damaging agents. In normal cells, the DDR is extremely important for maintaining genome integrity, but in cancer cells these mechanisms counteract therapy-induced DNA damage. Inhibition of the DDR could therefore be used to increase the efficacy of anti-cancer treatments. Hyperthermia is an example of such a treatment—it inhibits a sub-pathway of the DDR, called homologous recombination (HR). It does so by inducing proteasomal degradation of BRCA2 —one of the key HR factors. Understanding the precise mechanism that mediates this degradation is important for our understanding of how hyperthermia affects therapy and how homologous recombination and BRCA2 itself function. In addition, mechanistic insight into the process of hyperthermia-induced BRCA2 degradation can yield new therapeutic strategies to enhance the effects of local hyperthermia or to inhibit HR. Here, we investigate the mechanisms driving hyperthermia-induced BRCA2 degradation. We find that BRCA2 degradation is evolutionarily conserved, that BRCA2 stability is dependent on HSP90, that ubiquitin might not be involved in directly targeting BRCA2 for protein degradation via the proteasome, and that BRCA2 degradation might be modulated by oxidative stress and radical scavengers.
Collapse
Affiliation(s)
- Nathalie van den Tempel
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Hanny Odijk
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Christine K Schmidt
- Department of Biochemistry, The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK.
| | - Inger Brandsma
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Jeroen Demmers
- Department of Biochemistry, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Przemek M Krawczyk
- Department of Cell Biology and Histology Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Abstract
Meiosis is the basis for sexual reproduction and is marked by the sequential reduction of chromosome number during successive cell cycles, resulting in four haploid gametes. A central component of the meiotic program is the formation and repair of programmed double strand breaks. Recombination-driven repair of these meiotic breaks differs from recombination during mitosis in that meiotic breaks are preferentially repaired using the homologous chromosomes in a process known as homolog bias. Homolog bias allows for physical interactions between homologous chromosomes that are required for proper chromosome segregation, and the formation of crossover products ensuring genetic diversity in progeny. An important aspect of meiosis in the differential regulation of the two eukaryotic RecA homologs, Rad51 and Dmc1. In this review we will discuss the relationship between biological programs designed to regulate recombinase function.
Collapse
Affiliation(s)
- J Brooks Crickard
- a Department of Biochemistry & Molecular Biophysics , Columbia University , New York , NY , USA
| | - Eric C Greene
- a Department of Biochemistry & Molecular Biophysics , Columbia University , New York , NY , USA
| |
Collapse
|
10
|
Crickard JB, Kaniecki K, Kwon Y, Sung P, Lisby M, Greene EC. Regulation of Hed1 and Rad54 binding during maturation of the meiosis-specific presynaptic complex. EMBO J 2018; 37:embj.201798728. [PMID: 29444896 DOI: 10.15252/embj.201798728] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/03/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
Most eukaryotes have two Rad51/RecA family recombinases, Rad51, which promotes recombination during mitotic double-strand break (DSB) repair, and the meiosis-specific recombinase Dmc1. During meiosis, the strand exchange activity of Rad51 is downregulated through interactions with the meiosis-specific protein Hed1, which helps ensure that strand exchange is driven by Dmc1 instead of Rad51. Hed1 acts by preventing Rad51 from interacting with Rad54, a cofactor required for promoting strand exchange during homologous recombination. However, we have a poor quantitative understanding of the regulatory interplay between these proteins. Here, we use real-time single-molecule imaging to probe how the Hed1- and Rad54-mediated regulatory network contributes to the identity of mitotic and meiotic presynaptic complexes. Based on our findings, we define a model in which kinetic competition between Hed1 and Rad54 helps define the functional identity of the presynaptic complex as cells undergo the transition from mitotic to meiotic repair.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kyle Kaniecki
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - YoungHo Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Ito-Harashima S, Yagi T. Unique molecular mechanisms for maintenance and alteration of genetic information in the budding yeast Saccharomyces cerevisiae. Genes Environ 2017; 39:28. [PMID: 29213342 PMCID: PMC5709847 DOI: 10.1186/s41021-017-0088-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/26/2017] [Indexed: 11/10/2022] Open
Abstract
The high-fidelity transmission of genetic information is crucial for the survival of organisms, the cells of which have the ability to protect DNA against endogenous and environmental agents, including reactive oxygen species (ROS), ionizing radiation, and various chemical compounds. The basis of protection mechanisms has been evolutionarily conserved from yeast to humans; however, each organism often has a specialized mode of regulation that uses different sets of machineries, particularly in lower eukaryotes. The divergence of molecular mechanisms among related organisms has provided insights into the evolution of cellular machineries to a higher architecture. Uncommon characteristics of machineries may also contribute to the development of new applications such as drugs with novel mechanisms of action. In contrast to the cellular properties for maintaining genetic information, living organisms, particularly microbes, inevitably undergo genetic alterations in order to adapt to environmental conditions. The maintenance and alteration of genetic information may be inextricably linked to each other. In this review, we describe recent findings on the unconventional molecular mechanisms of DNA damage response and DNA double-strand break (DSB) repair in the budding yeast Saccharomyces cerevisiae. We also introduce our previous research on genetic and phenotypic instabilities observed in a clonal population of clinically-derived S. cerevisiae. The molecular mechanisms of this case were associated with mutations to generate tyrosine-inserting tRNA-Tyr ochre suppressors and the position effects of mutation frequencies among eight tRNA-Tyr loci dispersed in the genome. Phenotypic variations among different strain backgrounds have also been observed by another type of nonsense suppressor, the aberrant form of the translation termination factor. Nonsense suppressors are considered to be responsible for the genome-wide translational readthrough of termination codons, including natural nonsense codons. The nonsense suppressor-mediated acquisition of phenotypic variations may be advantageous for adaptation to environmental conditions and survival during evolution.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Takashi Yagi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| |
Collapse
|
12
|
Abstract
Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination.
Collapse
Affiliation(s)
- Eric C Greene
- From the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| |
Collapse
|
13
|
del Socorro Charcas-Lopez M, Garcia-Morales L, Pezet-Valdez M, Lopez-Camarillo C, Zamorano-Carrillo A, Marchat LA. Expression of EhRAD54, EhRAD51, and EhBLM proteins during DNA repair by homologous recombination in Entamoeba histolytica. Parasite 2014; 21:7. [PMID: 24534563 PMCID: PMC3927307 DOI: 10.1051/parasite/2014006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/07/2014] [Indexed: 12/04/2022] Open
Abstract
Entamoeba histolytica, the protozoan responsible for human amoebiasis, exhibits a great genome plasticity that is probably related to homologous recombination events. It contains the RAD52 epistasis group genes, including Ehrad51 and Ehrad54, and the Ehblm gene, which are key homologous recombination factors in other organisms. Ehrad51 and Ehrad54 genes are differentially transcribed in trophozoites when DNA double-strand breaks are induced by ultraviolet-C irradiation. Moreover, the EhRAD51 recombinase is overexpressed at 30 min in the nucleus. Here, we extend our analysis of the homologous recombination mechanism in E. histolytica by studying EhRAD51, EhRAD54, and EhBLM expression in response to DNA damage. Bioinformatic analyses show that EhRAD54 has the molecular features of homologous proteins, indicating that it may have similar functions. Western blot assays evidence the differential expression of EhRAD51, EhRAD54, and EhBLM at different times after DNA damage, suggesting their potential roles in the different steps of homologous recombination in this protozoan.
