1
|
Pandey D, Ghosh D. Proteomics-based host-specific biomarkers for tuberculosis: The future of TB diagnosis. J Proteomics 2024; 305:105245. [PMID: 38942234 DOI: 10.1016/j.jprot.2024.105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Tuberculosis (TB) is an infectious disease that remains one of the major global public health concerns. Early detection of Active Pulmonary TB is therefore of utmost importance for controlling lethality and disease spreading. Currently available TB diagnostics can be broadly categorized into microscopy, culture-based, and molecular approaches, all of which come with compromised sensitivity, limited efficacy, and high expenses. Hence, rapid, sensitive, and affordable diagnostic methods for TB is the current prerequisite for disease management. This review summarizes the proteomics investigations for host-specific biomarkers from serum, sputum, saliva, and urine samples of TB patients, along with patients having comorbidity. Thorough data mining from available literature led us to conclude that the host-specific proteins involved in immunity and defense, metabolic regulation, cellular adhesion, and motility, inflammatory responses, and tissue remodelling have shown significant deregulation upon Mycobacterium tuberculosis (Mtb) infection. Notably, the immunoregulatory protein orosomucoid (ORM) was up-regulated in active TB compared to non-TB individuals, as observed in multiple studies from diverse sample types. Mannose receptor C type 2 (MRC2) was identified as an upregulated, treatment response biomarker in two independent serum proteomics investigations. Thorough mechanistic investigation on these candidate proteins would be fascinating to dig into potential drug targets and customized therapeutics for TB patients, along with their diagnostic potentials.
Collapse
Affiliation(s)
- Divya Pandey
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Dipanjana Ghosh
- School of Biomolecular Engineering & Biotechnology, Rajiv Gandhi Technological University, Airport Bypass Road, Bhopal 462033, India.
| |
Collapse
|
2
|
Archana SS, Selvaraju S, Binsila BK, Arangasamy A, Krawetz SA. Immune regulatory molecules as modifiers of semen and fertility: A review. Mol Reprod Dev 2019; 86:1485-1504. [DOI: 10.1002/mrd.23263] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- S. Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
- Department of BiochemistryJain University Bengaluru India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - B. Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - Stephen A. Krawetz
- Department of Obstetrics and GynecologyWayne State University School of Medicine Detroit Michigan
- Center for Molecular Medicine and GeneticsC.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit Michigan
| |
Collapse
|
3
|
Abstract
Cereals contribute a major part of human nutrition and are considered as an integral source of energy for human diets. With genomic databases already available in cereals such as rice, wheat, barley, and maize, the focus has now moved to proteome analysis. Proteomics studies involve the development of appropriate databases based on developing suitable separation and purification protocols, identification of protein functions, and can confirm their functional networks based on already available data from other sources. Tremendous progress has been made in the past decade in generating huge data-sets for covering interactions among proteins, protein composition of various organs and organelles, quantitative and qualitative analysis of proteins, and to characterize their modulation during plant development, biotic, and abiotic stresses. Proteomics platforms have been used to identify and improve our understanding of various metabolic pathways. This article gives a brief review of efforts made by different research groups on comparative descriptive and functional analysis of proteomics applications achieved in the cereal science so far.
Collapse
Affiliation(s)
- Monika Bansal
- a School of Agriculture, Lovely Professional University , Phagwara 144411 , Punjab.,b School of Agriculture , Lovely Professional University , Phagwara 144411 , Punjab
| | - Madhu Sharma
- a School of Agriculture, Lovely Professional University , Phagwara 144411 , Punjab
| | - Priyanka Kanwar
- a School of Agriculture, Lovely Professional University , Phagwara 144411 , Punjab
| | - Aakash Goyal
- c Biodiversity and Integrated Gene Management Program , International Center for Agriculture Research in the Dry Areas (ICARDA) , P.O.Box 6299, Rabat-Institutes, Rabat , Morocco
| |
Collapse
|
4
|
Xing X, Liang D, Huang Y, Zeng Y, Han X, Liu X, Liu J. The application of proteomics in different aspects of hepatocellular carcinoma research. J Proteomics 2016; 145:70-80. [PMID: 27072111 DOI: 10.1016/j.jprot.2016.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, which is causing the second leading cancer-related death worldwide. With the significant advances of high-throughput protein analysis techniques, the proteomics offered an extremely useful and versatile analytical platform for biomedical researches. In recent years, different proteomic strategies have been widely applied in the various aspects of HCC studies, ranging from screening the early diagnostic and prognostic biomarkers to in-depth investigating the underlying molecular mechanisms. In this review, we would like to systematically summarize the current applications of proteomics in hepatocellular carcinoma study, and discuss the challenges of applying proteomics in study clinical samples, as well as discuss the possible application of proteomics in precision medicine. BIOLOGICAL SIGNIFICANCE In this review, we have systematically summarized the current applications of proteomics in hepatocellular carcinoma study, ranging from screening biomarkers to in-depth investigating the underlying molecular mechanisms. In addition, we have discussed the challenges of applying proteomics in study clinical samples, as well as the possible applications of proteomics in precision medicine. We believe that this review would help readers to be better familiar with the recent progresses of clinical proteomics, especially in the field of hepatocellular carcinoma research.
