1
|
Heidkamp M, Herwig A, Singer D. Mammalian birth versus arousal from hibernation: thyroid hormones, common regulators of metabolic transition? J Comp Physiol B 2025:10.1007/s00360-025-01611-6. [PMID: 40208295 DOI: 10.1007/s00360-025-01611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/23/2025] [Indexed: 04/11/2025]
Abstract
Mammalian birth and arousal from hibernation are both endogenously regulated transitional events, characterized by an increase in metabolic rate (MR) and onset of thermogenesis. Thyroid hormones (THs) are known to be key regulators of metabolic and thermogenic activity. To explore the similarities and differences in the role of THs during mammalian birth as opposed to arousal from hibernation, a comprehensive review is given of the levels and kinetics of serum thyrotropin-releasing hormone (TRH), thyroid stimulating hormone (TSH), thyroxine (T4), triiodothyronine (T3), and reverse triiodothyronine (rT3) in hibernating mammals upon arousal and in mammalian neonates at birth. The results for arousal are more heterogeneous than those for birth, reflecting different hibernation patterns between species as well as varying sampling times and methods. Overall, serum TRH concentrations were found to be decreased, TSH unchanged, and T4, T3, and rT3 mostly increased. In contrast, the data for mammalian birth show a marked increase in serum levels of TRH, TSH, T4, and T3, particularly in human neonates, with inconsistent results for rT3. In conclusion, both during arousal from hibernation and mammalian birth, THs play a critical yet not exclusive role in metabolic transition. In hibernators, the metabolic effects of THs appear to be mediated by the conversion rates in target tissues rather than by their serum levels alone, suggesting a sustained readiness for arousal. This contrasts with mammalian newborns, who at the beginning of their autonomous life experience the first activation of their thyroid gland, resulting in a transitory "hyperthyroid" state.
Collapse
Affiliation(s)
- Melanie Heidkamp
- Division of Neonatology and Pediatric Critical Care Medicine, Center for Obestrics and Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Dominique Singer
- Division of Neonatology and Pediatric Critical Care Medicine, Center for Obestrics and Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Sprenger RJ, Milsom WK. Ventilatory sensitivity to ambient CO2 at different hibernation temperatures in 13-lined ground squirrels (Ictidomys tridecemlineatus). Physiol Biochem Zool 2022; 95:288-301. [DOI: 10.1086/720158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Sprenger RJ, Milsom WK. Changes in CO 2 sensitivity during entrance into, and arousal from hibernation in Ictidomys tridecemlineatus. J Comp Physiol B 2021; 192:361-378. [PMID: 34739575 DOI: 10.1007/s00360-021-01418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 10/19/2022]
Abstract
At the onset of entrance into hibernation in many mammals, there is a reduction in the respiratory exchange ratio (RER) thought to result in a retention of CO2 that contributes to the ensuing metabolic suppression. In steady-state hibernation, the relative hypercapnic ventilatory response (HCVR; the % change in ventilation to CO2 exposure) is elevated. These two observations, paradoxically, suggest a transient decrease in CO2 sensitivity at the onset of entrance into hibernation, allowing the retention of CO2, then a subsequent increase in CO2 sensitivity giving rise to the elevated HCVR in steady-state hibernation. We examined the time course of the changes in ventilation, O2 consumption rates ([Formula: see text]o2), CO2 excretion rates, body temperature, and hence the RER and ACR (air convection ratio, ventilation/[Formula: see text]o2) and the HCVR throughout entrance and arousal into and out of hibernation in 13-lined ground squirrels to confirm this. We observed a significant drop (entrance) and rise (arousal) in the RER produced by hypo- and hyperventilation, respectively. CO2 chemo-sensitivity while the RER was reduced on entrance was blunted and rose late in entrance. On arousal, CO2 chemo-sensitivity was elevated when the RER was elevated and fell immediately after RER returned to normal values. At any given Tb, the HCVR was lower during entrance compared to arousal producing a significant hysteresis. The HCVR, however, was the same at any given [Formula: see text]o2 during entrance and arousal. These data suggest that both the changes in [Formula: see text]o2 and in the HCVR are associated with changes in central regulation of the effector limbs establishing steady-state hibernation.