Collapse
Affiliation(s)
- Ma. del Socorro Charcas-Lopez
-
Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
| | - Lorena Garcia-Morales
-
Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
| | - Marisol Pezet-Valdez
-
Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
| | - Cesar Lopez-Camarillo
-
Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo No. 290, Col. del Valle México D.F. C.P. 03110 Mexico
| | - Absalom Zamorano-Carrillo
-
Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
-
Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
| | - Laurence A. Marchat
-
Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
-
Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
| |
Collapse
|
14
|
Wright WD, Heyer WD. Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation. Mol Cell 2014; 53:420-32. [PMID: 24486020 DOI: 10.1016/j.molcel.2013.12.027] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/03/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022]
Abstract
The displacement loop (D loop) is the product of homology search and DNA strand invasion, constituting a central intermediate in homologous recombination (HR). In eukaryotes, the Rad51 DNA strand exchange protein is assisted in D loop formation by the Rad54 motor protein. Curiously, Rad54 also disrupts D loops. How these opposing activities are coordinated toward productive recombination is unknown. Moreover, a seemingly disparate function of Rad54 is removal of Rad51 from heteroduplex DNA (hDNA) to allow HR-associated DNA synthesis. Here, we uncover features of D loop formation/dissociation dynamics, employing Rad51 filaments formed on ssDNAs that mimic the physiological length and structure of in vivo substrates. The Rad54 motor is activated by Rad51 bound to synapsed DNAs and guided by a ssDNA-binding domain. We present a unified model wherein Rad54 acts as an hDNA pump that drives D loop formation while simultaneously removing Rad51 from hDNA, consolidating both ATP-dependent activities of Rad54 into a single mechanistic step.
Collapse
Affiliation(s)
- William Douglass Wright
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA; Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA.
| |
Collapse
|
15
|
Zhang XP, Janke R, Kingsley J, Luo J, Fasching C, Ehmsen KT, Heyer WD. A conserved sequence extending motif III of the motor domain in the Snf2-family DNA translocase Rad54 is critical for ATPase activity. PLoS One 2013; 8:e82184. [PMID: 24358152 PMCID: PMC3864901 DOI: 10.1371/journal.pone.0082184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/21/2013] [Indexed: 11/22/2022] Open
Abstract
Rad54 is a dsDNA-dependent ATPase that translocates on duplex DNA. Its ATPase function is essential for homologous recombination, a pathway critical for meiotic chromosome segregation, repair of complex DNA damage, and recovery of stalled or broken replication forks. In recombination, Rad54 cooperates with Rad51 protein and is required to dissociate Rad51 from heteroduplex DNA to allow access by DNA polymerases for recombination-associated DNA synthesis. Sequence analysis revealed that Rad54 contains a perfect match to the consensus PIP box sequence, a widely spread PCNA interaction motif. Indeed, Rad54 interacts directly with PCNA, but this interaction is not mediated by the Rad54 PIP box-like sequence. This sequence is located as an extension of motif III of the Rad54 motor domain and is essential for full Rad54 ATPase activity. Mutations in this motif render Rad54 non-functional in vivo and severely compromise its activities in vitro. Further analysis demonstrated that such mutations affect dsDNA binding, consistent with the location of this sequence motif on the surface of the cleft formed by two RecA-like domains, which likely forms the dsDNA binding site of Rad54. Our study identified a novel sequence motif critical for Rad54 function and showed that even perfect matches to the PIP box consensus may not necessarily identify PCNA interaction sites.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Ryan Janke
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - James Kingsley
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Jerry Luo
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Clare Fasching
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Kirk T. Ehmsen
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
16
|
Simandlova J, Zagelbaum J, Payne MJ, Chu WK, Shevelev I, Hanada K, Chatterjee S, Reid DA, Liu Y, Janscak P, Rothenberg E, Hickson ID. FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells. J Biol Chem 2013; 288:34168-34180. [PMID: 24108124 DOI: 10.1074/jbc.m113.484493] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.
Collapse
Affiliation(s)
- Jitka Simandlova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic
| | - Jennifer Zagelbaum
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Miranda J Payne
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Wai Kit Chu
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom; Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Igor Shevelev
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic
| | - Katsuhiro Hanada
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Sujoy Chatterjee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Dylan A Reid
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Ying Liu
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic; Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York.
| | - Ian D Hickson
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom; Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
17
|
Biebricher A, Hirano S, Enzlin JH, Wiechens N, Streicher WW, Huttner D, Wang LHC, Nigg EA, Owen-Hughes T, Liu Y, Peterman E, Wuite GJL, Hickson ID. PICH: a DNA translocase specially adapted for processing anaphase bridge DNA. Mol Cell 2013; 51:691-701. [PMID: 23973328 PMCID: PMC4161920 DOI: 10.1016/j.molcel.2013.07.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/05/2013] [Accepted: 07/17/2013] [Indexed: 01/16/2023]
Abstract
The Plk1-interacting checkpoint helicase (PICH) protein localizes to ultrafine anaphase bridges (UFBs) in mitosis alongside a complex of DNA repair proteins, including the Bloom's syndrome protein (BLM). However, very little is known about the function of PICH or how it is recruited to UFBs. Using a combination of microfluidics, fluorescence microscopy, and optical tweezers, we have defined the properties of PICH in an in vitro model of an anaphase bridge. We show that PICH binds with a remarkably high affinity to duplex DNA, resulting in ATP-dependent protein translocation and extension of the DNA. Most strikingly, the affinity of PICH for binding DNA increases with tension-induced DNA stretching, which mimics the effect of the mitotic spindle on a UFB. PICH binding also appears to diminish force-induced DNA melting. We propose a model in which PICH recognizes and stabilizes DNA under tension during anaphase, thereby facilitating the resolution of entangled sister chromatids.
