1
|
Lalmanach G, Rigoux B, David A, Tahri-Joutey M, Lecaille F, Marchand-Adam S, Saidi A. Human cystatin C in fibrotic diseases. Clin Chim Acta 2025; 565:120016. [PMID: 39461496 DOI: 10.1016/j.cca.2024.120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Human cystatin C (hCC), which has a pervasive distribution within body fluids and is ubiquitously expressed by numerous cells and tissues, is a highly potent extracellular inhibitor of cysteine proteases. Besides measurement of serum creatinine, which is the most widely used technique for appraising glomerular filtration rate (GFR), hCC has emerged as a relevant GFR biomarker, because its quantification in serum is less sensitive to interferences with factors such as age, muscle mass or diet. Moreover, there are growing body of evidence that hCC overexpression and/or oversecretion, which is primarily driven by TGF-β1, occur during fibrogenesis (cardiac, liver, oral, and lung fibrosis). Even though molecular mechanisms and signaling pathways governing the regulation of hCC remain to be deciphered more acutely, current data sustain that hCC expression relates to myofibrogenesis and that hCC could be a specific and valuable biomarker of fibrotic disease.
Collapse
Affiliation(s)
- Gilles Lalmanach
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France.
| | - Baptiste Rigoux
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Alexis David
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Mounia Tahri-Joutey
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Fabien Lecaille
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Sylvain Marchand-Adam
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France; The University Hospital Center of Tours (CHRU Tours), Pulmonology Department, Tours, France
| | - Ahlame Saidi
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| |
Collapse
|
2
|
Basu B, Dutta S, Rahaman M, Bose A, Das S, Prajapati J, Prajapati B. The Future of Cystic Fibrosis Care: Exploring AI's Impact on Detection and Therapy. CURRENT RESPIRATORY MEDICINE REVIEWS 2024; 20:302-321. [DOI: 10.2174/011573398x283365240208195944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/03/2025]
Abstract
:
Cystic Fibrosis (CF) is a fatal hereditary condition marked by thicker mucus production,
which can cause problems with the digestive and respiratory systems. The quality of life and
survival rates of CF patients can be improved by early identification and individualized therapy
measures. With an emphasis on its applications in diagnosis and therapy, this paper investigates
how Artificial Intelligence (AI) is transforming the management of Cystic Fibrosis (CF). AI-powered
algorithms are revolutionizing CF diagnosis by utilizing huge genetic, clinical, and imaging
data databases. In order to identify CF mutations quickly and precisely, machine learning methods
evaluate genomic profiles. Furthermore, AI-driven imaging analysis helps to identify lung and gastrointestinal
issues linked to cystic fibrosis early and allows for prompt treatment. Additionally,
AI aids in individualized CF therapy by anticipating how patients will react to already available
medications and enabling customized treatment regimens. Drug repurposing algorithms find
prospective candidates from already-approved drugs, advancing treatment choices. Additionally,
AI supports the optimization of pharmacological combinations, enhancing therapeutic results
while minimizing side effects. AI also helps with patient stratification by connecting people with
CF mutations to therapies that are best for their genetic profiles. Improved treatment effectiveness
is promised by this tailored strategy. The transformational potential of artificial intelligence (AI)
in the field of cystic fibrosis is highlighted in this review, from early identification to individualized
medication, bringing hope for better patient outcomes, and eventually prolonging the lives of
people with this difficult ailment.
Collapse
Affiliation(s)
- Biswajit Basu
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Srabona Dutta
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Monosiz Rahaman
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Anirbandeep Bose
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Sourav Das
- School of Pharmacy, The Neotia University, Sarisha, Diamond Harbour, West
Bengal, India
| | - Jigna Prajapati
- Achaya Motibhai Patel Institute of Computer Studies, Ganpat University, Mehsana, Gujarat, 384012,
India
| | - Bhupendra Prajapati
- S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012,
India
| |
Collapse
|
3
|
Guyot E, Reynaud Q, Belhassen M, Bérard M, Dehillotte C, Lemonnier L, Viprey M, Van Ganse E, Burgel PR, Durieu I. Health care resource utilization preceding death or lung transplantation in people with cystic fibrosis: HCRU before transplant or death in cystic fibrosis. J Cyst Fibros 2024; 23:903-909. [PMID: 38480112 DOI: 10.1016/j.jcf.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND We studied the health care resource utilization (HCRU) and associated costs in the year preceding LT in pwCF or death without LT, and we estimated the overall cost of LT. METHODS We performed a linkage between 2006 and 2017 data from the French CF Registry (FCFR) and the French health claims database (Système National des Données de Santé; SNDS). The HCRU and associated costs were described the year before LT or before death without LT, and two years after LT. RESULTS Among the 7,671 patients included in the FCFR, 6,187 patients (80.7 %) were successfully matched to patients in the SNDS (males (m): 51.9 %, mean±SD age at the end of follow-up: 24.6 ± 13.6). Overall, 166 patients died without LT (m: 47.6 %, age at death: 30.4 ± 14.5) and 767 patients with primary LT (m: 48.2 %, age at transplantation: 28.0 ± 9.1) were identified. HCRU was lower among patients who died without receiving LT, with marked differences in the cost of hospital stays. The mean total cost per patient was €66,759 ± 38,249 in the year before death, €149,374 ± 62,678 in the year preceding LT, €63,919 ± 35,399 in the first year following LT, and €42,813 ± 39,967 in the second year of follow-up. CONCLUSION Our results indicate that HCRU was two times lower in the year before death in non-transplant pwCF than in the year before LT, which may reflect inappropriate care of CF in patients who died without receiving LT. It also shows the cost associated with LT.
Collapse
Affiliation(s)
- Erika Guyot
- PELyon, PharmacoEpidémiologie Lyon, 210 avenue Jean Jaurès, 69007 Lyon, France.
| | - Quitterie Reynaud
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France; French National Cystic Fibrosis Reference Center (constitutif), Service de médecine interne et de pathologie vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre-Bénite, France; ERN-Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Manon Belhassen
- PELyon, PharmacoEpidémiologie Lyon, 210 avenue Jean Jaurès, 69007 Lyon, France
| | - Marjorie Bérard
- PELyon, PharmacoEpidémiologie Lyon, 210 avenue Jean Jaurès, 69007 Lyon, France
| | - Clémence Dehillotte
- Association Vaincre la Mucoviscidose, 181 Rue de Tolbiac, 75013 Paris, France
| | - Lydie Lemonnier
- Association Vaincre la Mucoviscidose, 181 Rue de Tolbiac, 75013 Paris, France
| | - Marie Viprey
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France; Département des Données de Santé, Hospices Civils de Lyon, 162 avenue Lacassagne 69003 Lyon, France
| | - Eric Van Ganse
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France; Service de Pneumologie, Hospices Civils de Lyon, Hôpital de la Croix-Rousse, 103 Grande Rue de la Croix-Rousse, 69002 Lyon, France
| | - Pierre-Régis Burgel
- ERN-Lung Cystic Fibrosis Network, Frankfurt, Germany; Université ParisCité, Inserm U1016, Institut Cochin, Paris, France; Department of Respiratory Medicine and French National Cystic Fibrosis Reference Center, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Durieu
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France; French National Cystic Fibrosis Reference Center (constitutif), Service de médecine interne et de pathologie vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre-Bénite, France; ERN-Lung Cystic Fibrosis Network, Frankfurt, Germany
| |
Collapse
|
4
|
Liau KM, Ooi AG, Mah CH, Yong P, Kee LS, Loo CZ, Tay MY, Foo JB, Hamzah S. The Cutting-edge of CRISPR for Cancer Treatment and its Future Prospects. Curr Pharm Biotechnol 2024; 25:1500-1522. [PMID: 37921129 DOI: 10.2174/0113892010258617231020062637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.
Collapse
Affiliation(s)
- Kah Man Liau
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - An Gie Ooi
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chian Huey Mah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Penny Yong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ling Siik Kee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Cheng Ze Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ming Yu Tay
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
5
|
Bruno SM, Blaconà G, Lo Cicero S, Castelli G, Virgulti M, Testino G, Pierandrei S, Fuso A, Cimino G, Ferraguti G, Eramo A, Lucarelli M. Quantitative Evaluation of CFTR Gene Expression: A Comparison between Relative Quantification by Real-Time PCR and Absolute Quantification by Droplet Digital PCR. Genes (Basel) 2023; 14:1781. [PMID: 37761921 PMCID: PMC10531455 DOI: 10.3390/genes14091781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In the precision medicine era of cystic fibrosis (CF), therapeutic interventions, by the so-called modulators, target the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The levels of targetable CFTR proteins are a main variable in the success of patient-specific therapy. In turn, the CFTR protein level depends, at least in part, on the level of CFTR mRNA. Many mechanisms can modulate the CFTR mRNA level, for example, transcriptional rate, stability of the mRNA, epigenetics, and pathogenic variants that can affect mRNA production and degradation. Independently from the causes of variable CFTR mRNA levels, their exact quantitative assessment is of great importance in CF. Methods with high analytical sensitivity, precision, and accuracy are mandatory for the quantitative evaluation aimed at the amelioration of the diagnostic, prognostic, and therapeutic aspects. This paper compares, for the first time, two CFTR gene expression quantification methods: a well-established method for the relative quantification of CFTR mRNA using a real-time PCR and an innovative method for its absolute quantification using a droplet digital PCR. No comprehensive methods for absolute CFTR quantification via droplet digital PCR have been published so far. The accurate quantification of CFTR expression at the mRNA level is a critical step for the personalized therapeutic approaches of CF.