Collapse
Affiliation(s)
- Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dong Liang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Graduate School of Fujian Medical University, Fuzhou 350018, People's Republic of China
| | - Yao Huang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China
| | - Xiao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
5
|
Melemedjian OK, Yassine HN, Shy A, Price TJ. Proteomic and functional annotation analysis of injured peripheral nerves reveals ApoE as a protein upregulated by injury that is modulated by metformin treatment. Mol Pain 2013; 9:14. [PMID: 23531341 PMCID: PMC3623807 DOI: 10.1186/1744-8069-9-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/21/2013] [Indexed: 12/23/2022] Open
Abstract
Background Peripheral nerve injury (PNI) results in a fundamental reorganization of the translational machinery in the injured peripheral nerve such that protein synthesis is increased in a manner linked to enhanced mTOR and ERK activity. We have shown that metformin treatment, which activates adenosine monophosphate-activated protein kinase (AMPK), reverses tactile allodynia and enhanced translation following PNI. To gain a better understanding of how PNI changes the proteome of the sciatic nerve and ascertain how metformin treatment may cause further change, we conducted a range of unbiased proteomic studies followed by biochemical experiments to confirm key results. Results We used multidimensional protein identification technology (MUDPIT) on sciatic nerve samples taken from rats with sham surgery, spinal nerve ligation (SNL) surgery or SNL + 200 mg/kg metformin treatment. MUDPIT analysis on these complex samples yielded a wide variety of proteins that were sorted according to their peptide counts in SNL and SNL + metformin compared to sham. These proteins were then submitted to functional annotation analysis to identify potential functional networks altered by SNL and SNL + metformin treatment. Additionally, we used click-chemistry-based labeling and purification of nascently synthesized proteins followed by MUDPIT to further identify peptides that were synthesized within the injured nerve. With these methods, we identified apolipoprotein E (ApoE) as a protein profoundly increased by PNI and further increased by PNI and metformin. This result was confirmed by Western Blot of samples from SNL rats and spared nerve injury (SNI) mice. Furthermore, we show that 7-day treatment with metformin in naïve mice leads to an increase in ApoE expression in the sciatic nerve. Conclusions These proteomic findings support the hypothesis that PNI leads to a fundamental reorganization of gene expression within the injured nerve. Our data identify a key association of ApoE with PNI that is regulated by metformin treatment. We conclude from the known functions of ApoE in the nervous system that ApoE may be an intrinsic factor linked to nerve regeneration after PNI, an effect that is further enhanced by metformin treatment.
Collapse
Affiliation(s)
- Ohannes K Melemedjian
- Department of Pharmacology, The University of Arizona School of Medicine, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
6
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Functional proteomics: application of mass spectrometry to the study of enzymology in complex mixtures. Anal Bioanal Chem 2011; 402:625-45. [PMID: 21769551 DOI: 10.1007/s00216-011-5236-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/19/2022]
Abstract
This review covers recent developments in mass spectrometry-based applications dealing with functional proteomics with special emphasis on enzymology. The introduction of mass spectrometry into this research field has led to an enormous increase in knowledge in recent years. A major challenge is the identification of "biologically active substances" in complex mixtures. These biologically active substances are, on the one hand, potential regulators of enzymes. Elucidation of function and identity of those regulators may be accomplished by different strategies, which are discussed in this review. The most promising approach thereby seems to be the one-step procedure, because it enables identification of the functionality and identity of biologically active substances in parallel and thus avoids misinterpretation. On the other hand, besides the detection of regulators, the identification of endogenous substrates for known enzymes is an emerging research field, but in this case studies are quite rare. Moreover, the term biologically active substances may also encompass proteins with diverse biological functions. Elucidation of the functionality of those-so far unknown-proteins in complex mixtures is another branch of functional proteomics and those investigations will also be discussed in this review.
Collapse
|
8
|
Dornmayr-Pfaffenhuemer M, Legat A, Schwimbersky K, Fendrihan S, Stan-Lotter H. Responses of haloarchaea to simulated microgravity. ASTROBIOLOGY 2011; 11:199-205. [PMID: 21417742 PMCID: PMC3079168 DOI: 10.1089/ast.2010.0536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 01/26/2011] [Indexed: 05/25/2023]
Abstract
Various effects of microgravity on prokaryotes have been recognized in recent years, with the focus on studies of pathogenic bacteria. No archaea have been investigated yet with respect to their responses to microgravity. For exposure experiments on spacecrafts or on the International Space Station, halophilic archaea (haloarchaea) are usually embedded in halite, where they accumulate in fluid inclusions. In a liquid environment, these cells will experience microgravity in space, which might influence their viability and survival. Two haloarchaeal strains, Haloferax mediterranei and Halococcus dombrowskii, were grown in simulated microgravity (SMG) with the rotary cell culture system (RCCS, Synthecon). Initially, salt precipitation and detachment of the porous aeration membranes in the RCCS were observed, but they were avoided in the remainder of the experiment by using disposable instead of reusable vessels. Several effects were detected, which were ascribed to growth in SMG: Hfx. mediterranei's resistance to the antibiotics bacitracin, erythromycin, and rifampicin increased markedly; differences in pigmentation and whole cell protein composition (proteome) of both strains were noted; cell aggregation of Hcc. dombrowskii was notably reduced. The results suggest profound effects of SMG on haloarchaeal physiology and cellular processes, some of which were easily observable and measurable. This is the first report of archaeal responses to SMG. The molecular mechanisms of the effects induced by SMG on prokaryotes are largely unknown; haloarchaea could be used as nonpathogenic model systems for their elucidation and in addition could provide information about survival during lithopanspermia (interplanetary transport of microbes inside meteorites).