Collapse
Affiliation(s)
- Andreas Biebricher
- LaserLaB Amsterdam and Department of Physics, VU University Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | - Seiki Hirano
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, U. K
| | - Jacqueline H Enzlin
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute 18.1, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Nicola Wiechens
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - Werner W Streicher
- Novo Nordisk Foundation Center for Protein Research, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Diana Huttner
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute 18.1, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Protein Research, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Lily H-C Wang
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Switzerland
| | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Switzerland
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - Ying Liu
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute 18.1, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Erwin Peterman
- LaserLaB Amsterdam and Department of Physics, VU University Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | - Gijs J L Wuite
- LaserLaB Amsterdam and Department of Physics, VU University Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | - Ian D Hickson
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, U. K
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute 18.1, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
18
|
Opposing roles for two molecular forms of replication protein A in Rad51-Rad54-mediated DNA recombination in Plasmodium falciparum. mBio 2013; 4:e00252-13. [PMID: 23631919 PMCID: PMC3648904 DOI: 10.1128/mbio.00252-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bacterial RecA protein and its eukaryotic homologue Rad51 play a central role in the homologous DNA strand exchange reaction during recombination and DNA repair. Previously, our lab has shown that PfRad51, the Plasmodium falciparum homologue of Rad51, exhibited ATPase activity and promoted DNA strand exchange in vitro. In this study, we evaluated the catalytic functions of PfRad51 in the presence of putative interacting partners, especially P. falciparum homologues of Rad54 and replication protein A. PfRad54 accelerated PfRad51-mediated pairing between single-stranded DNA (ssDNA) and its homologous linear double-stranded DNA (dsDNA) in the presence of 0.5 mM CaCl2. We also present evidence that recombinant PfRPA1L protein serves the function of the bacterial homologue single-stranded binding protein (SSB) in initiating homologous pairing and strand exchange activity. More importantly, the function of PfRPA1L was negatively regulated in a dose-dependent manner by PfRPA1S, another RPA homologue in P. falciparum. Finally, we present in vivo evidence through comet assays for methyl methane sulfonate-induced DNA damage in malaria parasites and accompanying upregulation of PfRad51, PfRad54, PfRPA1L, and PfRPA1S at the level of transcript and protein needed to repair DNA damage. This study provides new insights into the role of putative Rad51-interacting proteins involved in homologous recombination and emphasizes the physiological role of DNA damage repair during the growth of parasites. Homologous recombination plays a major role in chromosomal rearrangement, and Rad51 protein, aided by several other proteins, plays a central role in DNA strand exchange reaction during recombination and DNA repair. This study reports on the characterization of the role of P. falciparum Rad51 in homologous strand exchange and DNA repair and evaluates the functional contribution of PfRad54 and PfRPA1 proteins. Data presented here provide mechanistic insights into DNA recombination and DNA damage repair mechanisms in this parasite. The importance of these research findings in future work will be to investigate if Rad51-dependent mechanisms are involved in chromosomal rearrangements during antigenic variation in P. falciparum. A prominent determinant of antigenic variation, the extraordinary ability of the parasite to rapidly change its surface molecules, is associated with var genes, and antigenic variation presents a major challenge to vaccine development.
Collapse
|
19
|
Amunugama R, Fishel R. Homologous Recombination in Eukaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:155-206. [DOI: 10.1016/b978-0-12-387665-2.00007-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Kaliappan K, Choudhury NR, Suyal G, Mukherjee SK. A novel role for RAD54: this host protein modulates geminiviral DNA replication. FASEB J 2011; 26:1142-60. [PMID: 22171001 DOI: 10.1096/fj.11-188508] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Geminiviruses primarily encode only few factors, such as replication initiator protein (Rep), and need various host cellular machineries for rolling-circle replication (RCR) and/or recombination-dependent replication (RDR). We have identified a host factor, RAD54, in a screen for Rep-interacting partners and observed its role in DNA replication of the geminivirus mungbean yellow mosaic India virus (MYMIV). We identified the interacting domains ScRAD54 and MYMIV-Rep and observed that ScRAD54 enhanced MYMIV-Rep nicking, ATPase, and helicase activities. An in vitro replication assay demonstrated that the geminiviral DNA replication reaction depends on the viral Rep protein, viral origin of replication sequences, and host cell-cycle proteins. Rad54-deficient yeast nuclear extract did not support in vitro viral DNA replication, while exogenous addition of the purified ScRAD54 protein enhanced replication. The role of RAD54 in in planta replication was confirmed by the transient replication assay; i.e., agroinoculation studies. RAD54 is a well-known recombination/repair protein that uses its DNA-dependent ATPase activity in conjunction with several other host factors. However, this study demonstrates for the first time that the eukaryotic rolling-circle replicon depends on the RAD54 protein.
Collapse
Affiliation(s)
- Kosalai Kaliappan
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | | | | | | |
Collapse
|
21
|
The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination. DNA Repair (Amst) 2011; 10:1095-105. [DOI: 10.1016/j.dnarep.2011.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/08/2011] [Indexed: 11/17/2022]
|
22
|
Viswanathan R, Auble DT. One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:488-96. [PMID: 21658482 PMCID: PMC3171519 DOI: 10.1016/j.bbagrm.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/14/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
The TATA-binding protein (TBP) is a major target for transcriptional regulation. Mot1, a Swi2/Snf2-related ATPase, dissociates TBP from DNA in an ATP dependent process. The experimental advantages of this relatively simple reaction have been exploited to learn more about how Swi2/Snf2 ATPases function biochemically. However, many unanswered questions remain and fundamental aspects of the Mot1 mechanism are still under debate. Here, we review the available data and integrate the results with structural and biochemical studies of related enzymes to derive a model for Mot1's catalytic action consistent with the broad literature on enzymes in this family. We propose that the Mot1 ATPase domain is tethered to TBP by a flexible, spring-like linker of alpha helical hairpins. The linker juxtaposes the ATPase domain such that it can engage duplex DNA on one side of the TBP-DNA complex. This allows the ATPase to employ short-range, nonprocessive ATP-driven DNA tracking to pull or push TBP off its DNA site. DNA translocation is a conserved property of ATPases in the broader enzyme family. As such, the model explains how a structurally and functionally conserved ATPase domain has been put to use in a very different context than other enzymes in the Swi2/Snf2 family. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
23
|
Ceballos SJ, Heyer WD. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:509-23. [PMID: 21704205 PMCID: PMC3171615 DOI: 10.1016/j.bbagrm.2011.06.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 11/25/2022]
Abstract
Homologous recombination is a central pathway to maintain genomic stability and is involved in the repair of DNA damage and replication fork support, as well as accurate chromosome segregation during meiosis. Rad54 is a dsDNA-dependent ATPase of the Snf2/Swi2 family of SF2 helicases, although Rad54 lacks classical helicase activity and cannot carry out the strand displacement reactions typical for DNA helicases. Rad54 is a potent and processive motor protein that translocates on dsDNA, potentially executing several functions in recombinational DNA repair. Rad54 acts in concert with Rad51, the central protein of recombination that performs the key reactions of homology search and DNA strand invasion. Here, we will review the role of the Rad54 protein in homologous recombination with an emphasis on mechanistic studies with the yeast and human enzymes. We will discuss how these results relate to in vivo functions of Rad54 during homologous recombination in somatic cells and during meiosis. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Shannon J. Ceballos
- Department of Microbiology, University of California, Davis, Davis, CA 95616-8665
| | - Wolf-Dietrich Heyer
- Department of Microbiology, University of California, Davis, Davis, CA 95616-8665
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616-8665
| |
Collapse
|
24
|
Yu S, Song Z, Luo J, Dai Y, Li N. Over-expression of RAD51 or RAD54 but not RAD51/4 enhances extra-chromosomal homologous recombination in the human sarcoma (HT-1080) cell line. J Biotechnol 2011; 154:21-4. [PMID: 21501635 DOI: 10.1016/j.jbiotec.2011.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
Abstract
RAD51 and RAD54, members of the RAD52 epistasis group, play key roles in homologous recombination (HR). The efficiency of homologous recombination (HR) can be increased by over-expression of either of them. A vector that allows co-expression of RAD51 and RAD54 was constructed to investigate interactions between the two proteins during extra-chromosomal HR. The efficiency of extra-chromosomal HR evaluated by GFP extra-chromosomal HR was enhanced (110-245%) in different transfected Human sarcoma (HT-1080) cell colonies. We observed that RAD51 clearly promotes extra-chromosomal HR; however, the actions of RAD54 in extra-chromosomal HR were weak. Our data suggest that RAD51 may function as a universal factor during HR, whereas RAD54 mainly functions in other types of HR (gene targeting or intra-chromosomal HR), which involves interaction with chromosomal DNA.