Collapse
Affiliation(s)
- Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Mariarita Virgulti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giancarlo Testino
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, Policlinico Umberto I University Hospital, 00161 Rome, Italy;
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| |
Collapse
|
6
|
Podgórski R, Sumińska M, Rachel M, Pikuła B, Fichna P, Bidlingmaier M, Fichna M. Changes of androgen and corticosterone metabolites excretion and conversion in cystic fibrosis. Front Endocrinol (Lausanne) 2023; 14:1244127. [PMID: 37711888 PMCID: PMC10497873 DOI: 10.3389/fendo.2023.1244127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Cystic fibrosis (CF) is a life-threatening inherited disease related to a mutation in the CFTR gene, that leads to serious health complications such as chronic pulmonary infections, pancreatic insufficiency, dysfunction of the sweat glands and reproductive system. For the first time, we have described the profile of corticosterone and androgen metabolites in urine, as well as the activity of enzymes involved in steroid genesis and metabolism in people with CF, using gas chromatography/mass spectrometry. A significant reduction in the excretion of most of the measured metabolites in CF was found. These differences were observed in the group of progestagen metabolites, as well as among metabolites of corticosterone and androgens. We revealed higher activities of 17β-hydroxysteroid dehydrogenase and 17,20-lyase in the Δ4 pathway compared with controls, what can promote the androgen synthesis through the backdoor androgen pathway. We have also found the increased conversion activity of 11-oxyganated steroids by 5a-reductase in backdoor pathway. Levels of the most potent and vital androgens (testosterone and dihydrotestosterone) are comparable in both groups. However, the excretion of dehydroepiandrosterone was lower in CF. Decreased cholesterol lipoprotein levels may contribute to limited intracellular cholesterol supply and reduced adrenal steroidogenesis in CF individuals. Changes in the activity of some steroidogenesis enzymes may suggest the presence of some peripheral adaptive mechanisms in CF to maintain androgen balance in the body despite the limited sufficiency of secretion by the adrenal cortex.
Collapse
Affiliation(s)
- Rafał Podgórski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Marta Sumińska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Rachel
- Department of Pediatric, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Barbara Pikuła
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Piotr Fichna
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Martin Bidlingmaier
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Marta Fichna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Esposito S, Testa I, Mariotti Zani E, Cunico D, Torelli L, Grandinetti R, Fainardi V, Pisi G, Principi N. Probiotics Administration in Cystic Fibrosis: What Is the Evidence? Nutrients 2022; 14:3160. [PMID: 35956335 PMCID: PMC9370594 DOI: 10.3390/nu14153160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022] Open
Abstract
In the last 20 years, gut microbiota in patients with cystic fibrosis (CF) has become an object of interest. It was shown that these patients had gut dysbiosis and this could explain not only the intestinal manifestations of the disease but also part of those involving the respiratory tract. The acquisition of previously unknown information about the importance of some bacteria, i.e., those partially or totally disappeared in the gut of CF patients, in the regulation of the activity and function of the gut and the lung was the base to suggest the use of probiotics in CF patients. The main aim of this paper is to discuss the biological basis for probiotic administration to CF patients and which results could be expected. Literature analysis showed that CF intestinal dysbiosis depends on the same genetic mutations that condition the clinical picture of the diseases and is aggravated by a series of therapeutic interventions, such as dietary modifications, the use of antibiotics, and the administration of antacids. All this translates into a significant worsening of the structure and function of organs, including the lung and intestine, already deeply penalized by the genetic alterations of CF. Probiotics can intervene on dysbiosis, reducing the negative effects derived from it. However, the available data cannot be considered sufficient to indicate that these bacteria are essential elements of CF therapy. Further studies that take into account the still unsolved aspects on how to use probiotics are absolutely necessary.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (E.M.Z.); (D.C.); (L.T.); (R.G.)
| | - Ilaria Testa
- Respiratory Unit, Great Ormond Street Hospital for Children, Foundation Trust, London WC1N 1LE, UK; (I.T.); (V.F.); (G.P.)
| | - Elena Mariotti Zani
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (E.M.Z.); (D.C.); (L.T.); (R.G.)
| | - Daniela Cunico
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (E.M.Z.); (D.C.); (L.T.); (R.G.)
| | - Lisa Torelli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (E.M.Z.); (D.C.); (L.T.); (R.G.)
| | - Roberto Grandinetti
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (E.M.Z.); (D.C.); (L.T.); (R.G.)
| | - Valentina Fainardi
- Respiratory Unit, Great Ormond Street Hospital for Children, Foundation Trust, London WC1N 1LE, UK; (I.T.); (V.F.); (G.P.)
| | - Giovanna Pisi
- Respiratory Unit, Great Ormond Street Hospital for Children, Foundation Trust, London WC1N 1LE, UK; (I.T.); (V.F.); (G.P.)
| | | |
Collapse
|
8
|
Sarkar A, Panati K, Narala VR. Code inside the codon: The role of synonymous mutations in regulating splicing machinery and its impact on disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108444. [PMID: 36307006 DOI: 10.1016/j.mrrev.2022.108444] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, precise pre-mRNA processing, including alternative splicing, is essential to carry out the intricate protein translation process. Both point mutations (that alter the translated protein sequence) and synonymous mutations (that do not alter the translated protein sequence) are capable of affecting the splicing process. Synonymous mutations are known to affect gene expression via altering mRNA stability, mRNA secondary structure, splicing processes, and translational kinetics. In higher eukaryotes, precise splicing is regulated by three weakly conserved cis-elements, 5' and 3' splice sites and the branch site. Many other cis-acting elements (exonic/intronic splicing enhancers and silencers) and trans-acting splicing factors (serine and arginine-rich proteins and heterogeneous nuclear ribonucleoproteins) have also been found to enhance or suppress the splicing process. The appearance of synonymous mutations in cis-acting elements can alter the splicing process by changing the binding pattern of splicing factors to exonic splicing enhancers or silencer motifs. This results in exon skipping, intron retention, and various other forms of alternative splicing, eventually leading to the emergence of a wide range of diseases. The focus of this review is to elucidate the role of synonymous mutations and their impact on abnormal splicing mechanisms. Further, this study highlights the function of synonymous mutation in mediating abnormal splicing in cancer and development of X-linked, and autosomal inherited diseases.
Collapse
Affiliation(s)
- Avik Sarkar
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa 516004, India
| | | |
Collapse
|
9
|
Tony-Odigie A, Wilke L, Boutin S, Dalpke AH, Yi B. Commensal Bacteria in the Cystic Fibrosis Airway Microbiome Reduce P. aeruginosa Induced Inflammation. Front Cell Infect Microbiol 2022; 12:824101. [PMID: 35174108 PMCID: PMC8842722 DOI: 10.3389/fcimb.2022.824101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic Pseudomonas aeruginosa infections play an important role in the progress of lung disease in patients suffering from cystic fibrosis (CF). Recent studies indicate that polymicrobial microbiome profiles in the airway are associated with less inflammation. Thus, the hypothesis was raised that certain commensal bacteria might protect the host from inflammation. We therefore performed a screening study with commensals isolated from CF airway microbiome samples to identify potential beneficial commensals. We isolated more than 80 aerobic or facultative anaerobic commensal strains, including strains from genera Streptococcus, Neisseria, Actinomyces, Corynebacterium, Dermabacter, Micrococcus and Rothia. Through a screening experiment of co-infection in human epithelial cell lines, we identified multiple commensal strains, especially strains belonging to Streptococcus mitis, that reduced P. aeruginosa triggered inflammatory responses. The results were confirmed by co-infection experiments in ex-vivo precision cut lung slices (PCLS) from mice. The underlying mechanisms of the complex host-pathogen-commensal crosstalk were investigated from both the host and the bacterial sides with a focus on S. mitis. Transcriptome changes in the host in response to co-infection and mono-infection were evaluated, and the results indicated that several signalling pathways mediating inflammatory responses were downregulated by co-infection with S. mitis and P. aeruginosa compared to P. aeruginosa mono-infection, such as neutrophil extracellular trap formation. The genomic differences among S. mitis strains with and without protective effects were investigated by whole genome sequencing, revealing genes only present in the S. mitis strains showing protective effects. In summary, through both in vitro and ex vivo studies, we could identify a variety of commensal strains that may reduce host inflammatory responses induced by P. aeruginosa infection. These findings support the hypothesis that CF airway commensals may protect the host from inflammation.