Collapse
Affiliation(s)
| | - Andrea Legat
- Department of Microbiology, Division of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Karin Schwimbersky
- Department of Microbiology, Division of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Sergiu Fendrihan
- Department of Microbiology, Division of Molecular Biology, University of Salzburg, Salzburg, Austria
- Romanian Bioresource Centre, Bucharest, Romania
| | - Helga Stan-Lotter
- Department of Microbiology, Division of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
9
|
Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 2010; 9:3443-64. [PMID: 20433195 DOI: 10.1021/pr901098p] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water-deficit or dehydration impairs almost all physiological processes and greatly influences the geographical distribution of many crop species. It has been postulated that higher plants rely mostly on induction mechanisms to maintain cellular integrity during stress conditions. Plant cell wall or extracellular matrix (ECM) forms an important conduit for signal transduction between the apoplast and symplast and acts as front-line defense, thereby playing a key role in cell fate decision under various stress conditions. To better understand the molecular mechanism of dehydration response in plants, four-week-old rice seedlings were subjected to progressive dehydration by withdrawing water and the changes in the ECM proteome were examined using two-dimensional gel electrophoresis. Dehydration-responsive temporal changes revealed 192 proteins that change their intensities by more than 2.5-fold, at one or more time points during dehydration. The proteomic analysis led to the identification of about 100 differentially regulated proteins presumably involved in a variety of functions, including carbohydrate metabolism, cell defense and rescue, cell wall modification, cell signaling and molecular chaperones, among others. The differential rice proteome was compared with the dehydration-responsive proteome data of chickpea and maize. The results revealed an evolutionary divergence in the dehydration response as well as organ specificity, with few conserved proteins. The differential expression of the candidate proteins, in conjunction with previously reported results, may provide new insight into the underlying mechanisms of the dehydration response in plants. This may also facilitate the targeted alteration of metabolic routes in the cell wall for agricultural and industrial exploitation.
Collapse
Affiliation(s)
- Aarti Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Xu Y, Cao Q, Svec F, Fréchet JMJ. Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides. Anal Chem 2010; 82:3352-8. [PMID: 20302345 PMCID: PMC2875083 DOI: 10.1021/ac1002646] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new porous polymer monolithic capillary column modified with gold nanoparticles that enables the selective capture of cysteine-containing peptides has been developed to reduce the complexity of peptide mixtures generated in bottom-up proteomic analysis. The column is prepared from a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith through reaction of some of its epoxide moieties with cysteamine to afford a monolith rich in surface thiol groups. In situ reduction of chloroauric acid within the column is then used to form gold nanoparticles attached to the surface of the pores of the monolith. This process preserves the excellent hydrodynamic properties of the monolithic column while providing a means to selectively retain cysteine-containing peptides from an analyte due to their high affinity for gold. Release of the retained peptides is subsequently achieved with an excess of 2-mercaptoethanol. The loading capacity determined for l-cysteine using frontal elution is 2.58 mumol/m. Since the gold-thiol link is less stable at elevated temperatures, the adsorption capacity is recovered by washing the column at 80 degrees C for 2 h. While regeneration is easy, the multiplicity of bonds between the monolithic support and the gold nanoparticles prevents their elution even under harsh conditions such as treatment with pure 2-mercaptoethanol or treatment with boiling water for 5 h. Application of the gold modified monolith in tandem with a packed C18 capillary column is demonstrated with baseline separation of a peptide mixture achieved in a two step process. The first involves retention of cysteine-containing peptides in monolith with reversed phase separation of all other peptides, while the retained peptides are released from monolith and separated in the second step.
Collapse
Affiliation(s)
- Yan Xu
- College of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | |
Collapse
|
11
|
Thelen JJ. Proteomics tools and resources for investigating protein allergens in oilseeds. Regul Toxicol Pharmacol 2009; 54:S41-5. [PMID: 19545509 DOI: 10.1016/j.yrtph.2009.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 01/07/2009] [Accepted: 01/12/2009] [Indexed: 12/23/2022]
Abstract
Oilseeds are important renewable sources of natural products including protein and oil which are produced during the maturation (or seed filling) phase of embryo development. My lab employed high-resolution, two-dimensional gel electrophoresis (2-DE) and mass spectrometry to profile and identify over 500 proteins expressed during seed filling in various oilseeds including soybean, canola, castor, and Arabidopsis. The principal objective of these studies was to develop predictive models for carbon assimilation for comparison among the four oilseeds. Other uses for these large proteomic datasets have come to light including characterization of the diversity and expression of known and yet-to-be-discovered protein allergens as they accumulate during seed development. Legume oilseeds such as soybean and peanut present a human and animal health concern for a small percentage of the population that are allergic to one or more of the seed proteins. Information about the expression and diversity of 2-DE spots that map to individual genes or gene families of allergens can prove useful for breeding- or biotechnology-based approaches aimed at silencing allergen expression. We have begun releasing these proteomics datasets for public access on the Oilseed Proteomics web portal, www.oilseedproteomics.missouri.edu. I will present the status of these projects and the website with specific emphasis on soybean.
Collapse
Affiliation(s)
- Jay J Thelen
- Interdisciplinary Plant Group and Division of Biochemistry, 109 Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| |
Collapse
|
12
|
Lee J, Soper SA, Murray KK. Microfluidic chips for mass spectrometry-based proteomics. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:579-93. [PMID: 19373851 DOI: 10.1002/jms.1585] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microfluidic devices coupled to mass spectrometers have emerged as excellent tools for solving the complex analytical challenges associated with the field of proteomics. Current proteome identification procedures are accomplished through a series of steps that require many hours of labor-intensive work. Microfluidics can play an important role in proteomic sample preparation steps prior to mass spectral identification such as sample cleanup, digestion, and separations due to its ability to handle small sample quantities with the potential for high-throughput parallel analysis. To utilize microfluidic devices for proteomic analysis, an efficient interface between the microchip and the mass spectrometer is required. This tutorial provides an overview of the technologies and applications of microfluidic chips coupled to mass spectrometry for proteome analysis. Various approaches for combining microfluidic devices with electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are summarized and applications of chip-based separations and digestion technologies to proteomic analysis are presented.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
13
|
Abstract
Over the past years, large-scale analysis of proteomes gained increased interest to obtain a fast but nevertheless comprehensive overview about cellular protein content. While a complete proteome cannot be covered using current technologies because of its enormous diversity, subfractionation to reduce the complexity has become mandatory. While 2D-PAGE is well established as a high-resolution protein separation technique, it suffers from drawbacks, which can be overcome by using peptide separation methods based on multidimensional liquid chromatography. One of these technologies is multidimensional protein identification technology (MudPIT). It consists of two orthogonal separation systems--strong cation exchange (SCX) and reversed phase (RP)--coupled online in an automated fashion to mass spectrometric detection. This method offers the possibility to analyze high-complex peptide mixtures in a single experiment.