Collapse
Affiliation(s)
- Shengli Yu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China.
| | | | | | | | | |
Collapse
|
25
|
Ruiz-Herrera A, Smirnova A, Khoriauli L, Nergadze SG, Mondello C, Giulotto E. Gene amplification in human cells knocked down for RAD54. Genome Integr 2011; 2:5. [PMID: 21418575 PMCID: PMC3074559 DOI: 10.1186/2041-9414-2-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/18/2011] [Indexed: 12/18/2022] Open
Abstract
Background In mammalian cells gene amplification is a common manifestation of genome instability promoted by DNA double-strand breaks (DSBs). The repair of DSBs mainly occurs through two mechanisms: non-homologous end-joining (NHEJ) and homologous recombination (HR). We previously showed that defects in the repair of DSBs via NHEJ could increase the frequency of gene amplification. In this paper we explored whether a single or a combined defect in DSBs repair pathways can affect gene amplification. Results We constructed human cell lines in which the expression of RAD54 and/or DNA-PKcs was constitutively knocked-down by RNA interference. We analyzed their radiosensitivity and their capacity to generate amplified DNA. Our results showed that both RAD54 and DNA-PKcs deficient cells are hypersensitive to γ-irradiation and generate methotrexate resistant colonies at a higher frequency compared to the proficient cell lines. In addition, the analysis of the cytogenetic organization of the amplicons revealed that isochromosome formation is a prevalent mechanism responsible for copy number increase in RAD54 defective cells. Conclusions Defects in the DSBs repair mechanisms can influence the organization of amplified DNA. The high frequency of isochromosome formation in cells deficient for RAD54 suggests that homologous recombination proteins might play a role in preventing rearrangements at the centromeres.
Collapse
Affiliation(s)
- Aurora Ruiz-Herrera
- Dipartimento di Genetica e Microbiologia "Adriano Buzzati-Traverso", Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Pezza RJ, Camerini-Otero RD, Bianco PR. Hop2-Mnd1 condenses DNA to stimulate the synapsis phase of DNA strand exchange. Biophys J 2011; 99:3763-72. [PMID: 21112301 DOI: 10.1016/j.bpj.2010.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022] Open
Abstract
Hop2-Mnd1 is a meiotic recombination mediator that stimulates DNA strand invasion by both Dmc1 and Rad51. To understand the biochemical mechanism of this stimulation, we directly visualized the heterodimer acting on single molecules of duplex DNA using optical tweezers and video fluorescence microscopy. The results show that the Hop2-Mnd1 heterodimer efficiently condenses double-stranded DNA via formation of a bright spot or DNA condensate. The condensation of DNA is Hop2-Mnd1 concentration-dependent, reversible, and specific to the heterodimer, as neither Hop2 nor Mnd1 acting alone can facilitate this reaction. The results also show that the rate-limiting nucleation step of DNA condensation is overcome in the presence of divalent metal ions, with the following order of preference: Mn(2+)>Mg(2+)>Ca(2+). Hop2-Mnd1/Dmc1/single-stranded DNA nucleoprotein filaments also condense double-stranded DNA in a heterodimer concentration-dependent manner. Of importance, the concentration dependence parallels that seen in DNA strand exchange. We propose that rapid DNA condensation is a key factor in stimulating synapsis, whereas decondensation may facilitate the invasion step and/or the ensuing branch migration process.
Collapse
Affiliation(s)
- Roberto J Pezza
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
27
|
Agarwal S, van Cappellen WA, Guénolé A, Eppink B, Linsen SEV, Meijering E, Houtsmuller A, Kanaar R, Essers J. ATP-dependent and independent functions of Rad54 in genome maintenance. ACTA ACUST UNITED AC 2011; 192:735-50. [PMID: 21357745 PMCID: PMC3051825 DOI: 10.1083/jcb.201011025] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rad54’s ATPase activity does not affect accumulation of homologous recombination proteins in repair foci, but influences its dissociation and that of Rad51. Rad54, a member of the SWI/SNF protein family of DNA-dependent ATPases, repairs DNA double-strand breaks (DSBs) through homologous recombination. Here we demonstrate that Rad54 is required for the timely accumulation of the homologous recombination proteins Rad51 and Brca2 at DSBs. Because replication protein A and Nbs1 accumulation is not affected by Rad54 depletion, Rad54 is downstream of DSB resection. Rad54-mediated Rad51 accumulation does not require Rad54’s ATPase activity. Thus, our experiments demonstrate that SWI/SNF proteins may have functions independent of their ATPase activity. However, quantitative real-time analysis of Rad54 focus formation indicates that Rad54’s ATPase activity is required for the disassociation of Rad54 from DNA and Rad54 turnover at DSBs. Although the non–DNA-bound fraction of Rad54 reversibly interacts with a focus, independent of its ATPase status, the DNA-bound fraction is immobilized in the absence of ATP hydrolysis by Rad54. Finally, we show that ATP hydrolysis by Rad54 is required for the redistribution of DSB repair sites within the nucleus.