Collapse
Affiliation(s)
- Andrew Tony-Odigie
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leonie Wilke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sébastien Boutin
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Alexander H. Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Buqing Yi
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Buqing Yi,
| |
Collapse
|
10
|
Balmuri SR, Phandanouvong-Lozano V, House SD, Yang JC, Niepa TH. Mucoid Coating Provides a Growth Advantage to Pseudomonas aeruginosa at Oil–Water Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:1868-1878. [DOI: 10.1021/acsabm.1c01198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Poku VO, Iram SH. A critical review on modulators of Multidrug Resistance Protein 1 in cancer cells. PeerJ 2022; 10:e12594. [PMID: 35036084 PMCID: PMC8742536 DOI: 10.7717/peerj.12594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/14/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux transporter, and responsible for the transport of a broad spectrum of xenobiotics, toxins, and physiological substrates across the plasma membrane. As an efflux pump, it plays a significant role in the absorption and disposition of drugs including anticancer drugs, antivirals, antimalarials, and antibiotics and their metabolites across physiological barriers in cells. MRP1 is also known to aid in the regulation of several physiological processes such as redox homeostasis, steroid metabolism, and tissue defense. However, its overexpression has been reported to be a key clinical marker associated with multidrug resistance (MDR) of several types of cancers including lung cancer, childhood neuroblastoma, breast and prostate carcinomas, often resulting in a higher risk of treatment failure and shortened survival rates in cancer patients. Aside MDR, overexpression of MRP1 is also implicated in the development of neurodegenerative and cardiovascular diseases. Due to the cellular importance of MRP1, the identification and biochemical/molecular characterization of modulators of MRP1 activity and expression levels are of key interest to cancer research and beyond. This review primarily aims at highlighting the physiological and pharmacological importance of MRP1, known MRP1 modulators, current challenges encountered, and the potential benefits of conducting further research on the MRP1 transporter.
Collapse
Affiliation(s)
- Vivian Osei Poku
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America
| | - Surtaj Hussain Iram
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America,American University of Iraq, Sulaimaniya, Sulaimani, KRG, Iraq
| |
Collapse
|
12
|
Johnson JR, Hwang PH, Nayak JV, Patel ZM. Comparison of endoscopic sinus surgery timing in lung transplant patients with cystic fibrosis. Int Forum Allergy Rhinol 2021; 12:821-827. [PMID: 34875144 DOI: 10.1002/alr.22935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 12/06/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND No studies have investigated when endoscopic sinus surgery (ESS) is best performed in lung transplant patients with cystic fibrosis (CF). We sought to examine the effects of ESS timing on pulmonary health in this population. METHODS A retrospective review of all adult lung transplant patients with CF who underwent ESS at our academic medical center over a near 25-year period was performed. Patients were split into two groups based on median time from lung transplantation to ESS. Twenty-three patients were included (12 ESS early and 11 ESS delayed). Outcomes included changes in pulmonary function tests (PFTs) from baseline, pre-operative to post-operative measurements, the number and duration of hospitalizations for pulmonary exacerbations, and the number of antibiotic courses used specifically to treat pulmonary exacerbations during the 12 months before and after ESS. RESULTS Baseline demographics, operative history, and pulmonary function characteristics were similar between groups. While the ESS early group saw significant improvement from pre-operative percent predicted FEV1 (ppFEV1 ) at 12 months post-operatively (CI: 0.729 - 11.452, P = 0.030), there were no significant post-operative PFT changes for the ESS delayed group. Post-operative improvement in FEV1 and ppFEV1 at 12 months was significantly higher for the ESS early group relative to the ESS delayed group (CI: 0.010 - 0.583, P = 0.043; CI: 1.240 - 16.692, P = 0.025; respectively). The ESS early group had a significant reduction in the need for total antibiotic courses compared to the ESS delayed group (ESS early median: -1, IQR: -1.5 to -0.5 vs ESS delayed median: 0, IQR: 0 to 0; P = 0.027). CONCLUSION Earlier ESS interventions following lung transplantation may improve pulmonary function and attenuate pulmonary exacerbations in CF patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joseph R Johnson
- Stanford University School of Medicine, Stanford, California, USA
| | - Peter H Hwang
- Stanford University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Stanford, California, USA
| | - Jayakar V Nayak
- Stanford University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Stanford, California, USA
| | - Zara M Patel
- Stanford University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Stanford, California, USA
| |
Collapse
|
13
|
Noori NM, Jalali E, Hamzehloei T, Shahraki T. An investigation of cystic fibrosis common mutations among Baluch ethnic minority in Iran. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
15
|
Kuhar N, Sil S, Umapathy S. Potential of Raman spectroscopic techniques to study proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119712. [PMID: 33965670 DOI: 10.1016/j.saa.2021.119712] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 05/18/2023]
Abstract
Proteins are large, complex molecules responsible for various biological processes. However, protein misfolding may lead to various life-threatening diseases. Therefore, it is vital to understand the shape and structure of proteins. Despite numerous techniques, a mechanistic understanding of the protein folding process is still unclear. Therefore, new techniques are continually being explored. In the present article, we have discussed the importance of Raman spectroscopy, Raman Optical Activity (ROA) and various other advancements in Raman spectroscopy to understand protein structure and conformational changes based on the review of our earlier work and recent literature. A Raman spectrum of a protein provides unique signatures for various secondary structures like helices, beta-sheets, turns, random structures, etc., and various amino acid residues such as tyrosine, tryptophan, and phenylalanine. We have shown how Raman spectra can differentiate between bovine serum albumin (BSA) and lysozyme protein based on their difference in sequence and structure (primary, secondary and tertiary). Although it is challenging to elucidate the structure of a protein using a Raman spectrum alone, Raman spectra can be used to differentiate small changes in conformations of proteins such as BSA during melting. Various new advancements in technique and data analyses in Raman spectroscopic studies of proteins have been discussed. The last part of the review focuses on the importance of the ROA spectrum to understand additional features about proteins. The ROA spectrum is rich in information about the protein backbone due to its rigidity compared to its side chains. Furthermore, the ROA spectra of lysozyme and BSA have been presented to show how ROA provides extra information about the solvent properties of proteins.
Collapse
Affiliation(s)
- Nikki Kuhar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka, India
| | - Sanchita Sil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka, India; Defence Bioengineering and Electromedical Laboratory (DEBEL), Defence Research and Development Organization (DRDO), C V Raman Nagar, Bangalore 560 093, Karnataka, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka, India; Department of Instrumentation & Applied Physics, Indian Institute of Science, Bengaluru 560 012, Karnataka, India.
| |
Collapse
|
16
|
Elborn JS, Flume PA, Van Devanter DR, Procaccianti C. Management of chronic Pseudomonas aeruginosa infection with inhaled levofloxacin in people with cystic fibrosis. Future Microbiol 2021; 16:1087-1104. [PMID: 34384254 DOI: 10.2217/fmb-2021-0150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
People with cystic fibrosis (CF) are highly susceptible to bacterial infections of the airways. By adulthood, chronic Pseudomonas aeruginosa (Pa) is the most prevalent infective organism and is difficult to eradicate owing to its adaptation to the CF lung microenvironment. Long-term suppressive treatment with inhaled antimicrobials is the standard care for reducing exacerbation frequency, improving quality of life and increasing measures of lung function. Levofloxacin (a fluoroquinolone antimicrobial) has been approved as an inhaled solution in Europe and Canada, for the treatment of adults with CF with chronic P. aeruginosa pulmonary infections. Here, we review the clinical principles relating to the use of inhaled antimicrobials and inhaled levofloxacin for the management of P. aeruginosa infections in patients with CF.
Collapse
Affiliation(s)
- J Stuart Elborn
- Faculty of Medicine, Health & Life Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Patrick A Flume
- Departments of Medicine & Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Donald R Van Devanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
17
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
18
|
Yi B, Dalpke AH, Boutin S. Changes in the Cystic Fibrosis Airway Microbiome in Response to CFTR Modulator Therapy. Front Cell Infect Microbiol 2021; 11:548613. [PMID: 33816324 PMCID: PMC8010178 DOI: 10.3389/fcimb.2021.548613] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
The development of CFTR modulator therapies significantly changed the treatment scheme of people with cystic fibrosis. However, CFTR modulator therapy is still a life-long treatment, which is not able to correct the genetic defect and cure the disease. Therefore, it becomes crucial to understand the effects of such modulation of CFTR function on the airway physiology, especially on airway infections and inflammation that are currently the major life-limiting factors in people with cystic fibrosis. In this context, understanding the dynamics of airway microbiome changes in response to modulator therapy plays an essential role in developing strategies for managing airway infections. Whether and how the newly available therapies affect the airway microbiome is still at the beginning of being deciphered. We present here a brief review summarizing the latest information about microbiome alterations in light of modern cystic fibrosis modulator therapy.