Collapse
Affiliation(s)
- Katharina Lohrig
- Department of Analytical Chemistry, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | |
Collapse
|
14
|
Developments in cheese microbiology in New Zealand—Use of starter and non-starter lactic acid bacteria and their enzymes in determining flavour. Int Dairy J 2008. [DOI: 10.1016/j.idairyj.2008.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abstract
The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.
Collapse
|
16
|
Kumari S, Kumar A, Samant M, Sundar S, Singh N, Dube A. Proteomic approaches for discovery of new targets for vaccine and therapeutics against visceral leishmaniasis. Proteomics Clin Appl 2008; 2:372-86. [PMID: 21136840 DOI: 10.1002/prca.200780017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Indexed: 11/06/2022]
Abstract
Visceral leishmaniasis (VL) is the most devastating type caused by Leishmania donovani, Leishmania infantum, and Leishmania chagasi. The therapeutic mainstay is still based on the antiquated pentavalent antimonial against which resistance is now increasing. Unfortunately, due to the digenetic life cycle of parasite, there is significant antigenic diversity. There is an urgent need to develop novel drug/vaccine targets against VL for which the primary goal should be to identify and characterize the structural and functional proteins. Proteomics, being widely employed in the study of Leishmania seems to be a suitable strategy as the availability of annotated sequenced genome of Leishmania major has opened the door for dissection of both protein expression/regulation and function. Advances in clinical proteomic technologies have enable to enhance our mechanistic understanding of virulence/pathogenicity/host-pathogen interactions, drug resistance thereby defining novel therapeutic/vaccine targets. Expression proteomics exploits the differential expression of leishmanial proteins as biomarkers for application towards early diagnosis. Further using immunoproteomics efforts were also focused on evaluating responses to define parasite T-cell epitopes as vaccine/diagnostic targets. This review has highlighted some of the relevant developments in the rapidly emerging field of leishmanial proteomics and focus on its future applications in drug and vaccine discovery against VL.
Collapse
Affiliation(s)
- Shraddha Kumari
- Division of Parasitology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The HQ (H = histidine, Q = glutamine) tag is a small fusion tag that can be isolated using immobilized metal affinity columns. HQ-tagged proteins can be expressed and purified from bacterial cells under native and denaturing conditions, mammalian cells, insect cells, wheat germ and rabbit reticulocyte. Furthermore, HQ-tagged proteins can be purified using magnetic or non-magnetic resins in multiple formats from small to large-scale and manual or automated. In this chapter, we have described various protocols for the purification of HQ-tagged proteins.
Collapse
Affiliation(s)
- Becky Godat
- Proteomics R&D, Promega Corporation, Fitchburg, WI, USA
| | | | | | | |
Collapse
|
18
|
Haynes PA, Roberts TH. Subcellular shotgun proteomics in plants: looking beyond the usual suspects. Proteomics 2007; 7:2963-75. [PMID: 17703495 DOI: 10.1002/pmic.200700216] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this review we examine the current state of analytical methods used for shotgun proteomics experiments in plants. The rapid advances in this field in recent years are discussed, and contrasted with experiments performed using current widely used procedures. We also examine the use of subcellular fractionation approaches as they apply to plant proteomics, and discuss how appropriate sample preparation can produce a great increase in proteome coverage in subsequent analysis. We conclude that the conjunction of these two techniques represents a significant advance in plant proteomics, and the future of plant biology research will continue to be enriched by the ongoing development of proteomic analytical technology.
Collapse
Affiliation(s)
- Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | | |
Collapse
|
19
|
Multivariate comparison between peptide mass fingerprints obtained by liquid chromatography–electrospray ionization-mass spectrometry with different trypsin digestion procedures. J Chromatogr A 2007; 1171:69-79. [DOI: 10.1016/j.chroma.2007.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/10/2007] [Accepted: 09/18/2007] [Indexed: 11/21/2022]
|
20
|
Hattrup E, Neilson KA, Breci L, Haynes PA. Proteomic analysis of shade-avoidance response in tomato leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8310-8. [PMID: 17874839 DOI: 10.1021/jf0713049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The aim of this project was to investigate the molecular mechanisms of shade-avoidance response in tomato ( Solanum lycopersicum) plants. Plants were grown in direct sunlight in ambient temperature and in an adjacent environment under shade cloth. Leaves were harvested, and protein expression differences were investigated using two-dimensional differential in-gel electrophoresis and nanoflow high-performance liquid chromatography-tandem mass spectrometry. Striking differences in plant physiology and protein expression were observed. Plants grown in the shade grew very tall but bore almost no fruit and displayed a dramatic reduction in the accumulation of Rubisco and a number of other metabolic enzymes. We have identified, quantified, and classified 59 protein features found to be up- or down-regulated as part of a shade-avoidance response in S. lycopersicum and correlated these with phenotypic data. A large group of proteins related to metabolism and respiration were greatly reduced in accumulation in shade-grown plants, and there was also evidence of significant proteolysis occurring. Four stress-related proteins appear to be constitutively expressed as a result of heat acclimation, while three distinct stress-related proteins appear to accumulate as part of the shade-avoidance response. The identification and functional classification of all 59 differentially accumulating proteins is presented and discussed.