Collapse
Affiliation(s)
- Sheba Agarwal
- Department of Cell Biology and Genetics, Cancer Genomics Center, 3000 CA Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bugreev DV, Rossi MJ, Mazin AV. Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res 2010; 39:2153-64. [PMID: 21097884 PMCID: PMC3064783 DOI: 10.1093/nar/gkq1139] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA lesions cause stalling of DNA replication forks, which can be lethal for the cell. Homologous recombination (HR) plays an important role in DNA lesion bypass. It is thought that Rad51, a key protein of HR, contributes to the DNA lesion bypass through its DNA strand invasion activity. Here, using model stalled replication forks we found that RAD51 and RAD54 by acting together can promote DNA lesion bypass in vitro through the ‘template-strand switch’ mechanism. This mechanism involves replication fork regression into a Holliday junction (‘chicken foot structure’), DNA synthesis using the nascent lagging DNA strand as a template and fork restoration. Our results demonstrate that RAD54 can catalyze both regression and restoration of model replication forks through its branch migration activity, but shows strong bias toward fork restoration. We find that RAD51 modulates this reaction; by inhibiting fork restoration and stimulating fork regression it promotes accumulation of the chicken foot structure, which we show is essential for DNA lesion bypass by DNA polymerase in vitro. These results indicate that RAD51 in cooperation with RAD54 may have a new role in DNA lesion bypass that is distinct from DNA strand invasion.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, USA
| | | | | |
Collapse
|
29
|
Somyajit K, Subramanya S, Nagaraju G. RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis 2010; 31:2031-8. [PMID: 20952512 PMCID: PMC2994284 DOI: 10.1093/carcin/bgq210] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Germline mutations in many of the genes that are involved in homologous recombination (HR)-mediated DNA double-strand break repair (DSBR) are associated with various human genetic disorders and cancer. RAD51 and RAD51 paralogs are important for HR and in the maintenance of genome stability. Despite the identification of five RAD51 paralogs over a decade ago, the molecular mechanism(s) by which RAD51 paralogs regulate HR and genome maintenance remains obscure. In addition to the known roles of RAD51C in early and late stages of HR, it also contributes to activation of the checkpoint kinase CHK2. One recent study identifies biallelic mutation in RAD51C leading to Fanconi anemia-like disorder. Whereas a second study reports monoallelic mutation in RAD51C associated with increased risk of breast and ovarian cancer. These reports show RAD51C is a cancer susceptibility gene. In this review, we focus on describing the functions of RAD51C in HR, DNA damage signaling and as a tumor suppressor with an emphasis on the new roles of RAD51C unveiled by these reports.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | | | | |
Collapse
|
30
|
Li F, Liu P, Wang T, Bian P, Wu Y, Wu L, Yu Z. The Induction of Bystander Mutagenic Effects In Vivo by Alpha-Particle Irradiation in Whole Arabidopsis thaliana Plants. Radiat Res 2010; 174:228-37. [DOI: 10.1667/rr2052.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Genotoxicity/mutagenicity of formaldehyde revealed by the Arabidopsis thaliana plants transgenic for homologous recombination substrates. Mutat Res 2010; 699:35-43. [PMID: 20399886 DOI: 10.1016/j.mrgentox.2010.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/18/2010] [Accepted: 04/10/2010] [Indexed: 01/01/2023]
Abstract
Formaldehyde (FA) is a major industrial chemical and has been extensively used in the manufacture of synthetic resins and chemicals. The use of FA-containing industrial materials in daily life exposes human to FA extensively. Numerous studies indicate that FA is genotoxic, and can induce various genotoxic effects in vitro and in vivo. The primary DNA lesions induced by FA are DNA-protein crosslinks (DPCs). Recently, it has been reported that the homologous recombination (HR) mechanism is involved in the repair of DPCs, suggesting the homologous recombination could be a potential indicator for the genotoxicity/mutagenicity of FA. However, it has not yet been reported that organisms harboring recombination substrates are used for the detection of genotoxic/mutagenic effects of FA. In this present study, an Arabidopsis thaliana-line transgenic for GUS recombination substrates was used to study the genotoxicity/mutagenicity of FA, and the results showed that FA-exposure significantly increased the induction of HR in growing plants, but not in dormant seeds. We also observed an early up-regulation of expression of HR-related gene, AtRAD54, after FA-exposure. Moreover, the pretreatment with glutathione (GSH) suppressed drastically the induction of HR by FA-exposure.
Collapse
|
32
|
Errico A, Costanzo V. Differences in the DNA replication of unicellular eukaryotes and metazoans: known unknowns. EMBO Rep 2010; 11:270-8. [PMID: 20203697 PMCID: PMC2854594 DOI: 10.1038/embor.2010.27] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/28/2010] [Indexed: 01/01/2023] Open
Abstract
Although the basic mechanisms of DNA synthesis are conserved across species, there are differences between simple and complex organisms. In contrast to lower eukaryotes, replication origins in complex eukaryotes lack DNA sequence specificity, can be activated in response to stressful conditions and require poorly conserved factors for replication firing. The response to replication fork damage is monitored by conserved proteins, such as the TIPIN-TIM-CLASPIN complex. The absence of this complex induces severe effects on yeast replication, whereas in higher eukaryotes it is only crucial when the availability of replication origins is limiting. Finally, the dependence of DNA replication on homologous recombination proteins such as RAD51 and the MRE11-RAD50-NBS1 complex is also different; they are dispensable for yeast S-phase but essential for accurate DNA replication in metazoans under unchallenged conditions. The reasons for these differences are not yet understood. Here, we focus on some of these known unknowns of DNA replication.
Collapse
Affiliation(s)
- Alessia Errico
- Cell Cycle Laboratory, London Research Institute, Blanche Lane, Hertfordshire EN6 3LD, UK
| | - Vincenzo Costanzo
- Genome Stability Unit, London Research Institute, Blanche Lane, Hertfordshire EN6 3LD, UK
| |
Collapse
|
33
|
Abstract
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
34
|
Masuda T, Ling F, Shibata T, Mikawa T. Analysis of DNA-binding sites on Mhr1, a yeast mitochondrial ATP-independent homologous pairing protein. FEBS J 2010; 277:1440-52. [PMID: 20148947 DOI: 10.1111/j.1742-4658.2010.07574.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mhr1 protein is necessary for mtDNA homologous recombination in Saccharomyces cerevisiae. Homologous pairing (HP) is an essential reaction during homologous recombination, and is generally catalyzed by the RecA/Rad51 family of proteins in an ATP-dependent manner. Mhr1 catalyzes HP through a mechanism similar, at the DNA level, to that of the RecA/Rad51 proteins, but without utilizing ATP. However, it has no sequence homology with the RecA/Rad51 family proteins or with other ATP-independent HP proteins, and exhibits different requirements for DNA topology. We are interested in the structural features of the functional domains of Mhr1. In this study, we employed the native fluorescence of Mhr1's Trp residues to examine the energy transfer from the Trp residues to etheno-modified ssDNA bound to Mhr1. Our results showed that two of the seven Trp residues (Trp71 and Trp165) are spatially close to the bound DNA. A systematic analysis of mutant Mhr1 proteins revealed that Asp69 is involved in Mg(2+)-dependent DNA binding, and that multiple Lys and Arg residues located around Trp71 and Trp165 are involved in the DNA-binding activity of Mhr1. In addition, in vivo complementation analyses showed that a region around Trp165 is important for the maintenance of mtDNA. On the basis of these results, we discuss the function of the region surrounding Trp165.