Collapse
Affiliation(s)
- Buqing Yi
- Medical Faculty, Institute of Medical Microbiology and Virology, Technische Universität Dresden, Dresden, Germany
| | - Alexander H Dalpke
- Medical Faculty, Institute of Medical Microbiology and Virology, Technische Universität Dresden, Dresden, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Biciuşcă V, Petrescu IO, Singer CE, Oancea AG, Petrescu AM, Stan IS, Durand P, Taisescu CI, Dumitrescu D, Dobrescu MA, Udriştoiu I, Tudoraşcu DR, Petrescu F. Multidisciplinary approach to patients with manifestations and pulmonary complications of cystic fibrosis. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:397-406. [PMID: 33544791 PMCID: PMC7864299 DOI: 10.47162/rjme.61.2.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cystic fibrosis (CF) is a genetic disease, with autosomal recessive transmission, multisystemic, characterized by a remarkable clinical polymorphism and significant lethal prospective. Respiratory manifestations dominate the clinical picture, being present in all patients. The aim of the paper was to analyze the incidence of clinical manifestations, especially respiratory ones, as well as the contribution of interdisciplinary consultations to the positive diagnosis of CF, in a group of 16 patients who were hospitalized and treated in the IInd Pediatric Clinic and IInd Medical Clinic of the Emergency County Hospital, Craiova, Romania, in a period of 20 years. The 16 patients diagnosed with and treated of CF had all shown increased values of sweat chloride concentration of over 60 mmol/L. The main symptoms and clinical signs encountered in these patients were cough (75%), sputum (62.5%), dyspnea (50%), wheezing (50%), stature hypotrophy (100%), pallor (37.5%), cyanosis (25%). All 16 patients had an acute exacerbation of chronic pulmonary disease. Of the total hospitalizations, the death was recorded only in the case of one female patient. The association of some clinical aspects specific with a positive result of the sweat test or the presence of the two pathological alleles made room for determining a positive diagnosis. The multisystemic nature of this disease requires a multidisciplinary approach to these patients. Histopathologically, there was a correspondence between lung morphological lesions and the results of imaging investigations.
Collapse
Affiliation(s)
- Viorel Biciuşcă
- Department of Physiology, Department of Medical Genetics, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania; ,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary Respiratory Epithelium Integrity in Molecular Defense and Susceptibility to Pulmonary Viral Infections. BIOLOGY 2021; 10:95. [PMID: 33572760 PMCID: PMC7911113 DOI: 10.3390/biology10020095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
Mucociliary defense, mediated by the ciliated and goblet cells, is fundamental to respiratory fitness. The concerted action of ciliary movement on the respiratory epithelial surface and the pathogen entrapment function of mucus help to maintain healthy airways. Consequently, genetic or acquired defects in lung defense elicit respiratory diseases and secondary microbial infections that inflict damage on pulmonary function and may even be fatal. Individuals living with chronic and acute respiratory diseases are more susceptible to develop severe coronavirus disease-19 (COVID-19) illness and hence should be proficiently managed. In light of the prevailing pandemic, we review the current understanding of the respiratory system and its molecular components with a major focus on the pathophysiology arising due to collapsed respiratory epithelium integrity such as abnormal ciliary movement, cilia loss and dysfunction, ciliated cell destruction, and changes in mucus rheology. The review includes protein interaction networks of coronavirus infection-manifested implications on the molecular machinery that regulates mucociliary clearance. We also provide an insight into the alteration of the transcriptional networks of genes in the nasopharynx associated with the mucociliary clearance apparatus in humans upon infection by severe acute respiratory syndrome coronavirus-2.
Collapse
Affiliation(s)
- Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Manish Singh Kaushik
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India;
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| |
Collapse
|
21
|
A bird eye view on cystic fibrosis: An underestimated multifaceted chronic disorder. Life Sci 2020; 268:118959. [PMID: 33383045 DOI: 10.1016/j.lfs.2020.118959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease which involves the mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF involves in the inflammatory processes and is considered as a multisystem disorder that is not confined to lungs, but it also affects other vital organs that leads to numerous co-morbidities. The respiratory disorder in the CF results in mortality and morbidity which is characterized by series of serious events involving mucus hypersecretion, microbial infections, airways obstruction, inflammation, destruction of epithelium, tissue remodeling and terminal lung diseases. Mucins are the high molecular weight glycoproteins important for the viscoelastic properties of the mucus, play a significant role in the disease mechanisms. Determining the functional association between the CFTR and mucins might help to identify the putative target for specific therapeutic approach. In fact, furin enzyme which helps in the entry of novel COVID-19 virus into the cell, is upregulated in CF and this can also serve as a potential target for CF treatment. Moreover, the use of nano-formulations for CF treatment is an area of research being widely studied as they have also demonstrated promising outcomes. The in-depth knowledge of non-coding RNAs like miRNAs and lncRNAs and their functional association with CFTR gene expression and mutation can provide a different range of opportunity to identify the promising therapeutic approaches for CF.
Collapse
|
22
|
Cafora M, Brix A, Forti F, Loberto N, Aureli M, Briani F, Pistocchi A. Phages as immunomodulators and their promising use as anti-inflammatory agents in a cftr loss-of-function zebrafish model. J Cyst Fibros 2020; 20:1046-1052. [PMID: 33298374 DOI: 10.1016/j.jcf.2020.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Cystic Fibrosis (CF), one of the most frequent hereditary diseases due to mutations in the CFTR gene, causes mortality in humans mainly due to infection in the respiratory system. However, besides the massive inflammatory response triggered by chronic bacterial infections, a constitutive pro-inflammatory state associated with the most common CFTR mutations has been reported in paediatric cases before the onset of bacterial colonization. In previous works we isolated and characterized a mix of virulent bacteriophages (phage cocktail) able to efficiently counteract Pseudomonas aeruginosa infection in a zebrafish model with cftr loss-of-function (LOF), but also showing anti-inflammatory effects in zebrafish embryos not infected by bacteria. On these premises, in this work we demonstrated the anti-inflammatory role of the phage cocktail both in the wild-type (WT) and hyper-inflamed cftr LOF zebrafish embryos in terms of reduction of pro-inflammatory markers. We also dissect that only the virion proteinaceous components, but not the phage DNA, are responsible for the immune-modulatory effect and that this action is elicited through the activation of the Toll-like Receptor (TLR) pathway. In the cftr LOF zebrafish embryos, we demonstrated that phages injection significantly reduces neutrophil migration following acute inflammatory induction. The elucidation of the molecular interaction between phages and the cells of vertebrate immune system might open new possibility in their manipulation for therapeutic benefits especially in diseases such as cystic fibrosis, characterized by chronic infection and inflammation.
Collapse
Affiliation(s)
- Marco Cafora
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, via Fratelli Cervi 93, 20090 Segrate, MI, Italy; EPIGET LAB, Dipartimento di Scienze Cliniche e Comunità, Università degli Studi di Milano, Via San Barnaba 8, 20122, Milano, Italy
| | - Alessia Brix
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, via Fratelli Cervi 93, 20090 Segrate, MI, Italy.
| |
Collapse
|
23
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
24
|
Kiio TM, Park S. Nano-scientific Application of Atomic Force Microscopy in Pathology: from Molecules to Tissues. Int J Med Sci 2020; 17:844-858. [PMID: 32308537 PMCID: PMC7163363 DOI: 10.7150/ijms.41805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
The advantages of atomic force microscopy (AFM) in biological research are its high imaging resolution, sensitivity, and ability to operate in physiological conditions. Over the past decades, rigorous studies have been performed to determine the potential applications of AFM techniques in disease diagnosis and prognosis. Many pathological conditions are accompanied by alterations in the morphology, adhesion properties, mechanical compliances, and molecular composition of cells and tissues. The accurate determination of such alterations can be utilized as a diagnostic and prognostic marker. Alteration in cell morphology represents changes in cell structure and membrane proteins induced by pathologic progression of diseases. Mechanical compliances are also modulated by the active rearrangements of cytoskeleton or extracellular matrix triggered by disease pathogenesis. In addition, adhesion is a critical step in the progression of many diseases including infectious and neurodegenerative diseases. Recent advances in AFM techniques have demonstrated their ability to obtain molecular composition as well as topographic information. The quantitative characterization of molecular alteration in biological specimens in terms of disease progression provides a new avenue to understand the underlying mechanisms of disease onset and progression. In this review, we have highlighted the application of diverse AFM techniques in pathological investigations.