Collapse
Affiliation(s)
- Emily Hattrup
- Department of Biochemistry and Molecular Biophysics, Department of Chemistry, and Bio5 Institute for Collaborative Bioresearch, The University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | |
Collapse
|
21
|
Bączek T, Radkowska M, Sparzak B. Predictions of Peptide Retention in HPLC with the use of Amino Acid Retention Data Obtained in a TLC System. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070701629457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tomasz Bączek
- a Department of Biopharmaceutics and Pharmacodynamics , Medical University of Gdańsk , Gdańsk, Poland
| | - Marta Radkowska
- a Department of Biopharmaceutics and Pharmacodynamics , Medical University of Gdańsk , Gdańsk, Poland
| | - Barbara Sparzak
- b Department of Pharmacognosy , Medical University of Gdańsk , Gdańsk, Poland
| |
Collapse
|
22
|
Kang D, Moon MH. Development of non-gel-based two-dimensional separation of intact proteins by an on-line hyphenation of capillary isoelectric focusing and hollow fiber flow field-flow fractionation. Anal Chem 2007; 78:5789-98. [PMID: 16906725 DOI: 10.1021/ac0606958] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A rapid, non-gel-based, on-line, two-dimensional separation method is introduced for proteome analysis. Protein fractionation was carried out by first exploiting the differences in their respective isoelectric points (pI) in a Teflon capillary using isoelectric focusing (IEF), followed by a molecular weight (MW)-based separation in a hollow fiber by flow field-flow fractionation (FlFFF). The method developed here (CIEF-HFFlFFF) may be a powerful alternative to two-dimensional polyacrylamide gel electrophoresis, which is currently used for the separation and purification of proteins. In CIEF-HFFlFFF, proteins can be collected as a fraction of a certain pI and MW interval without being denatured. Additionally, the ampholyte solution is simultaneously removed during separation in the hollow fiber, and the overall process time is significantly reduced. This method was applied to a human urinary proteome sample, leading to the identification of 114 proteins with the subsequent off-line use of nanoflow liquid chromatography-tandem mass spectrometry after the tryptic digestion of each collected protein fraction.
Collapse
Affiliation(s)
- Dukjin Kang
- Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| | | |
Collapse
|
23
|
Lantz RC, Lynch BJ, Boitano S, Poplin GS, Littau S, Tsaprailis G, Burgess JL. Pulmonary biomarkers based on alterations in protein expression after exposure to arsenic. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:586-91. [PMID: 17450228 PMCID: PMC1852690 DOI: 10.1289/ehp.9611] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 01/08/2007] [Indexed: 05/02/2023]
Abstract
OBJECTIVE Environmental exposure to arsenic results in multiple adverse effects in the lung. Our objective was to identify potential pulmonary protein biomarkers in the lung-lining fluid of mice chronically exposed to low-dose As and to validate these protein changes in human populations exposed to As. METHODS Mice were administered 10 or 50 ppb As (sodium arsenite) in their drinking water for 4 weeks. Proteins in the lung-lining fluid were identified using two-dimensional gel electrophoresis (n = 3) or multidimensional protein identification technology (MUDPIT) (n = 2) coupled with mass spectrometry. Lung-induced sputum samples were collected from 57 individuals (tap water As ranged from ~ 5 to 20 ppb). Protein levels in sputum were determined by ELISA, and As species were analyzed in first morning void urine. RESULTS Proteins in mouse lung-lining fluid whose expression was consistently altered by As included glutathione-S-transferase (GST)-omega-1, contraspin, apolipoprotein A-I and A-IV, enolase-1, peroxiredoxin-6, and receptor for advanced glycation end products (RAGE). Validation of the putative biomarkers was carried out by evaluating As-induced alterations in RAGE in humans. Regression analysis demonstrated a significant negative correlation (p = 0.016) between sputum levels of RAGE and total urinary inorganic As, similar to results seen in our animal model. CONCLUSION Combinations of proteomic analyses of animal models followed by specific analysis of human samples provide an unbiased determination of important, previously unidentified putative biomarkers that may be related to human disease.
Collapse
Affiliation(s)
- R Clark Lantz
- Department of Cell Biology & Anatomy, and Southwest Environmental Health Science Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Rohrbough JG, Galgiani JN, Wysocki VH. The Application of Proteomic Techniques to Fungal Protein Identification and Quantification. Ann N Y Acad Sci 2007; 1111:133-46. [PMID: 17344531 DOI: 10.1196/annals.1406.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The number of sequenced genomes has increased rapidly in the last few years, supporting a revolution in bioinformatics that has been leveraged by scientists seeking to analyze the proteomes of numerous biological systems. The primary technique employed for the identification of peptides and proteins from biological sources is mass spectrometry (MS). This analytical process is usually in the form of whole-protein analysis (termed "top-down" proteomics) or analysis of enzymatically produced peptides (known as the "bottom-up" approach). This article will focus primarily on the more common bottom-up proteomics to include topics such as sample preparation, separation strategies, MS instrumentation, data analysis, and techniques for protein quantification. Strategies for preparation of samples for proteomic analysis, as well as tools for protein and peptide separation will be discussed. A general description of common MS instruments along with tandem mass spectrometry (MS/MS) will be given. Different methodologies of sample ionization including matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) will be discussed. Data analysis methods including database search algorithms and tools for protein sequence analysis will be introduced. We will also discuss experimental strategies for MS protein quantification using stable isotope labeling techniques and fluorescent labeling. We will introduce several fungal proteomic studies to illustrate the use of these methods. This article will allow investigators to gain a working knowledge of proteomics along with some strengths and weaknesses associated with the techniques presented.