Collapse
Affiliation(s)
- Tokiha Masuda
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | | | | | | |
Collapse
|
35
|
Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol Cell 2010; 36:393-404. [PMID: 19917248 DOI: 10.1016/j.molcel.2009.09.029] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/16/2009] [Accepted: 08/14/2009] [Indexed: 12/20/2022]
Abstract
A preference for homologs over sister chromatids in homologous recombination is a fundamental difference in meiotic versus mitotic cells. In budding yeast, the bias for interhomolog recombination in meiosis requires the Dmc1 recombinase and the meiosis-specific kinase Mek1, which suppresses engagement of sister chromatids by the mitotic recombinase Rad51. Here, a combination of proteomic, biochemical, and genetic approaches has identified an additional role for Mek1 in inhibiting the activity of the Rad51 recombinase through phosphorylation of its binding partner, Rad54. Rad54 phosphorylation of threonine 132 attenuates complex formation with Rad51, and a negative charge at this position reduces Rad51 function in vitro and in vivo. Thus, Mek1 phosphorylation provides a dynamic means of controlling recombination partner choice in meiosis in two ways: (1) it reduces Rad51 activity through inhibition of Rad51/Rad54 complex formation, and (2) it suppresses Rad51-mediated strand invasion of sister chromatids via a Rad54-independent mechanism.
Collapse
|
36
|
Anand T, Vijayaraghavan R, Bansal I, Bhattacharya BK. Role of inflammatory cytokines and DNA damage repair proteins in sulfur mustard exposed mice liver. Toxicol Mech Methods 2009; 19:356-62. [PMID: 19778212 DOI: 10.1080/15376510902903766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (bis-(2-chloroethyl) sulfide) is an alkylating agent, and produces blisters on skin and causes systemic toxicity and DNA strand breaks. The mechanism and role of inflammatory cytokines, receptors, and DNA damage signaling pathway specific genes were studied in sulfur mustard (SM) exposed mouse liver. Female mice were exposed percutaneously with 1.0 L.D50 of SM (8.1 mg/kg body weight). Inflammatory cytokine gene expression profiles were determined at 1 and 3 days post-exposure to SM and DNA damage signaling pathway specific, double strand break repair proteins gene expression profile at 1, 3, and 7 days were examined by DNA microarrays and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Anti-inflammatory cytokines and receptors were down-regulated from day 1 to day 3. Pro-inflammatory genes TNF-alpha, TNF receptors were up-regulated from day 1 to day 3. Double strand DNA break repair proteins Rad23, Rad50, Rad51, Rad52, and Rad54l were down-regulated from day 1 to day 7. This result indicates sulfur mustard causes inflammatory response, activates the cascade of events in the signal transduction pathway, and promotes irreversible double strand DNA breaks in chromosomal DNA, which is leading to cell death.
Collapse
Affiliation(s)
- T Anand
- Defence Research & Development Establishment, Gwalior, India.
| | | | | | | |
Collapse
|
37
|
Srivastava V, Modi P, Tripathi V, Mudgal R, De S, Sengupta S. BLM helicase stimulates the ATPase and chromatin-remodeling activities of RAD54. J Cell Sci 2009; 122:3093-103. [PMID: 19671661 DOI: 10.1242/jcs.051813] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mutation of BLM helicase results in the autosomal recessive disorder Bloom syndrome (BS). Patients with BS exhibit hyper-recombination and are prone to almost all forms of cancer. BLM can exhibit its anti-recombinogenic function either by dissolution of double Holliday junctions or by disruption of RAD51 nucleofilaments. We have now found that BLM can interact with the pro-recombinogenic protein RAD54 through an internal ten-residue polypeptide stretch in the N-terminal region of the helicase. The N-terminal region of BLM prevented the formation of RAD51-RAD54 complex, both in vitro and in vivo. Using the fluorescence recovery after photobleaching (FRAP) technique, we found that RAD54 and BLM rapidly and concurrently, yet transiently, bound to the chromatinized foci. Presence of BLM enhanced the mobility of both soluble and chromatinized RAD51 but not RAD54. The BLM-RAD54 interaction could occur even in absence of functional RAD51. The N-terminal 1-212 amino acids of BLM or an ATPase-dead mutant of the full-length helicase enhanced the ATPase and chromatin-remodeling activities of RAD54. These results indicate that apart from its dominant function as an anti-recombinogenic protein, BLM also has a transient pro-recombinogenic function by enhancing the activity of RAD54.
Collapse
Affiliation(s)
- Vivek Srivastava
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | |
Collapse
|
38
|
Matulova P, Marini V, Burgess RC, Sisakova A, Kwon Y, Rothstein R, Sung P, Krejci L. Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J Biol Chem 2009; 284:7733-45. [PMID: 19129197 PMCID: PMC2658067 DOI: 10.1074/jbc.m806192200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/09/2008] [Indexed: 11/08/2022] Open
Abstract
The Saccharomyces cerevisiae Mus81.Mms4 protein complex, a DNA structure-specific endonuclease, helps preserve genomic integrity by resolving pathological DNA structures that arise from damaged or aborted replication forks and may also play a role in the resolution of DNA intermediates arising through homologous recombination. Previous yeast two-hybrid studies have found an interaction of the Mus81 protein with Rad54, a Swi2/Snf2-like factor that serves multiple roles in homologous recombination processes. However, the functional significance of this novel interaction remains unknown. Here, using highly purified S. cerevisiae proteins, we show that Rad54 strongly stimulates the Mus81.Mms4 nuclease activity on a broad range of DNA substrates. This nuclease enhancement does not require ATP binding nor its hydrolysis by Rad54. We present evidence that Rad54 acts by targeting the Mus81.Mms4 complex to its DNA substrates. In addition, we demonstrate that the Rad54-mediated enhancement of the Mus81.Mms4 (Eme1) nuclease function is evolutionarily conserved. We propose that Mus81.Mms4 together with Rad54 efficiently process perturbed replication forks to promote recovery and may constitute an alternative mechanism to the resolution/dissolution of the recombination intermediates by Sgs1.Top3. These findings provide functional insights into the biological importance of the higher order complex of Mus81.Mms4 or its orthologue with Rad54.
Collapse
Affiliation(s)
- Petra Matulova
- National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Li X, Heyer WD. RAD54 controls access to the invading 3'-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res 2008; 37:638-46. [PMID: 19074197 PMCID: PMC2632917 DOI: 10.1093/nar/gkn980] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rad51 is a key protein in homologous recombination performing homology search and DNA strand invasion. After DNA strand exchange Rad51 protein is stuck on the double-stranded heteroduplex DNA product of DNA strand invasion. This is a problem, because DNA polymerase requires access to the invading 3'-OH end to initiate DNA synthesis. Here we show that, the Saccharomyces cerevisiae dsDNA motor protein Rad54 solves this problem by dissociating yeast Rad51 protein bound to the heteroduplex DNA after DNA strand invasion. The reaction required species-specific interaction between both proteins and the ATPase activity of Rad54 protein. This mechanism rationalizes the in vivo requirement of Rad54 protein for the turnover of Rad51 foci and explains the observed dependence of the transition from homologous pairing to DNA synthesis on Rad54 protein in vegetative and meiotic yeast cells.