Collapse
Affiliation(s)
| | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Daegu 42601, Republic of Korea
| |
Collapse
|
25
|
Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants. Int J Mol Sci 2020; 21:ijms21061944. [PMID: 32178437 PMCID: PMC7139492 DOI: 10.3390/ijms21061944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Besides their primary involvement in the recycling and degradation of proteins in endo-lysosomal compartments and also in specialized biological functions, cysteine cathepsins are pivotal proteolytic contributors of various deleterious diseases. While the molecular mechanisms of regulation via their natural inhibitors have been exhaustively studied, less is currently known about how their enzymatic activity is modulated during the redox imbalance associated with oxidative stress and their exposure resistance to oxidants. More specifically, there is only patchy information on the regulation of lung cysteine cathepsins, while the respiratory system is directly exposed to countless exogenous oxidants contained in dust, tobacco, combustion fumes, and industrial or domestic particles. Papain-like enzymes (clan CA, family C1, subfamily C1A) encompass a conserved catalytic thiolate-imidazolium pair (Cys25-His159) in their active site. Although the sulfhydryl group (with a low acidic pKa) is a potent nucleophile highly susceptible to chemical modifications, some cysteine cathepsins reveal an unanticipated resistance to oxidative stress. Besides an introductory chapter and peculiar attention to lung cysteine cathepsins, the purpose of this review is to afford a concise update of the current knowledge on molecular mechanisms associated with the regulation of cysteine cathepsins by redox balance and by oxidants (e.g., Michael acceptors, reactive oxygen, and nitrogen species).
Collapse
|
26
|
Kumar SS, Penesyan A, Elbourne LDH, Gillings MR, Paulsen IT. Catabolism of Nucleic Acids by a Cystic Fibrosis Pseudomonas aeruginosa Isolate: An Adaptive Pathway to Cystic Fibrosis Sputum Environment. Front Microbiol 2019; 10:1199. [PMID: 31214142 PMCID: PMC6555301 DOI: 10.3389/fmicb.2019.01199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). We undertook Biolog Phenotype Microarray testing of P. aeruginosa CF isolates to investigate their catabolic capabilities compared to P. aeruginosa laboratory strains PAO1 and PA14. One strain, PASS4, displayed an unusual phenotype, only showing strong respiration on adenosine and inosine. Further testing indicated that PASS4 could grow on DNA as a sole carbon source, with a higher biomass production than PAO1. This suggested that PASS4 was specifically adapted to metabolize extracellular DNA, a substrate present at high concentrations in the CF lung. Transcriptomic and proteomic profiling of PASS4 and PAO1 when grown with DNA as a sole carbon source identified a set of upregulated genes, including virulence and host-adaptation genes. PASS4 was unable to utilize N-Acetyl-D-glucosamine, and when we selected PASS4 mutants able to grow on this carbon source, they also displayed a gain in ability to catabolize a broad range of other carbon sources. Genome sequencing of the mutants revealed they all contained mutations within the purK gene, encoding a key protein in the de novo purine biosynthesis pathway. This suggested that PASS4 was a purine auxotroph. Growth assays in the presence of 2 mM adenosine and the complementation of PASS4 with an intact purK gene confirmed this conclusion. Purine auxotrophy may represent a viable microbial strategy for adaptation to DNA-rich environments such as the CF lung.
Collapse
Affiliation(s)
| | - Anahit Penesyan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
27
|
The CFTR gene variants in Japanese children with idiopathic pancreatitis. Hum Genome Var 2019; 6:17. [PMID: 30992994 PMCID: PMC6459923 DOI: 10.1038/s41439-019-0049-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gene has been reported as one of the pancreatitis susceptibility genes. Although many variants of CFTR have been reported in Caucasian patients, there are few data in Japanese patients. We aimed to survey CFTR variants in Japanese children with idiopathic pancreatitis. Twenty-eight Japanese paediatric patients with idiopathic pancreatitis were enroled, who were not previously diagnosed by genetic analysis of PRSS1 and SPINK1. The entire CFTR gene was sequenced in the patients by combining LA-PCR and next-generation sequencing analysis. To determine a splice-affecting variant, CFTR expression was investigated in the nasal epithelial cells by RT-PCR. One (3.6%) and 15 (53.6%) of 28 patients had pathogenic and functionally affected variants in the CFTR gene, respectively. Two variants, p.Arg352Gln and p.Arg1453Trp, were found more frequently in the patients compared with one in Japanese healthy controls (p = 0.0078 and 0.044, respectively). We confirmed skipping of exon 10 in the nasal epithelial cells in one patient having a splice-affecting variant (c.1210-12 T(5)) in intron 9. Functionally affected variants of the CFTR gene are not so rare in Japanese paediatric patients with idiopathic pancreatitis. Surveying CFTR gene variants in a Japanese sample could help identify pancreatitis risk in these children. Mutations in a cystic fibrosis-related gene could help identify Japanese children at risk of developing pancreatic inflammation. Tadashi Kaname, of Tokyo’s National Center for Child Health and Development, and colleagues sequenced the cystic fibrosis transmembrane conductance regulator gene (CFTR) in 28 Japanese children with pancreatitis of unknown origin. The gene is involved in the development of cystic fibrosis and has been reported to be associated with pancreatitis but little is known about its role in idiopathic pancreatitis in Asian populations. The team found CFTR gene mutations in 16 out of the 28 children. Cystic fibrosis is uncommon among Japanese, so CFTR mutations were also thought to be rare. The study suggests, however, that mutations might not be so rare in Japanese children with idiopathic pancreatitis and could help identify those at risk of developing the condition.
Collapse
|
28
|
Jowett LA, Ricci A, Wu X, Howe ENW, Gale PA. Investigating the Influence of Steric Hindrance on Selective Anion Transport. Molecules 2019; 24:molecules24071278. [PMID: 30986928 PMCID: PMC6480120 DOI: 10.3390/molecules24071278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 02/01/2023] Open
Abstract
A series of symmetrical and unsymmetrical alkyl tren based tris-thiourea anion transporters were synthesised and their anion binding and transport properties studied. Overall, increasing the steric bulk of the substituents resulted in improved chloride binding and transport abilities. Including a macrocycle in the scaffold enhanced the selectivity of chloride transport in the presence of fatty acids, by reducing the undesired H⁺ flux facilitated by fatty acid flip-flop. This study demonstrates the benefit of including enforced steric hindrance and encapsulation in the design of more selective anion receptors.
Collapse
Affiliation(s)
- Laura A Jowett
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia.
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Angela Ricci
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
- Department of Pure and Applied Sciences, Chemistry Section, Universita Degli Studi Di Urbino "Carlo Bo", via della Stazione 4, 61029 Urbino PU, Italia.
| | - Xin Wu
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia.
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Ethan N W Howe
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia.
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Philip A Gale
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia.
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
29
|
Affiliation(s)
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Australia
| |
Collapse
|
30
|
Sermet-Gaudelus I, Clancy JP, Nichols DP, Nick JA, De Boeck K, Solomon GM, Mall MA, Bolognese J, Bouisset F, den Hollander W, Paquette-Lamontagne N, Tomkinson N, Henig N, Elborn JS, Rowe SM. Antisense oligonucleotide eluforsen improves CFTR function in F508del cystic fibrosis. J Cyst Fibros 2018; 18:536-542. [PMID: 30467074 PMCID: PMC7227803 DOI: 10.1016/j.jcf.2018.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/24/2022]
Abstract
Background: Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. In this study we assessed the effect of antisense oligonucleotide eluforsen on CFTR biological activity measured by Nasal Potential Difference (NPD) in patients with the most common mutation, F508del-CFTR. Methods: This multi-centre, exploratory, open-label study recruited adults with CF homozygous or compound heterozygous for the F508del-CFTR mutation. Subjects received intranasal eluforsen three times weekly for 4 weeks. The primary endpoint was the within-subject change from baseline in total chloride transport (Cl-free+iso), as assessed by NPD. Secondary endpoints included within-subject change from baseline in sodium transport. Results: In the homozygous cohort (n = 7; per-protocol population), mean change (90% confidence interval) in Cl-free+iso was −3.0 mV (−6.6; 0.6) at day 15, −4.1 mV (−7.8; −0.4, p = .04) at day 26 (end of treatment) and − 3.7 mV (−8.0; 0.6) at day 47. This was supported by improved sodium transport as assessed by an increase in average basal potential difference at day 26 of +9.4 mV (1.1; 17.7, p = .04). The compound heterozygous cohort (n = 7) did not show improved chloride or sodium transport NPD values. Eluforsen was well tolerated with a favourable safety profile. Conclusions: In F508del-CFTR homozygous subjects, repeated intranasal administration of eluforsen improved CFTR activity as measured by NPD, an encouraging indicator of biological activity.