Collapse
|
25
|
Mullen A, Stapleton P, Corcoran D, Hamill R, White A. Understanding meat quality through the application of genomic and proteomic approaches. Meat Sci 2006; 74:3-16. [DOI: 10.1016/j.meatsci.2006.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 04/25/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
|
26
|
Ottens AK, Kobeissy FH, Golden EC, Zhang Z, Haskins WE, Chen SS, Hayes RL, Wang KKW, Denslow ND. Neuroproteomics in neurotrauma. MASS SPECTROMETRY REVIEWS 2006; 25:380-408. [PMID: 16498609 DOI: 10.1002/mas.20073] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Neurotrauma in the form of traumatic brain injury (TBI) afflicts more Americans annually than Alzheimer's and Parkinson's disease combined, yet few researchers have used neuroproteomics to investigate the underlying complex molecular events that exacerbate TBI. Discussed in this review is the methodology needed to explore the neurotrauma proteome-from the types of samples used to the mass spectrometry identification and quantification techniques available. This neuroproteomics survey presents a framework for large-scale protein research in neurotrauma, as applied for immediate TBI biomarker discovery and the far-reaching systems biology understanding of how the brain responds to trauma. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of neurotrauma on society.
Collapse
Affiliation(s)
- Andrew K Ottens
- Center of Neuroproteomics and Biomarkers Research, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mihailova A, Lundanes E, Greibrokk T. Determination and removal of impurities in 2-D LC-MS of peptides. J Sep Sci 2006; 29:576-81. [PMID: 16583696 DOI: 10.1002/jssc.200500496] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Problems occurring during operation of a 2-D LC-MS system for separation and identification of neuropeptides, such as contamination of the used salts and column bleed, are described. When using polysulfoethyl aspartamide, which is widely used as a strong cation exchange stationary phase in the first dimension, interfering peaks were observed in the second-dimension reversed-phase chromatograms. The observed peaks, found to be caused by column bleeding, had abundance above the threshold value and influenced the quality of the analyses. The origin of the peaks was verified and appropriate measures are proposed. Additionally, peaks caused by polyethylene glycols (PEGs), covering approximately 5 min of feasible chromatographic time in every fraction, were observed. The commercial ammonium formate salts used to prepare the first-dimension mobile phase were found to contain PEG impurities, and in subsequent work the salt solutions were prepared from formic acid and ammonia to avoid any additional contaminations.
Collapse
Affiliation(s)
- Albena Mihailova
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway.
| | | | | |
Collapse
|
28
|
Svec F. Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis 2006; 27:947-61. [PMID: 16470758 DOI: 10.1002/elps.200500661] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This review summarizes the recent contributions to the rapidly growing area of immobilized enzymes employing both silica and synthetic polymer-based monoliths as supports. Focus is mainly on immobilized proteolytic enzyme reactors designed for studies in proteomics. Porous monoliths emerged first as a new class of stationary phases for HPLC in the early 1990s. Soon thereafter, they were also used as supports for immobilization of proteins and preparation of both stationary phases for bioaffinity chromatography and enzymatic reactors. Organic polymer-based monoliths are typically prepared using a simple molding process carried out within the confines of a "mold" such as chromatographic column or capillary. Polymerization of a mixture comprising monomers, initiator, and porogenic solvent affords macroporous materials. In contrast, silica-based monoliths are first formed as a rigid rod from tetraalkoxysilane in the presence of PEG and subsequently encased with a plastic tube. Both types of monolith feature large through-pores that enable a rapid flow-through. Since all the solutions must flow through the monolith, the convection considerably accelerates mass transfer within the monolith. As a result, reactors including enzyme immobilized on monolithic support exhibit much higher activity compared to the reactions in solution.
Collapse
Affiliation(s)
- Frantisek Svec
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
29
|
Jamet E, Canut H, Boudart G, Pont-Lezica RF. Cell wall proteins: a new insight through proteomics. TRENDS IN PLANT SCIENCE 2006; 11:33-9. [PMID: 16356755 DOI: 10.1016/j.tplants.2005.11.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 09/28/2005] [Accepted: 11/25/2005] [Indexed: 05/05/2023]
Abstract
Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translational modifications have been characterized in cell wall proteins to date? The purpose of this review is to discuss the experimental results obtained to date using proteomics, as well as some of the new questions challenging future research.
Collapse
Affiliation(s)
- Elisabeth Jamet
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-Université Paul Sabatier, 24, Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | | | | | | |
Collapse
|
30
|
Pinheiro C, Kehr J, Ricardo CP. Effect of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. PLANTA 2005; 221:716-28. [PMID: 15668768 DOI: 10.1007/s00425-004-1478-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 11/18/2004] [Indexed: 05/18/2023]
Abstract
Lupinus albus plants can withstand severe drought stress and show signs of recovery 24 h after rewatering (RW). Two-dimensional gel electrophoresis was used to evaluate the effect of water deficit (WD) on the protein composition of the two components of the lupin stem (stele and cortex). This was performed at three distinct stress levels: an early stage, a severe WD, and early recovery. Protein characterisation was performed through mass spectrometric partial sequencing. Modifications in the protein expression were first noticed at 3 days of withholding water, when the plant water status was still unaffected but some decrease in the relative soil water content had already occurred. An increase in serine proteases, possibly associated with WD sensing, was an early alteration induced by WD. When the stress severity increased, a larger number of stem proteins were affected. Immunophilin, serine protease and cysteine protease (well-known components of animal sensing pathways) were some of these proteins. The simultaneous expression of proteases and protease inhibitors that reacted differently to the stress level and to RW was found. Although the level of protease inhibitors was significantly raised, RW did not cause de novo expression of proteins. Many amino acid sequences did not match known sequences of either protein or expressed sequence tag databases. This emphasises the largely unknown nature of stem proteins. Nevertheless, some important clues regarding the way the lupin plant copes with WD were revealed.