Collapse
Affiliation(s)
- Ryan J Sprenger
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.
| | - William K Milsom
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
4
|
Ratigan ED, McKay DB. Exploring principles of hibernation for organ preservation. Transplant Rev (Orlando) 2015; 30:13-9. [PMID: 26613668 DOI: 10.1016/j.trre.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/19/2015] [Accepted: 08/30/2015] [Indexed: 11/25/2022]
Abstract
Interest in mimicking hibernating states has led investigators to explore the biological mechanisms that permit hibernating mammals to survive for months at extremely low ambient temperatures, with no food or water, and awaken from their hibernation without apparent organ injury. Hibernators have evolved mechanisms to adapt to dramatic reductions in core body temperature and metabolic rate, accompanied by prolonged periods without nutritional intake and at the same time tolerate the metabolic demands of arousal. This review discusses the inherent resilience of hibernators to kidney injury and provides a potential framework for new therapies targeting ex vivo preservation of kidneys for transplantation.
Collapse
Affiliation(s)
- Emmett D Ratigan
- Division of Nephrology/Hypertension, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Dianne B McKay
- Division of Nephrology/Hypertension, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
5
|
Andrewartha SJ, Cummings KJ, Frappell PB. Acid-base balance in the developing marsupial: from ectotherm to endotherm. J Appl Physiol (1985) 2014; 116:1210-9. [DOI: 10.1152/japplphysiol.00996.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Marsupial joeys are born ectothermic and develop endothermy within their mother's thermally stable pouch. We hypothesized that Tammar wallaby joeys would switch from α-stat to pH-stat regulation during the transition from ectothermy to endothermy. To address this, we compared ventilation (V̇e), metabolic rate (V̇o2), and variables relevant to blood gas and acid-base regulation and oxygen transport including the ventilatory requirements (V̇e/V̇o2 and V̇e/V̇co2), partial pressures of oxygen (PaO2), carbon dioxide (PaCO2), pHa, and oxygen content (CaO2) during progressive hypothermia in ecto- and endothermic Tammar wallabies. We also measured the same variables in the well-studied endotherm, the Sprague-Dawley rat. Hypothermia was induced in unrestrained, unanesthetized joeys and rats by progressively dropping the ambient temperature (Ta). Rats were additionally exposed to helox (80% helium, 20% oxygen) to facilitate heat loss. Respiratory, metabolic, and blood-gas variables were measured over a large body temperature (Tb) range (∼15–16°C in both species). Ectothermic joeys displayed limited thermogenic ability during cooling: after an initial plateau, V̇o2 decreased with the progressive drop in Tb. The Tb of endothermic joeys and rats fell despite V̇o2 nearly doubling with the initiation of cold stress. In all three groups the changes in V̇o2 were met by changes in V̇e, resulting in constant V̇e/V̇o2 and V̇e/V̇co2, blood gases, and pHa. Thus, although thermogenic capability was nearly absent in ectothermic joeys, blood acid-base regulation was similar to endothermic joeys and rats. This suggests that unlike some reptiles, unanesthetized mammals protect arterial blood pH with changing Tb, irrespective of their thermogenic ability and/or stage of development.