Collapse
Affiliation(s)
- Isabelle Sermet-Gaudelus
- INSERM U 1151, Université Paris Sorbonne, Hôpital Necker-Enfants Malades, 149 Rue de Sèvres, 75473, Paris, France
| | - John P Clancy
- Cincinnati Children's Hospital Medical Centre, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - David P Nichols
- University of Washington, 1410 NE Campus Parkway, Seattle, WA 98195, USA
| | - Jerry A Nick
- National Jewish Health, 1400 Jackson St., Denver, CO 80206, USA
| | - Kris De Boeck
- University of Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - George M Solomon
- University of Alabama at Birmingham, 2000 6(th) Avenue S., Birmingham, AL 35233, USA
| | - Marcus A Mall
- University Hospital Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany; Charité-Universitätsmedizine Berlin, Auhustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | | | | | | | - Nicolas Paquette-Lamontagne
- ProQR Therapeutics, Zernikedreef 9, 2333, CK, Leiden, the Netherlands; Blueprint Medicines Corporation, 45 Sidney St., Cambridge, MA 02139, USA
| | - Nigel Tomkinson
- ProQR Therapeutics, Zernikedreef 9, 2333, CK, Leiden, the Netherlands
| | - Noreen Henig
- ProQR Therapeutics, Zernikedreef 9, 2333, CK, Leiden, the Netherlands; Breath Therapeutics Inc., 90 Canal Street, 4th Floor, Boston, MA 02114, USA
| | - J Stuart Elborn
- Imperial College London, Kensington, London SW7 2AZ, UK; Queen's University Belfast, University Rd., Belfast BT7 1NN, UK.
| | - Steven M Rowe
- University of Alabama at Birmingham, 2000 6(th) Avenue S., Birmingham, AL 35233, USA
| |
Collapse
|
31
|
Das P, Delost MD, Qureshi MH, Smith DT, Njardarson JT. A Survey of the Structures of US FDA Approved Combination Drugs. J Med Chem 2018; 62:4265-4311. [DOI: 10.1021/acs.jmedchem.8b01610] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pradipta Das
- Department of Chemistry & Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Michael D. Delost
- Department of Chemistry & Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Munaum H. Qureshi
- Department of Chemistry & Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - David T. Smith
- Department of Chemistry & Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jon T. Njardarson
- Department of Chemistry & Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
32
|
Nantavishit J, Chatsudthipong V, Soodvilai S. Lansoprazole reduces renal cyst in polycystic kidney disease via inhibition of cell proliferation and fluid secretion. Biochem Pharmacol 2018; 154:175-182. [DOI: 10.1016/j.bcp.2018.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
|
33
|
Moore PJ, Tarran R. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets 2018; 22:687-701. [PMID: 30028216 DOI: 10.1080/14728222.2018.1501361] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for the CFTR anion channel. In the absence of functional CFTR, the epithelial Na+ channel is also dysregulated. Airway surface liquid (ASL) hydration is maintained by a balance between epithelial sodium channel (ENaC)-led Na+ absorption and CFTR-dependent anion secretion. This finely tuned homeostatic mechanism is required to maintain sufficient airway hydration to permit the efficient mucus clearance necessary for a sterile lung environment. In CF airways, the lack of CFTR and increased ENaC activity lead to ASL/mucus dehydration that causes mucus obstruction, neutrophilic infiltration, and chronic bacterial infection. Rehydration of ASL/mucus in CF airways can be achieved by inhibiting Na+ absorption with pharmacological inhibitors of ENaC. Areas covered: In this review, we discuss ENaC structure and function and its role in CF lung disease and focus on ENaC inhibition as a potential therapeutic target to rehydrate CF mucus. We also discuss the failure of the first generation of pharmacological inhibitors of ENaC and recent alternate strategies to attenuate ENaC activity in the CF lung. Expert opinion: ENaC is an attractive therapeutic target to rehydrate CF ASL that may serve as a monotherapy or function in parallel with other treatments. Given the increased number of strategies being employed to inhibit ENaC, this is an exciting and optimistic time to be in this field.
Collapse
Affiliation(s)
- Patrick J Moore
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA
| | - Robert Tarran
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
34
|
Jowett LA, Howe ENW, Wu X, Busschaert N, Gale PA. New Insights into the Anion Transport Selectivity and Mechanism of Tren-based Tris-(thio)ureas. Chemistry 2018; 24:10475-10487. [PMID: 29786913 DOI: 10.1002/chem.201801463] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Indexed: 11/07/2022]
Abstract
The anion transport properties of a series of previously reported tren-based anionophores have been revisited using new assays designed to measure anion uniport. This study provides new insights into the transport mechanism and selectivity of this important class of transporters. Specifically, we report the chloride and nitrate transport selectivity of these systems and quantify sulfate transport to determine EC50 values for sulfate transport for the first time. Two new assays were developed to study bicarbonate transport allowing accurate quantification of chloride/bicarbonate exchange.
Collapse
Affiliation(s)
- Laura A Jowett
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ethan N W Howe
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xin Wu
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Philip A Gale
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
35
|
Harutyunyan M, Huang Y, Mun KS, Yang F, Arora K, Naren AP. Personalized medicine in CF: from modulator development to therapy for cystic fibrosis patients with rare CFTR mutations. Am J Physiol Lung Cell Mol Physiol 2017; 314:L529-L543. [PMID: 29351449 DOI: 10.1152/ajplung.00465.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cystic fibrosis (CF) is the most common life-shortening genetic disease affecting ~1 in 3,500 of the Caucasian population. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. To date, more than 2,000 CFTR mutations have been identified, which produce a wide range of phenotypes. The CFTR protein, a chloride channel, is normally expressed on epithelial cells lining the lung, gut, and exocrine glands. Mutations in CFTR have led to pleiotropic effects in CF patients and have resulted in early morbidity and mortality. Research has focused on identifying small molecules, or modulators, that can restore CFTR function. In recent years, two modulators, ivacaftor (Kalydeco) and lumacaftor/ivacaftor (Orkambi), have been approved by the U.S. Food and Drug Administration to treat CF patients with certain CFTR mutations. The development of these modulators has served as proof-of-concept that targeting CFTR by modulators is a viable therapeutic option. Efforts to discover new modulators that could deliver a wider and greater clinical benefit are still ongoing. However, traditional randomized controlled trials (RCTs) require large numbers of patients and become impracticable to test the modulators' efficacy in CF patients with CFTR mutations at frequencies much lower than 1%, suggesting the need for personalized medicine in these CF patients.
Collapse
Affiliation(s)
- Misak Harutyunyan
- Department of Physiology, University of Cincinnati , Cincinnati, Ohio
| | - Yunjie Huang
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Kyu-Shik Mun
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Fanmuyi Yang
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| |
Collapse
|
36
|
Espel JC, Palac HL, Bharat A, Cullina J, Prickett M, Sala M, McColley SA, Jain M. The relationship between sweat chloride levels and mortality in cystic fibrosis varies by individual genotype. J Cyst Fibros 2017; 17:34-42. [PMID: 29221674 DOI: 10.1016/j.jcf.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/20/2023]
Abstract
RATIONALE The association between CFTR genotype, sweat chloride and mortality has been inconsistent, but no previous analyses have examined the association stratified by individual genotypes. OBJECTIVES To evaluate the genotype-specific association between sweat chloride and mortality. METHODS The CFF Patient Registry was assessed and included all patients in the registry between 1996 and 2012 with at least one F508del allele. We excluded patients without a documented genotype or plausible sweat chloride level. The primary outcome was time to mortality during the observation period. We examined 15 genotypes using the three most prevalent alleles in each of 5 classes. We compared subgroups of sweat chloride using Kaplan-Meier curves, log-rank tests, and multivariable Cox PH models. The overall predictive value of sweat chloride on mortality was assessed using area under the receiver operating characteristic curves. MEASUREMENTS AND MAIN RESULTS 18,893 subjects met inclusion criteria. Sweat chloride distribution was similar across genotypes in patients with class 1 mutations, but was significantly different across genotypes in mutation classes 2-5. The R117H/F508del genotype patients demonstrated an association between sweat chloride and mortality (HR: 1.32 for every 10mmol/L increase in sweat chloride [95% CI 1.12-1.54]. There were also significant associations in patients with F508del/F508del, I507del/F508del, G551D/F508del and 2789+5G→A/F508del genotypes, though the clinical relevance for these genotypes is unclear. CONCLUSIONS There is significant variability in sweat chloride distribution across CFTR class 2-5 genotypes. The relationship between sweat chloride and mortality varies by genotype with a relatively strong relationship in R117H/F508del patients.