Collapse
Affiliation(s)
- C Pinheiro
- Instituto de Tecnologia Química e Biológica, Apartado127, 2781901 Oeiras, Portugal
| | | | | |
Collapse
|
31
|
Winnik WM. Continuous pH/Salt Gradient and Peptide Score for Strong Cation Exchange Chromatography in 2D-Nano-LC/MS/MS Peptide Identification for Proteomics. Anal Chem 2005; 77:4991-8. [PMID: 16053314 DOI: 10.1021/ac0503714] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tryptic digests of human serum albumin and human lung epithelial cell lysates were used as test samples in a novel proteomics study. Peptides were separated and analyzed using 2D-nano-LC/MS/MS with strong cation exchange (SCX) and reversed-phase chromatography and continuous gradient elution. The peptide elution conditions combined simultaneous pH gradient with ammonium acetate salt gradient elution modes. A novel empirical SCX peptide elution score was developed, which accounts for both the number of basic and acidic residues and, in part, their location within a sequence of a peptide. Average scores calculated for the fractionated peptide sequences correlated well with the pH of SCX elution fractions. Multiple peptides with identical amino acid sequences, but differing in cysteine tags possessing different positive charge and different SCX elution properties, were obtained by subjecting the samples to reduction and alkylation with different cysteine alkylating reagents: iodoacetamide, 4-vinylpyridine, and (3-acrylamidopropyl) trimethylammonium chloride. The structurally similar peptides were used as elution standards.
Collapse
Affiliation(s)
- Witold M Winnik
- National Health and Environmental Effects Research Laboratory, Environmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
32
|
Kralj M, Kraljević S, Sedić M, Kurjak A, Pavelić K. Global approach to perinatal medicine: functional genomics and proteomics. J Perinat Med 2005; 33:5-16. [PMID: 15841607 DOI: 10.1515/jpm.2005.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Functional genomics (transcriptomics and proteomics) is a global, systematic and comprehensive approach to the identification and description of the processes and pathways involved in normal and abnormal physiological states. The functional genomics methods most applied today are DNA microarrays and proteomics methods, primarily two-dimensional gel electrophoresis coupled with mass spectrometry. To date, interesting research has been carried out, representing milestones for future implementation of functional genomics/proteomics in perinatal medicine. For instance, possible biomarkers of pre-eclampsia, preterm labor and gestational trophoblastic diseases have been discovered. Further systematic examination of differentially regulated genes and proteins in maternal and fetal tissues and fluids will be required. However, high-throughput technologies reflect biological fluctuations and methodological errors. Large amounts of such different data challenge the performance and capacity of the statistical tools and software available at present. Further major developments in this field are pending and the intellectual investment will certainly result in clinical advances.
Collapse
Affiliation(s)
- Marijeta Kralj
- Laboratory of Functional Genomics, Rudjer Bosković Institute, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
33
|
Vlahou A, Fountoulakis M. Proteomic approaches in the search for disease biomarkers. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 814:11-9. [PMID: 15607703 DOI: 10.1016/j.jchromb.2004.10.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 10/08/2004] [Indexed: 11/28/2022]
Abstract
Significant technological advances in protein chemistry, physics and computer sciences in the last two decades have greatly improved protein separation methodologies, such as electrophoresis and chromatography, and have established mass spectrometry (MS) as an indispensable tool for protein study. The goal of this review is to provide a brief overview of the recent improvements in these methodologies and present examples from their application in proteome analysis and search for disease biomarkers.
Collapse
Affiliation(s)
- A Vlahou
- Laboratotory of Biotechnology, Foundation for Biomedical Research of the Academy of Athens, 11527 Athens, Greece.
| | | |
Collapse
|
34
|
Kang D, Nam H, Kim YS, Moon MH. Dual-purpose sample trap for on-line strong cation-exchange chromatography/reversed-phase liquid chromatography/tandem mass spectrometry for shotgun proteomics. J Chromatogr A 2005; 1070:193-200. [PMID: 15861804 DOI: 10.1016/j.chroma.2005.02.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A dual-purpose sample-trapping column is introduced for the capacity enhancement of proteome analysis in on-line two-dimensional nanoflow liquid chromatography (strong cation-exchange chromatography followed by reversed-phase liquid chromatography) and tandem mass spectrometry. A home-made dual trap is prepared by sequentially packing C18 reversed-phase (RP) particles and SCX resin in a silica capillary tubing (1.5 cm x 200 microm I.D. for SCX, 0.7 cm x 200 microm for RP) ended with a home-made frit and is connected to a nanoflow column having a pulled tip treated with an end frit. Without having a separate fraction collection and concentration process, digested peptide mixtures were loaded directly in the SCX part of the dual trap, and the SCX separation of peptides was performed with a salt step elution initiated by injecting only 8 microL of NH4HCO3 solution from the autosampler to the dual trap. The fractionated peptides at each salt step were directly transferred to the RP trap packed right next to the SCX part for desalting, and a nanoflow LC-MS-MS run was followed. During the sample loading-SCX fractionation-desalting, flow direction was set to bypass the analytical column to prevent contamination. The entire 2D-LC separation and MS-MS analysis were automated. Evaluation of the technique was made with an injection of 15 microg peptide mixtures from human Jurkat T-cell proteome, and the total seven salt step cycles followed by each RPLC run resulted in an identification of 681 proteins.