Collapse
Affiliation(s)
- Sarah J. Andrewartha
- University of Tasmania, Hobart, Tasmania, Australia
- CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia; and
| | - Kevin J. Cummings
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Peter B. Frappell
- University of Tasmania, Hobart, Tasmania, Australia
- CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia; and
| |
Collapse
|
6
|
Abstract
Hibernation in endotherms and ectotherms is characterized by an energy-conserving metabolic depression due to low body temperatures and poorly understood temperature-independent mechanisms. Rates of gas exchange are correspondly reduced. In hibernating mammals, ventilation falls even more than metabolic rate leading to a relative respiratory acidosis that may contribute to metabolic depression. Breathing in some mammals becomes episodic and in some small mammals significant apneic gas exchange may occur by passive diffusion via airways or skin. In ectothermic vertebrates, extrapulmonary gas exchange predominates and in reptiles and amphibians hibernating underwater accounts for all gas exchange. In aerated water diffusive exchange permits amphibians and many species of turtles to remain fully aerobic, but hypoxic conditions can challenge many of these animals. Oxygen uptake into blood in both endotherms and ectotherms is enhanced by increased affinity of hemoglobin for O₂ at low temperature. Regulation of gas exchange in hibernating mammals is predominately linked to CO₂/pH, and in episodic breathers, control is principally directed at the duration of the apneic period. Control in submerged hibernating ectotherms is poorly understood, although skin-diffusing capacity may increase under hypoxic conditions. In aerated water blood pH of frogs and turtles either adheres to alphastat regulation (pH ∼8.0) or may even exhibit respiratory alkalosis. Arousal in hibernating mammals leads to restoration of euthermic temperature, metabolic rate, and gas exchange and occurs periodically even as ambient temperatures remain low, whereas body temperature, metabolic rate, and gas exchange of hibernating ectotherms are tightly linked to ambient temperature.
Collapse
Affiliation(s)
- William K Milsom
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada
| | | |
Collapse
|
7
|
Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1707-14. [PMID: 23506681 DOI: 10.1016/j.bbamem.2013.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/12/2013] [Accepted: 03/04/2013] [Indexed: 01/25/2023]
Abstract
Pulmonary surfactant lines the entire alveolar surface, serving primarily to reduce the surface tension at the air-liquid interface. Surfactant films adsorb as a monolayer interspersed with multilayers with surfactant lipids segregating into different phases or domains. Temperature variation, which influences lipid physical properties, affects both the lipid phase segregation and the surface activity of surfactants. In hibernating animals, such as 13-lined ground squirrels, which vary their body temperature, surfactant must be functional over a wide range of temperatures. We hypothesised that surfactant from the 13-lined ground squirrel, Ictidomys tridecemlineatus, would undergo appropriate lipid structural re-arrangements at air-water interfaces to generate phase separation, sufficient to attain the low surface tensions required to remain stable at both low and high body temperatures. Here, we examined pressure-area isotherms at 10, 25 and 37°C and found that surfactant films from both hibernating and summer-active squirrels reached their highest surface pressure on the Wilhelmy-Langmuir balance at 10°C. Epifluorescence microscopy demonstrated that films of hibernating squirrel surfactant display different lipid micro-domain organisation characteristics than surfactant from summer-active squirrels. These differences were also reflected at the nanoscale as determined by atomic force microscopy. Such re-arrangement of lipid domains in the relatively more fluid surfactant films of hibernating squirrels may contribute to overcoming collapse pressures and support low surface tension during the normal breathing cycle at low body temperatures.
Collapse
|
8
|
Fong AY. Postnatal changes in the cardiorespiratory response and ability to autoresuscitate from hypoxic and hypothermic exposure in mammals. Respir Physiol Neurobiol 2010; 174:146-55. [PMID: 20797451 DOI: 10.1016/j.resp.2010.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Most mammals are born immature and a great deal of maturational changes must occur early in the early postnatal life to prepare for life as an adult. In addition to the obvious changes such as physical and musculoskeletal growth, a myriad of physiological changes including the cardiorespiratory responses to hypoxia and hypothermia must also occur. The most intriguing developmental effect is perhaps the change in the ability to autoresuscitate, or spontaneous recovery from cardiorespiratory arrest induced by extreme hypoxia or hypothermia. For decades the ability of young animals to autoresuscitate from cardiorespiratory arrest induced by hypoxic or hypothermic exposure has been documented. In some mammalian species, including rats and humans, this ability is lost over development while others retain this ability. This review will examine the changes that occur in the cardiorespiratory response to hypoxia and hypothermia and the change to the ability to autoresuscitate from cardiorespiratory arrest over early postnatal development. Furthermore, the review will explore some of the potential neuroanatomical, neurochemical and neurophysiological changes during early postnatal development that might contribute to the altered reflex response to hypoxia and hypothermia and the ability to autoresuscitate.