Collapse
Affiliation(s)
- Xuan Li
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
40
|
Zhang XP, Galkin VE, Yu X, Egelman EH, Heyer WD. Loop 2 in Saccharomyces cerevisiae Rad51 protein regulates filament formation and ATPase activity. Nucleic Acids Res 2008; 37:158-71. [PMID: 19033358 PMCID: PMC2615628 DOI: 10.1093/nar/gkn914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies showed that the K342E substitution in the Saccharomyces cerevisiae Rad51 protein increases the interaction with Rad54 protein in the two-hybrid system, leads to increased sensitivity to the alkylating agent MMS and hyper-recombination in an oligonucleotide-mediated gene targeting assay. K342 localizes in loop 2, a region of Rad51 whose function is not well understood. Here, we show that Rad51-K342E displays DNA-independent and DNA-dependent ATPase activities, owing to its ability to form filaments in the absence of a DNA lattice. These filaments exhibit a compressed pitch of 81 Å, whereas filaments of wild-type Rad51 and Rad51-K342E on DNA form extended filaments with a 97 Å pitch. Rad51-K342E shows near normal binding to ssDNA, but displays a defect in dsDNA binding, resulting in less stable protein-dsDNA complexes. The mutant protein is capable of catalyzing the DNA strand exchange reaction and is insensitive to inhibition by the early addition of dsDNA. Wild-type Rad51 protein is inhibited under such conditions, because of its ability to bind dsDNA. No significant changes in the interaction between Rad51-K342E and Rad54 could be identified. These findings suggest that loop 2 contributes to the primary DNA-binding site in Rad51, controlling filament formation and ATPase activity.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA
| | | | | | | | | |
Collapse
|
41
|
Finkelstein IJ, Greene EC. Single molecule studies of homologous recombination. MOLECULAR BIOSYSTEMS 2008; 4:1094-104. [PMID: 18931785 PMCID: PMC2726709 DOI: 10.1039/b811681b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Single molecule methods offer an unprecedented opportunity to examine complex macromolecular reactions that are obfuscated by ensemble averaging. The application of single molecule techniques to study DNA processing enzymes has revealed new mechanistic details that are unobtainable from bulk biochemical studies. Homologous DNA recombination is a multi-step pathway that is facilitated by numerous enzymes that must precisely and rapidly manipulate diverse DNA substrates to repair potentially lethal breaks in the DNA duplex. In this review, we present an overview of single molecule assays that have been developed to study key aspects of homologous recombination and discuss the unique information gleaned from these experiments.
Collapse
Affiliation(s)
- Ilya J. Finkelstein
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Eric C. Greene
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
42
|
Sarai N, Kagawa W, Fujikawa N, Saito K, Hikiba J, Tanaka K, Miyagawa K, Kurumizaka H, Yokoyama S. Biochemical analysis of the N-terminal domain of human RAD54B. Nucleic Acids Res 2008; 36:5441-50. [PMID: 18718930 PMCID: PMC2553597 DOI: 10.1093/nar/gkn516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/16/2008] [Accepted: 07/29/2008] [Indexed: 01/28/2023] Open
Abstract
The human RAD54B protein is a paralog of the RAD54 protein, which plays important roles in homologous recombination. RAD54B contains an N-terminal region outside the SWI2/SNF2 domain that shares less conservation with the corresponding region in RAD54. The biochemical roles of this region of RAD54B are not known, although the corresponding region in RAD54 is known to physically interact with RAD51. In the present study, we have biochemically characterized an N-terminal fragment of RAD54B, consisting of amino acid residues 26-225 (RAD54B(26-225)). This fragment formed a stable dimer in solution and bound to branched DNA structures. RAD54B(26-225) also interacted with DMC1 in both the presence and absence of DNA. Ten DMC1 segments spanning the entire region of the DMC1 sequence were prepared, and two segments, containing amino acid residues 153-214 and 296-340, were found to directly bind to the N-terminal domain of RAD54B. A structural alignment of DMC1 with the Methanococcus voltae RadA protein, a homolog of DMC1 in the helical filament form, indicated that these RAD54B-binding sites are located near the ATP-binding site at the monomer-monomer interface in the DMC1 helical filament. Thus, RAD54B binding may affect the quaternary structure of DMC1. These observations suggest that the N-terminal domain of RAD54B plays multiple roles of in homologous recombination.
Collapse
Affiliation(s)
- Naoyuki Sarai
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 and Laboratory of Molecular Radiology, Center of Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wataru Kagawa
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 and Laboratory of Molecular Radiology, Center of Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Norie Fujikawa
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 and Laboratory of Molecular Radiology, Center of Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Saito
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 and Laboratory of Molecular Radiology, Center of Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Juri Hikiba
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 and Laboratory of Molecular Radiology, Center of Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kozo Tanaka
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 and Laboratory of Molecular Radiology, Center of Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiyoshi Miyagawa
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 and Laboratory of Molecular Radiology, Center of Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Kurumizaka
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 and Laboratory of Molecular Radiology, Center of Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeyuki Yokoyama
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 and Laboratory of Molecular Radiology, Center of Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Wu W, Wang M, Mussfeldt T, Iliakis G. Enhanced Use of Backup Pathways of NHEJ in G2in Chinese Hamster Mutant Cells with Defects in the Classical Pathway of NHEJ. Radiat Res 2008; 170:512-20. [DOI: 10.1667/rr1456.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Rossi MJ, Mazin AV. Rad51 protein stimulates the branch migration activity of Rad54 protein. J Biol Chem 2008; 283:24698-706. [PMID: 18617519 DOI: 10.1074/jbc.m800839200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Rad51 and Rad54 proteins play important roles during homologous recombination in eukaryotes. Rad51 forms a nucleoprotein filament on single-stranded DNA and performs the initial steps of double strand break repair. Rad54 belongs to the Swi2/Snf2 family of ATP-dependent DNA translocases. We previously showed that Rad54 promotes branch migration of Holliday junctions. Here we find that human Rad51 (hRad51) significantly stimulates the branch migration activity of hRad54. The stimulation appears to be evolutionarily conserved, as yeast Rad51 also stimulates the branch migration activity of yeast Rad54. We further investigated the mechanism of this stimulation. Our results demonstrate that the stimulation of hRad54-promoted branch migration by hRad51 is driven by specific protein-protein interactions, and the active form of the hRad51 filament is more stimulatory than the inactive one. The current results support the hypothesis that the hRad51 conformation state has a strong effect on interaction with hRad54 and ultimately on the function of hRad54 in homologous recombination.