Collapse
Affiliation(s)
- Dukjin Kang
- Department of Chemistry, Yonsei University, Seoul 120-749, South Korea
| | | | | | | |
Collapse
|
35
|
Verhelst S, Bogyo M. Dissecting Protein Function Using Chemical Proteomic Methods. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/qsar.200420070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Li X, Wang X, Zhao K, Zhou Z, Zhao C, Yan R, Lin L, Lei T, Yin J, Wang R, Feng X, Liu S. A novel approach for identifying the heme-binding proteins from mouse tissues. GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 1:78-86. [PMID: 15626337 PMCID: PMC5172403 DOI: 10.1016/s1672-0229(03)01011-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heme is a key cofactor in aerobic life, both in eukaryotes and prokaryotes. Because of the high reactivity of ferrous protoporphyrin IX, the reactions of heme in cells are often carried out through heme-protein complexes. Traditionally studies of heme-binding proteins have been approached on a case by case basis, thus there is a limited global view of the distribution of heme-binding proteins in different cells or tissues. The procedure described here is aimed at profiling heme-binding proteins in mouse tissues sequentially by 1) purification of heme-binding proteins by heme-agarose, an affinity chromatographic resin; 2) isolation of heme-binding proteins by SDS-PAGE or two-dimensional electrophoresis; 3) identification of heme-binding proteins by mass spectrometry. In five mouse tissues, over 600 protein spots were visualized on 2DE gel stained by Commassie blue and 154 proteins were identified by MALDI-TOF, in which most proteins belong to heme related. This methodology makes it possible to globally characterize the heme-binding proteins in a biological system.
Collapse
|
37
|
Verhelst SHL, Bogyo M. Chemical Proteomics Applied to Target Identification and Drug Discovery. Biotechniques 2005; 38:175-7. [PMID: 15727120 DOI: 10.2144/05382te01] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Abstract
Arguably, the most immediately promising reverberation of the genomics era has been the application of biomarkers to drug development. The promise of applying biomarkers to early drug development is that they might aid in preclinical and early clinical decisions such as dose ranging, definition of treatment regimen, or even a preview of efficacy. Later in the clinic, biomarkers could be used to facilitate patient stratification, selection and the description of surrogate endpoints. Information derived from biomarkers should result in a better understanding of preclinical and clinical data, which ultimately benefits patients and drug developers. If the promise of biomarkers is realized, they will become a routine component of drug development and companions to newly discovered therapies.
Collapse
Affiliation(s)
- David A Lewin
- CuraGen Corporation, Pharmacogenomics Services & Biomarkers, 555 Long Wharf Drive, New Haven, CT 065011, USA.
| | | |
Collapse
|
39
|
Williams JD, Flanagan M, Lopez L, Fischer S, Miller LAD. Using accurate mass electrospray ionization-time-of-flight mass spectrometry with in-source collision-induced dissociation to sequence peptide mixtures. J Chromatogr A 2004; 1020:11-26. [PMID: 14661753 DOI: 10.1016/j.chroma.2003.07.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although data-dependent LC-MS-MS with database searching has become au courant for identifying proteins, the technique is constrained by duty-cycle inefficiency and the inability of most tandem mass analyzers to accurately measure peptide product ion masses. In this work, a novel approach is presented for simultaneous peptide fragmentation and accurate mass measurement using in-source collision-induced dissociation (CID) on electrospray ionization (ESI)-time-of-flight (TOF) MS. By employing internal mass reference compounds, mass measurement accuracy within +/-5 ppm for tryptic peptide precursors and +/-10 ppm for most sequence-specific product ions was consistently achieved. Analysis of a complex solution containing several digested protein standards did not adversely affect instrument performance.
Collapse
Affiliation(s)
- Jon D Williams
- Discovery Research, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709-3398, USA.
| | | | | | | | | |
Collapse
|
40
|
Wang J, Xue Y, Feng X, Li X, Wang H, Li W, Zhao C, Cheng X, Ma Y, Zhou P, Yin J, Bhatnagar A, Wang R, Liu S. An analysis of the proteomic profile forThermoanaerobacter tengcongensisunder optimal culture conditions. Proteomics 2003; 4:136-50. [PMID: 14730678 DOI: 10.1002/pmic.200300504] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genome of Thermoanaerobacter tengcongensis is estimated to encode 2588 theoretical proteins. In this study, we have vitalized approximately 46% of the theoretical proteome experimentally using a proteomic strategy that combines three different methods, shotgun digestion plus high-performance liquid chromatography (HPLC) with ion-trap tandem mass spectrometry (shotgun-liquid chromatography (LC)/MS), one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) plus HPLC with ion-trap tandem mass spectrometry (one-dimensional electrophoresis (1DE)-LC/MS), and two-dimensional gel electrophoresis plus matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (2DE-MALDI-TOF-MS). Of the 1200 proteins identified, as few as 76 proteins were globally found by all three approaches, and notably, most of these proteins were in the soluble fraction. However, there were a number of unique proteins detected by one method only, suggesting that our strategy provides a means toward obtaining a comprehensive view of protein expression profile. Proteins from the major metabolic pathways are strongly represented on the map, and a number of these enzymes were identified by more than one proteomic method. Based upon the proteins identified in the present study, we are able to broaden the understanding of how T. tengcongensis survives under high temperature environment, whereas several of its properties can not be fully explained by genome data.
Collapse
Affiliation(s)
- Jingqiang Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2448450 DOI: 10.1002/cfg.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|