Collapse
Affiliation(s)
- Angelina Y Fong
- Australian School of Advanced Medicine, Macquarie University, North Ryde, NSW, Australia.
| |
Collapse
|
9
|
Fong AY, Zimmer MB, Milsom WK. The conditional nature of the “Central Rhythm Generator” and the production of episodic breathing. Respir Physiol Neurobiol 2009; 168:179-87. [DOI: 10.1016/j.resp.2009.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 12/01/2022]
|
10
|
Osborne PG, Sato J, Shuke N, Hashimoto M. Sympathetic alpha-adrenergic regulation of blood flow and volume in hamsters arousing from hibernation. Am J Physiol Regul Integr Comp Physiol 2005; 289:R554-R562. [PMID: 15845885 DOI: 10.1152/ajpregu.00004.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammals arousing from hibernation display pronounced regional heterothermy, where the thoracic and head regions warm faster than the abdominal and hindlimb regions. We used laser-Doppler flowmetry to measure peripheral hind foot blood flow during hibernation and arousal and gamma imaging of technetium-labeled albumin to measure whole blood volume distribution in hamsters arousing from hibernation. It was discovered that the hibernating hamster responds to physical but not to sound or hypercapnic stimulation with rapid, 73% reduction of hind foot blood flow. Hind foot blood flow vasoconstriction was maintained from the onset of arousal until late in arousal when rectal temperature was rapidly increased. alpha-Adrenergic blockade early in arousal increased hind foot blood flow by 700%, suggesting that vasoconstriction was mediated by activation of sympathetic tone. Gamma imaging revealed that, by the early phase of arousal from hibernation, the blood volume of the body below the liver is greatly reduced, whereas blood volumes of the thorax and head are much greater than corresponding volumes in anesthetized hamsters. As arousal progresses and cardiac activity increases and regional heterothermy develops, this regional blood volume distribution is largely maintained; however, blood volume slowly decreases in the thoracic region and slowly increases in the shoulder and head regions. The rapid increase in rectal temperature, characteristic of mid- to late- arousal phases, is probably mediated, in part, by reduction of adrenergic tone on abdominal and hindlimb vasculature. Warm blood then moves into the hind body, produces an increase in temperature, blood flow, and blood volume in the hind body and compensatory reductions of blood volume in the neck, head, and thoracic regions.
Collapse
Affiliation(s)
- P G Osborne
- Dept. of Physiology, Asahikawa Medical University School of Medicine, Asahikawa 078-8510, Japan
| | | | | | | |
Collapse
|
11
|
Milsom WK, Chatburn J, Zimmer MB. Pontine influences on respiratory control in ectothermic and heterothermic vertebrates. Respir Physiol Neurobiol 2004; 143:263-80. [PMID: 15519560 DOI: 10.1016/j.resp.2004.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2004] [Indexed: 11/24/2022]
Abstract
Respiratory rhythm generators appear both evolutionarily and developmentally as paired segmental rhythm generators in the reticular formation, associated with the motor nuclei of cranial nerves V, VII, IX, X, and XII. Those associated with the Vth and VIIth motor nuclei are "pontine" in origin and in fishes that employ a buccal suction/force pump for breathing the primary pair of respiratory rhythm generators are associated with the trigeminal nuclei. In amphibians, while the basic respiratory pump remains the same, the dominant site of respiratory rhythm generation has been assumed by the facial, glossopharyngeal and vagal motor nuclei. In reptiles, birds and mammals, in general there is a switch to an aspiration pump driven by thoraco-lumbar muscles innervated by spinal nerves. In these groups, the critical sites necessary for respiratory rhythmogenesis now sit near the ponto-medullary border, in the parafacial region (which may underlie expiratory-dominated, intercostal-abdominal breathing in non-mammalian tetrapods) and in a more caudal region, the preBotzinger complex (which may underlie inspiratory-dominated diaphragmatic breathing in mammals).