Collapse
Affiliation(s)
- Julia C Espel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hannah L Palac
- Department of Preventive Medicine, Northwestern University, Chicago, IL, United States
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Michelle Prickett
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Marc Sala
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
37
|
Furlan LL, Ribeiro JD, Bertuzzo CS, Salomão Junior JB, Souza DRS, Marson FAL. Variants in the interleukin 8 gene and the response to inhaled bronchodilators in cystic fibrosis. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2017. [DOI: 10.1016/j.jpedp.2017.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Variants in the interleukin 8 gene and the response to inhaled bronchodilators in cystic fibrosis. J Pediatr (Rio J) 2017; 93:639-648. [PMID: 28719800 DOI: 10.1016/j.jped.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 03/29/2017] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Interleukin 8 protein promotes inflammatory responses, even in airways. The presence of interleukin 8 gene variants causes altered inflammatory responses and possibly varied responses to inhaled bronchodilators. Thus, this study analyzed the interleukin 8 variants (rs4073, rs2227306, and rs2227307) and their association with the response to inhaled bronchodilators in cystic fibrosis patients. METHODS Analysis of interleukin 8 gene variants was performed by restriction fragment length polymorphism of polymerase chain reaction. The association between spirometry markers and the response to inhaled bronchodilators was evaluated by Mann-Whitney and Kruskal-Wallis tests. The analysis included all cystic fibrosis patients, and subsequently patients with two mutations in the cystic fibrosis transmembrane conductance regulator gene belonging to classes I to III. RESULTS This study included 186 cystic fibrosis patients. There was no association of the rs2227307 variant with the response to inhaled bronchodilators. The rs2227306 variant was associated with FEF50% in the dominant group and in the group with two identified mutations in the cystic fibrosis transmembrane conductance regulator gene. The rs4073 variant was associated with spirometry markers in four genetic models: co-dominant (FEF25-75% and FEF75%), dominant (FEV1, FEF50%, FEF75%, and FEF25-75%), recessive (FEF75% and FEF25-75%), and over-dominant (FEV1/FVC). CONCLUSIONS This study highlighted the importance of the rs4073 variant of the interleukin 8 gene, regarding response to inhaled bronchodilators, and of the assessment of mutations in the cystic fibrosis transmembrane conductance regulator gene.
Collapse
|
39
|
Lucarelli M. New era of cystic fibrosis: Full mutational analysis and personalized therapy. World J Med Genet 2017; 7:1-9. [DOI: 10.5496/wjmg.v7.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/19/2016] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Despite its apparently simple genetics, cystic fibrosis (CF) is a rather complex genetic disease. A lot of variability in the steps of the path from the cystic fibrosis transmembrane conductance regulator (CFTR) gene to the clinical manifestations originates an uncertain genotype - phenotype relationship. A major determinant of this uncertainty is the incomplete knowledge of the CFTR mutated genotypes, due to the high number of CFTR mutations and to the higher number of their combinations in trans and in cis. Also the very limited knowledge of functional effects of CFTR mutated alleles severely impairs our diagnostic and prognostic ability. The final phenotypic modulation exerted by CFTR modifier genes and interactome further complicates the framework. The next generation sequencing approach is a rapid, low-cost and high-throughput tool that allows a near complete structural characterization of CFTR mutated genotypes, as well as of genotypes of several other genes cooperating to the final CF clinical manifestations. This powerful method perfectly complements the new personalized therapeutic approach for CF. Drugs active on specific CFTR mutational classes are already available for CF patients or are in phase 3 trials. A complete genetic characterization has been becoming crucial for a correct personalized therapy. However, the need of a functional classification of each CFTR mutation potently arises. Future big efforts towards an ever more detailed knowledge of both structural and functional CFTR defects, coupled to parallel personalized therapeutic interventions decisive for CF cure can be foreseen.
Collapse
Affiliation(s)
- Marco Lucarelli
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00161 Rome, Italy
| |
Collapse
|
40
|
Molecular analysis of exon 13 of cystic fibrosis patients in Middle East: High frequency of K710X mutation. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Virant-Young D, Thomas J, Woiderski S, Powers M, Carlier J, McCarty J, Kupchick T, Larder A. Cystic Fibrosis: A Novel Pharmacologic Approach to Cystic Fibrosis Transmembrane Regulator Modulation Therapy. J Osteopath Med 2016; 115:546-55. [PMID: 26322933 DOI: 10.7556/jaoa.2015.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Therapy for cystic fibrosis (CF) has progressed during the past several decades. Much of this progress is because of advances in genetic testing to precisely identify the underlying cause of CF transmembrane regulator (CFTR) dysfunction. However, with more than 1900 mutations that can produce a faulty CFTR, the management of CF can remain a challenge. Several innovative drugs recently approved by the Food and Drug Administration, termed genetic modulators, target the underlying disease by modulating the CFTR defect. This review provides physicians with an established simple classification scheme to guide their use of these drugs. The treatment challenge of 1900 CFTR mutations has been simplified into 6 physiologic classes, each paired with an available therapy to offer patients the most functional improvement. Drug therapy monitoring, adverse effects, and indications for discontinuation must also be considered.
Collapse
|
42
|
Chesmore KN, Bartlett J, Cheng C, Williams SM. Complex Patterns of Association between Pleiotropy and Transcription Factor Evolution. Genome Biol Evol 2016; 8:3159-3170. [PMID: 27635052 PMCID: PMC5174740 DOI: 10.1093/gbe/evw228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pleiotropy has been claimed to constrain gene evolution but specific mechanisms and extent of these constraints have been difficult to demonstrate. The expansion of molecular data makes it possible to investigate these pleiotropic effects. Few classes of genes have been characterized as intensely as human transcription factors (TFs). We therefore analyzed the evolutionary rates of full TF proteins, along with their DNA binding domains and protein-protein interacting domains (PID) in light of the degree of pleiotropy, measured by the number of TF-TF interactions, or the number of DNA-binding targets. Data were extracted from the ENCODE Chip-Seq dataset, the String v 9.2 database, and the NHGRI GWAS catalog. Evolutionary rates of proteins and domains were calculated using the PAML CodeML package. Our analysis shows that the numbers of TF-TF interactions and DNA binding targets associated with constrained gene evolution; however, the constraint caused by the number of DNA binding targets was restricted to the DNA binding domains, whereas the number of TF-TF interactions constrained the full protein and did so more strongly. Additionally, we found a positive correlation between the number of protein-PIDs and the evolutionary rates of the protein-PIDs. These findings show that not only does pleiotropy associate with constrained protein evolution but the constraint differs by domain function. Finally, we show that GWAS associated TF genes are more highly pleiotropic : The GWAS data illustrates that mutations in highly pleiotropic genes are more likely to be associated with disease phenotypes.
Collapse
Affiliation(s)
- Kevin N Chesmore
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Jacquelaine Bartlett
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Chao Cheng
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Scott M Williams
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH
| |
Collapse
|
43
|
Skopelja S, Hamilton BJ, Jones JD, Yang ML, Mamula M, Ashare A, Gifford AH, Rigby WF. The role for neutrophil extracellular traps in cystic fibrosis autoimmunity. JCI Insight 2016; 1:e88912. [PMID: 27777975 DOI: 10.1172/jci.insight.88912] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While respiratory failure in cystic fibrosis (CF) frequently associates with chronic infection by Pseudomonas aeruginosa, no single factor predicts the extent of lung damage in CF. To elucidate other causes, we studied the autoantibody profile in CF and rheumatoid arthritis (RA) patients, given the similar association of airway inflammation and autoimmunity in RA. Even though we observed that bactericidal permeability-increasing protein (BPI), carbamylated proteins, and citrullinated proteins all localized to the neutrophil extracellular traps (NETs), which are implicated in the development of autoimmunity, our study demonstrates striking autoantibody specificity in CF. Particularly, CF patients developed anti-BPI autoantibodies but hardly any anti-citrullinated protein autoantibodies (ACPA). In contrast, ACPA-positive RA patients exhibited no reactivity with BPI. Interestingly, anti-carbamylated protein autoantibodies (ACarPA) were found in both cohorts but did not cross-react with BPI. Contrary to ACPA and ACarPA, anti-BPI autoantibodies recognized the BPI C-terminus in the absence of posttranslational modifications. In fact, we discovered that P. aeruginosa-mediated NET formation results in BPI cleavage by P. aeruginosa elastase, which suggests a novel mechanism in the development of autoimmunity to BPI. In accordance with this model, autoantibodies associated with presence of P. aeruginosa on sputum culture. Finally, our results provide a role for autoimmunity in CF disease severity, as autoantibody levels associate with diminished lung function.
