1
|
Sun J, Hirai M, Takaki Y, Evans PN, Nunoura T, Rinke C. Metagenomic insights into taxonomic and functional patterns in shallow coastal and deep subseafloor sediments in the Western Pacific. Microb Genom 2025; 11:001351. [PMID: 40100697 PMCID: PMC11920076 DOI: 10.1099/mgen.0.001351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/21/2024] [Indexed: 03/20/2025] Open
Abstract
Marine sediments are vast, underexplored habitats and represent one of the largest carbon deposits on our planet. Microbial communities drive nutrient cycling in these sediments, but the full extent of their taxonomic and metabolic diversity remains to be explored. Here, we analysed shallow coastal and deep subseafloor sediment cores from 0.01 to nearly 600 metres below the seafloor, in the Western Pacific Region. Applying metagenomics, we identified several taxonomic clusters across all samples, which mainly aligned with depth and sediment type. Inferring functional patterns provided insights into possible ecological roles of the main microbial taxa. These included Chloroflexota, the most abundant phylum across all samples, whereby the classes Dehalococcoida and Anaerolineae dominated deep-subsurface and most shallow coastal sediments, respectively. Thermoproteota and Asgardarchaeota were the most abundant phyla among Archaea, contributing to high relative abundances of Archaea reaching over 50% in some samples. We recovered high-quality metagenome-assembled genomes for all main prokaryotic lineages and proposed names for three phyla, i.e. Tangaroaeota phyl. nov. (former RBG-13-66-14), Ryujiniota phyl. nov. (former UBA6262) and Spongiamicota phyl. nov. (former UBA8248). Metabolic capabilities across all samples ranged from aerobic respiration and photosynthesis in the shallowest sediment layers to heterotrophic carbon utilization, sulphate reduction and methanogenesis in deeper anoxic sediments. We also identified taxa with the potential to be involved in nitrogen and sulphur cycling and heterotrophic carbon utilization. In summary, this study contributes to our understanding of the taxonomic and functional diversity in benthic prokaryotic communities across marine sediments in the Western Pacific Region.
Collapse
Affiliation(s)
- Jiarui Sun
- School of the Environment, The University of Queensland, St. Lucia, QLD, Australia
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Paul N. Evans
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Takuro Nunoura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Department of Microbiology, The University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Rodgers K, McLellan I, Peshkur T, Williams R, Tonner R, Knapp CW, Henriquez FL, Hursthouse AS. The legacy of industrial pollution in estuarine sediments: spatial and temporal variability implications for ecosystem stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1057-1068. [PMID: 31119572 DOI: 10.1007/s10311-018-0791-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/30/2019] [Indexed: 05/28/2023]
Abstract
The direct impacts of anthropogenic pollution are widely known public and environmental health concerns, and details on the indirect impact of these are starting to emerge, for example affecting the environmental microbiome. Anthropogenic activities throughout history with associated pollution burdens are notable contributors. Focusing on the historically heavily industrialised River Clyde, Scotland, we investigate spatial and temporal contributions to stressful/hostile environments using a geochemical framework, e.g. pH, EC, total organic carbon and potentially toxic elements: As, Co, Cr, Cu, Ni, Pb and Zn and enrichment indicators. With regular breaches of the sediment quality standards in the estuarine system we focused on PTE correlations instead. Multivariate statistical analysis (principle component analysis) identifies two dominant components, PC1: As, Cr, Cu, Pb and Zn, as well as PC2: Ni, Co and total organic carbon. Our assessment confirms hot spots in the Clyde Estuary indicative of localised inputs. In addition, there are sites with high variability indicative of excessive mixing. We demonstrate that industrialised areas are dynamic environmental sites dependant on historical anthropogenic activity with short-scale variation. This work supports the development of 'contamination' mapping to enable an assessment of the impact of historical anthropogenic pollution, identifying specific 'stressors' that can impact the microbiome, neglecting in estuarine recovery dynamics and potentially supporting the emergence of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- Kiri Rodgers
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK.
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK.
| | - Iain McLellan
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Tatyana Peshkur
- Department of Civil and Environmental Engineering, Centre for Water, Environmental, Sustainability and Public Health, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Roderick Williams
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Rebecca Tonner
- Department of Civil and Environmental Engineering, Centre for Water, Environmental, Sustainability and Public Health, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Charles W Knapp
- Department of Civil and Environmental Engineering, Centre for Water, Environmental, Sustainability and Public Health, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Fiona L Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Andrew S Hursthouse
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| |
Collapse
|
3
|
Matschiavelli N, Kluge S, Podlech C, Standhaft D, Grathoff G, Ikeda-Ohno A, Warr LN, Chukharkina A, Arnold T, Cherkouk A. The Year-Long Development of Microorganisms in Uncompacted Bavarian Bentonite Slurries at 30 and 60 °C. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10514-10524. [PMID: 31369249 DOI: 10.1021/acs.est.9b02670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the multibarrier concept for the deep geological disposal of high-level radioactive waste (HLW), bentonite is proposed as a potential barrier and buffer material for sealing the space between the steel canister containing the HLW and the surrounding host rock. In order to broaden the spectra of appropriate bentonites, we investigated the metabolic activity and diversity of naturally occurring microorganisms as well as their time-dependent evolution within the industrial B25 Bavarian bentonite under repository-relevant conditions. We conducted anaerobic microcosm experiments containing the B25 bentonite and a synthetic Opalinus Clay pore water solution, which were incubated for one year at 30 and 60 °C. Metabolic activity was only stimulated by the addition of lactate, acetate, or H2. The majority of lactate- and H2-containing microcosms at 30 °C were dominated by strictly anaerobic, sulfate-reducing, and spore-forming microorganisms. The subsequent generation of hydrogen sulfide led to the formation of iron-sulfur precipitations. Independent from the availability of substrates, thermophilic bacteria dominated microcosms that were incubated at 60 °C. However, in the respective microcosms, no significant metabolic activity occurred, and there was no change in the analyzed biogeochemical parameters. Our findings show that indigenous microorganisms of B25 bentonite evolve in a temperature- and substrate-dependent manner.
Collapse
Affiliation(s)
- Nicole Matschiavelli
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Sindy Kluge
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Carolin Podlech
- University of Greifswald , Institute of Geography and Geology , Friedrich-Ludwig-Jahn-Straße 17a , 17487 Greifswald , Germany
| | - Daniel Standhaft
- University of Greifswald , Institute of Geography and Geology , Friedrich-Ludwig-Jahn-Straße 17a , 17487 Greifswald , Germany
| | - Georg Grathoff
- University of Greifswald , Institute of Geography and Geology , Friedrich-Ludwig-Jahn-Straße 17a , 17487 Greifswald , Germany
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Laurence N Warr
- University of Greifswald , Institute of Geography and Geology , Friedrich-Ludwig-Jahn-Straße 17a , 17487 Greifswald , Germany
| | | | - Thuro Arnold
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| |
Collapse
|