Collapse
Affiliation(s)
- William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | | | |
Collapse
|
12
|
Zimmer MB, Milsom WK. Effect of hypothermia on respiratory rhythm generation in hamster brainstem–spinal cord preparations. Respir Physiol Neurobiol 2004; 142:237-49. [PMID: 15450483 DOI: 10.1016/j.resp.2004.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 11/25/2022]
Abstract
This study examined the effect of hypothermia on respiratory neural output from brainstem-spinal cord preparations of a cold tolerant rodent, the Syrian hamster. Brainstem-spinal cords from neonatal hamsters (0-6 days) were placed in a recording dish and respiratory-like neural activity was recorded from roots of the first cervical nerve. The preparations were cooled and warmed in a continuous or stepwise fashion. Inputs from the pons completely inhibited neural activity under steady state conditions. With the pons removed, fictive breathing was robust. Cooling caused respiratory arrest, followed by spontaneous resumption of activity on re-warming. Preparations from older hamsters (4-6 days old) were more cold tolerant than younger preparations (0-3 days old). Motor discharge was episodic during continuous cooling, and seizure-like discharge was observed during continuous warming. These phenomena were not observed with stepwise temperature changes suggesting that transient temperature effects on membrane properties may be involved. These preparations were not as cold tolerant as hamster pups in vivo but they retained the ability to autoresuscitate at all ages studied.
Collapse
Affiliation(s)
- M Beth Zimmer
- University of British Columbia, Department of Zoology, 6270 University Blvd., Vancouver, BC, Canada V6R 1G8.
| | | |
Collapse
|
13
|
MacFarlane PM, Frappell PB. Hypothermia and hypoxia inhibit the Hering-Breüer reflex in the marsupial newborn. Am J Physiol Regul Integr Comp Physiol 2004; 286:R857-64. [PMID: 14695112 DOI: 10.1152/ajpregu.00225.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of lowering body temperature (Tb) on metabolic rate, ventilation, and the strength of the Hering-Breüer expiratory promoting reflex (HB reflex; determined from an inhibitory ratio calculated from volumetric measurements of the respiratory rhythm) were examined in 18-day-old ectothermic pouch young of the tammar wallaby during normoxia or hypoxia (10% O2). Hypoxia and hypothermia, either singularly or combined, depressed metabolic rate. At all Tb, the hypoxic hyperventilation was associated with a significant hyperpnea. At pouch Tb (36.5°C) during normoxia, inflation of the lungs with -5 or -10 cmH2O extrathoracic pressure induced a significant HB reflex. Exposure to cold reduced the strength of the reflex, almost abolishing it at 28°C. For Tb above 28°C, the reflex in hypoxia was always less than the corresponding normoxic value. Taken in context with the changes in metabolic state that occurred, these data in the ectothermic marsupial newborn suggest that the decline in the HB reflex during moderate hypothermia is the result of a direct effect of Tb on vagal mechanisms rather than a temperature-driven decline in metabolic rate that should have acted to strengthen the HB reflex. Therefore, it seems that inputs inhibitory to breathing are more negatively affected during cold than those inputs that are excitatory.
Collapse
Affiliation(s)
- P M MacFarlane
- Adaptational and Evolutionary Respiratory Physiology Laboratory, Dept. of Zoology, La Trobe University, Melbourne, Victoria 3086, Australia
| | | |
Collapse
|