Collapse
Affiliation(s)
| | | | - Jonathan D Jones
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Mei-Ling Yang
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark Mamula
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alix Ashare
- Department of Microbiology and Immunology and.,Division of Pulmonology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alex H Gifford
- Division of Pulmonology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - William Fc Rigby
- Department of Microbiology and Immunology and.,Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
44
|
Santos V, Cardoso AV, Lopes C, Azevedo P, Gamboa F, Amorim A. Cystic fibrosis - Comparison between patients in paediatric and adult age. REVISTA PORTUGUESA DE PNEUMOLOGIA 2016; 23:17-21. [PMID: 27743767 DOI: 10.1016/j.rppnen.2016.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 06/28/2016] [Accepted: 07/22/2016] [Indexed: 10/20/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians. Although most cases are diagnosed in childhood, diagnosis in adults is apparently increasing. OBJECTIVE Evaluate the adult population with CF, comparing patients who were diagnosed before and after 18 years of age. METHODS Retrospective analysis of patients followed in three main medical centres in Portugal in 2012. Comparison of two groups: G1 - patients diagnosed at <18 years and G2 - patients diagnosed at ≥18 years. RESULTS 89 adults were identified: 61.8% in G1, 38.2% in G2. Gender distribution was similar in both groups. Average age in G2 was higher (38.3±8.4 vs. 26.8±6.1 years, p<0.001). Respiratory symptoms most frequently led to CF diagnosis in all patients, mainly in adulthood. There was a greater percentage of patients homozygous for the mutation delF508 in G1 (43.6 vs. 8.8%, p=0.02). Respiratory and pancreatic function, and body mass index (BMI) showed a higher severity in G1 (G1 vs. G2: FEV1: 54.6±27.3 vs. 29.9±64.6%, p=0.177; pancreatic insufficiency 72.7 vs. 26.5%, p<0.001; BMI 20.2±3.4 vs. 22.2±4.8, p=0.018). Pseudomonas aeruginosa and methicillin-sensitive Staphylococcus aureus were the most frequently isolated microorganisms. Lung transplantation rate was higher in G2 (20.6 vs. 10.9%, p=0.231) while mortality rate was higher in G1 (0 vs. 3.6%, p=0.261). Hospital admission rate was higher in G1 as well as mortality rate. CONCLUSION The results suggest that patients with CF diagnosed in childhood have characteristics that distinguish them from those diagnosed in adulthood, and these differences may have implications for diagnosis, prognosis and life expectancy.
Collapse
Affiliation(s)
- V Santos
- Pulmonology Department, Centro Hospitalar de São João, EPE, Portugal.
| | - A V Cardoso
- Pulmonology Department, Centro Hospitalar de São João, EPE, Portugal
| | - C Lopes
- Pulmonology Department, Centro Hospitalar de Lisboa Norte - Hospital de Santa Maria, Lisboa, Portugal
| | - P Azevedo
- Pulmonology Department, Centro Hospitalar de Lisboa Norte - Hospital de Santa Maria, Lisboa, Portugal
| | - F Gamboa
- Pulmonology Department, Hospitais da Universidade de Coimbra - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - A Amorim
- Pulmonology Department, Centro Hospitalar de São João, EPE, Portugal; Faculty of Medicine of Porto University, Portugal
| |
Collapse
|
45
|
Lasalvia M, Castellani S, D'Antonio P, Perna G, Carbone A, Colia AL, Maffione AB, Capozzi V, Conese M. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology. Exp Cell Res 2016; 348:46-55. [PMID: 27590528 DOI: 10.1016/j.yexcr.2016.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023]
Abstract
The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption.
Collapse
Affiliation(s)
- Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Palma D'Antonio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Perna
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Annalucia Carbone
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Laura Colia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Bruna Maffione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vito Capozzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
46
|
Qiu J, Wilson A, El-Sagheer AH, Brown T. Combination probes with intercalating anchors and proximal fluorophores for DNA and RNA detection. Nucleic Acids Res 2016; 44:e138. [PMID: 27369379 PMCID: PMC5041472 DOI: 10.1093/nar/gkw579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
A new class of modified oligonucleotides (combination probes) has been designed and synthesised for use in genetic analysis and RNA detection. Their chemical structure combines an intercalating anchor with a reporter fluorophore on the same thymine nucleobase. The intercalator (thiazole orange or benzothiazole orange) provides an anchor, which upon hybridisation of the probe to its target becomes fluorescent and simultaneously stabilizes the duplex. The anchor is able to communicate via FRET to a proximal reporter dye (e.g. ROX, HEX, ATTO647N, FAM) whose fluorescence signal can be monitored on a range of analytical devices. Direct excitation of the reporter dye provides an alternative signalling mechanism. In both signalling modes, fluorescence in the unhybridised probe is switched off by collisional quenching between adjacent intercalator and reporter dyes. Single nucleotide polymorphisms in DNA and RNA targets are identified by differences in the duplex melting temperature, and the use of short hybridization probes, made possible by the stabilisation provided by the intercalator, enhances mismatch discrimination. Unlike other fluorogenic probe systems, placing the fluorophore and quencher on the same nucleobase facilitates the design of short probes containing multiple modifications. The ability to detect both DNA and RNA sequences suggests applications in cellular imaging and diagnostics.
Collapse
Affiliation(s)
- Jieqiong Qiu
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Adam Wilson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
47
|
Al-Zahrani A, Cant N, Kargas V, Rimington T, Aleksandrov L, R. Riordan J, C. Ford R. Structure of the cystic fibrosis transmembrane conductance regulator in the inward-facing conformation revealed by single particle electron microscopy. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.2.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Voisin G, Bouvet GF, Legendre P, Dagenais A, Massé C, Berthiaume Y. Oxidative stress modulates the expression of genes involved in cell survival in ΔF508 cystic fibrosis airway epithelial cells. Physiol Genomics 2014; 46:634-46. [PMID: 24893876 DOI: 10.1152/physiolgenomics.00003.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although cystic fibrosis (CF) pathophysiology is explained by a defect in CF transmembrane conductance regulator (CFTR) protein, the broad spectrum of disease severity is the consequence of environmental and genetic factors. Among them, oxidative stress has been demonstrated to play an important role in the evolution of this disease, with susceptibility to oxidative damage, decline of pulmonary function, and impaired lung antioxidant defense. Although oxidative stress has been implicated in the regulation of inflammation, its molecular outcomes in CF cells remain to be evaluated. To address the question, we compared the gene expression profile in NuLi-1 cells with wild-type CFTR and CuFi-1 cells homozygous for ΔF508 mutation cultured at air-liquid interface. We analyzed the transcriptomic response of these cell lines with microarray technology, under basal culture conditions and after 24 h oxidative stress induced by 15 μM 2,3-dimethoxy-1,4-naphtoquinone. In the absence of oxidative conditions, CuFi-1 gene profiling showed typical dysregulated inflammatory responses compared with NuLi-1. In the presence of oxidative conditions, the transcriptome of CuFi-1 cells reflected apoptotic transcript modulation. These results were confirmed in the CFBE41o- and corrCFBE41o- cell lines as well as in primary culture of human CF airway epithelial cells. Altogether, our data point to the influence of oxidative stress on cell survival functions in CF and identify several genes that could be implicated in the inflammation response observed in CF patients.
Collapse
Affiliation(s)
- Grégory Voisin
- Centre de recherche, Centre hospitalier de l'Université de Montréal - Hôtel Dieu, Montréal, Quebec, Canada
| | | | - Pierre Legendre
- Département de sciences biologiques, Université de Montréal, Succursale Centre-ville, Montréal, Quebec, Canada; and
| | - André Dagenais
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada
| | - Chantal Massé
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada
| | - Yves Berthiaume
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada; Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
49
|
CFTR structure and cystic fibrosis. Int J Biochem Cell Biol 2014; 52:15-25. [PMID: 24534272 DOI: 10.1016/j.biocel.2014.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/31/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a member of the ATP-binding cassette family of membrane proteins. Although almost all members of this family are transporters, CFTR functions as a channel with specificity for anions, in particular chloride and bicarbonate. In this review we look at what is known about CFTR structure and function within the context of the ATP-binding cassette family. We also review current strategies aimed at obtaining the high resolution structure of the protein.
Collapse
|
50
|
Abstract
Proteomics was initially viewed as a promising new scientific discipline to study complex disorders such as polygenic, infectious and environment-related diseases. However, the first attempts to understand a monogenic disease such as cystic fibrosis (CF) by proteomics-based approaches have proved quite rewarding. In CF, the impairment of a unique protein, the CF transmembrane conductance regulator, does not completely explain the complex and variable CF clinical phenotype. The great advances in our knowledge about the molecular and cellular consequences of such impairment have not been sufficient to be translated into effective treatments, and CF patients are still dying due to chronic progressive lung dysfunction. The progression of proteomics application in CF will certainly unravel new proteins that could be useful as biomarkers either to elucidate CF basic mechanisms and to better monitor the disease progression, or to promote the development of novel therapeutic strategies against CF. This review will summarize the recent technological advances in proteomics and the first results of its application to address the most important issues in the CF field.
Collapse
Affiliation(s)
- Deborah Penque
- Instituto Nacional de Saúde Dr Ricardo Jorge, Laboratório de Proteómica, Centro de Genética Humana, Lisboa, Portugal.
| |
Collapse
|