Collapse
Affiliation(s)
- Matthew J Rossi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | | |
Collapse
|
45
|
Busygina V, Sehorn MG, Shi IY, Tsubouchi H, Roeder GS, Sung P. Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes Dev 2008; 22:786-95. [PMID: 18347097 DOI: 10.1101/gad.1638708] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two RecA orthologs, Rad51 and Dmc1, mediate homologous recombination in meiotic cells. During budding yeast meiosis, Hed1 coordinates the actions of Rad51 and Dmc1 by down-regulating Rad51 activity. It is thought that Hed1-dependent attenuation of Rad51 facilitates formation of crossovers that are necessary for the correct segregation of chromosomes at the first meiotic division. We purified Hed1 in order to elucidate its mechanism of action. Hed1 binds Rad51 with high affinity and specificity. We show that Hed1 does not adversely affect assembly of the Rad51 presynaptic filament, but it specifically prohibits interaction of Rad51 with Rad54, a Swi2/Snf2-like factor that is indispensable for Rad51-mediated recombination. In congruence with the biochemical results, Hed1 prevents the recruitment of Rad54 to a site-specific DNA double-strand break in vivo but has no effect on the recruitment of Rad51. These findings shed light on the function of Hed1 and, importantly, unveil a novel mechanism for the regulation of homologous recombination.
Collapse
Affiliation(s)
- Valeria Busygina
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ehmsen KT, Heyer WD. Biochemistry of Meiotic Recombination: Formation, Processing, and Resolution of Recombination Intermediates. GENOME DYNAMICS AND STABILITY 2008; 3:91. [PMID: 20098639 PMCID: PMC2809983 DOI: 10.1007/7050_2008_039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiotic recombination ensures accurate chromosome segregation during the first meiotic division and provides a mechanism to increase genetic heterogeneity among the meiotic products. Unlike homologous recombination in somatic (vegetative) cells, where sister chromatid interactions prevail and crossover formation is avoided, meiotic recombination is targeted to involve homologs, resulting in crossovers to connect the homologs before anaphase of the first meiotic division. The mechanisms responsible for homolog choice and crossover control are poorly understood, but likely involve meiosis-specific recombination proteins, as well as meiosis-specific chromosome organization and architecture. Much progress has been made to identify and biochemically characterize many of the proteins acting during meiotic recombination. This review will focus on the proteins that generate and process heteroduplex DNA, as well as those that process DNA junctions during meiotic recombination, with particular attention to how recombination activities promote crossover resolution between homologs.
Collapse
Affiliation(s)
- Kirk T. Ehmsen
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
- Section of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
| |
Collapse
|
47
|
Zhang Y, Zhou J, Held KD, Redmond RW, Prise KM, Liber HL. Deficiencies of double-strand break repair factors and effects on mutagenesis in directly gamma-irradiated and medium-mediated bystander human lymphoblastoid cells. Radiat Res 2008; 169:197-206. [PMID: 18220473 DOI: 10.1667/rr1189.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 10/02/2007] [Indexed: 11/03/2022]
Abstract
Using RNA interference techniques to knock down key proteins in two major double-strand break (DSB) repair pathways (DNA-PKcs for nonhomologous end joining, NHEJ, and Rad54 for homologous recombination, HR), we investigated the influence of DSB repair factors on radiation mutagenesis at the autosomal thymidine kinase (TK) locus both in directly irradiated cells and in unirradiated bystander cells. We also examined the role of p53 (TP53) in these processes by using cells of three human lymphoblastoid cell lines from the same donor but with differing p53 status (TK6 is p53 wild-type, NH32 is p53 null, and WTK1 is p53 mutant). Our results indicated that p53 status did not affect either the production of radiation bystander mutagenic signals or the response to these signals. In directly irradiated cells, knockdown of DNA-PKcs led to an increased mutant fraction in WTK1 cells and decreased mutant fractions in TK6 and NH32 cells. In contrast, knockdown of DNA-PKcs led to increased mutagenesis in bystander cells regardless of p53 status. In directly irradiated cells, knockdown of Rad54 led to increased induced mutant fractions in WTK1 and NH32 cells, but the knockdown did not affect mutagenesis in p53 wild-type TK6 cells. In all cell lines, Rad54 knockdown had no effect on the magnitude of bystander mutagenesis. Studies with extracellular catalase confirmed the involvement of H2O2 in bystander signaling. Our results demonstrate that DSB repair factors have different roles in mediating mutagenesis in irradiated and bystander cells.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Kanaar R, Wyman C, Rothstein R. Quality control of DNA break metabolism: in the 'end', it's a good thing. EMBO J 2008; 27:581-8. [PMID: 18285819 DOI: 10.1038/emboj.2008.11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/14/2008] [Indexed: 12/27/2022] Open
Abstract
DNA ends pose specific problems in the control of genetic information quality. Ends of broken DNA need to be rejoined to avoid genome rearrangements, whereas natural DNA ends of linear chromosomes, telomeres, need to be stable and hidden from the DNA damage response. Efficient DNA end metabolism, either at induced DNA breaks or telomeres, does not result from the machine-like precision of molecular reactions, but rather from messier, more stochastic processes. The necessary molecular interactions are dynamically unstable, with constructive and destructive processes occurring in competition. In the end, quality control comes from the constant building up and tearing down of inappropriate, but also appropriate reaction steps in combination with factors that only slightly shift the equilibrium to eventually favour appropriate events. Thus, paradoxically, enzymes antagonizing DNA end metabolism help to ensure that genome maintenance becomes a robust process.
Collapse
Affiliation(s)
- Roland Kanaar
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
49
|
Lewis R, Dürr H, Hopfner KP, Michaelis J. Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle. Nucleic Acids Res 2008; 36:1881-90. [PMID: 18267970 PMCID: PMC2346605 DOI: 10.1093/nar/gkn040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Remodelling protein nucleic acid interfaces is an important biological task, which is often carried out by nucleic acid stimulated ATPases of the Swi2/Snf2 superfamily. Here we study the mechano-chemical cycle of such an ATPase, namely the catalytic domain of the Sulfolobus solfataricus Rad54 homologue (SsoRad54cd), by means of fluorescence resonance energy transfer (FRET). The results of the FRET studies show that the enzyme can be found in (at least) two different possible conformations in solution. An open conformation, consistent with a recently reported crystal structure, is converted into a closed conformation after DNA binding. Upon subsequent binding of ATP no further change in conformation can be detected by the FRET measurements. Instead, a FRET detectable conformational change occurs after ATP hydrolysis and prior to ADP release, suggesting a powerstroke that is linked to phosphate release. Based on these data we will present a new model for the mechano-chemical cycle of this enzyme. This scheme in turn provides a working model for understanding the function of other members of the Swi2/Snf2 family.
Collapse
Affiliation(s)
- Robert Lewis
- Department of Chemistry and Biochemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 München, Germany
| | | | | | | |
Collapse
|
50
|
Abstract
Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.
Collapse
Affiliation(s)
- Xuan Li
- Section of Microbiology University of California, Davis, Davis CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology University of California, Davis, Davis CA 95616-8665, USA
- Section of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616-8665, USA
| |
Collapse
|