1
|
Liu J, Luo X, Xu Y, Gu J, Tang F, Jin Y, Li H. Single-stranded DNA binding protein Ssbp3 induces differentiation of mouse embryonic stem cells into trophoblast-like cells. Stem Cell Res Ther 2016; 7:79. [PMID: 27236334 PMCID: PMC4884356 DOI: 10.1186/s13287-016-0340-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrinsic factors and extrinsic signals which control unlimited self-renewal and developmental pluripotency in embryonic stem cells (ESCs) have been extensively investigated. However, a much smaller number of factors involved in extra-embryonic trophoblast differentiation from ESCs have been studied. In this study, we investigated the role of the single-stranded DNA binding protein, Ssbp3, for the induction of trophoblast-like differentiation from mouse ESCs. METHODS Gain- and loss-of-function experiments were carried out through overexpression or knockdown of Ssbp3 in mouse ESCs under self-renewal culture conditions. Expression levels of pluripotency and lineage markers were detected by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses. The global gene expression profile in Ssbp3-overexpressing cells was determined by affymetrix microarray. Gene ontology and pathway terms were analyzed and further validated by qRT-PCR and Western blotting. The methylation status of the Elf5 promoter in Ssbp3-overexpressing cells was detected by bisulfite sequencing. The trophoblast-like phenotype induced by Ssbp3 was also evaluated by teratoma formation and early embryo injection assays. RESULTS Forced expression of Ssbp3 in mouse ESCs upregulated expression levels of lineage-associated genes, with trophoblast cell markers being the highest. In contrast, depletion of Ssbp3 attenuated the expression of trophoblast lineage marker genes induced by downregulation of Oct4 or treatment with BMP4 and bFGF in ESCs. Interestingly, global gene expression profiling analysis indicated that Ssbp3 overexpression did not significantly alter the transcript levels of pluripotency-associated transcription factors. Instead, Ssbp3 promoted the expression of early trophectoderm transcription factors such as Cdx2 and activated MAPK/Erk1/2 and TGF-β pathways. Furthermore, overexpression of Ssbp3 reduced the methylation level of the Elf5 promoter and promoted the generation of teratomas with internal hemorrhage, indicative of the presence of trophoblast cells. CONCLUSIONS This study identifies Ssbp3, a single-stranded DNA binding protein, as a regulator for mouse ESCs to differentiate into trophoblast-like cells. This finding is helpful to understand the regulatory networks for ESC differentiation into extra-embryonic lineages.
Collapse
Affiliation(s)
- Jifeng Liu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinlong Luo
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Present address: KU Leuven Department of Development and Regeneration, Stem Cell Institute Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Yanli Xu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China.
| | - Hui Li
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Ohno K, Sawada JI, Takiya S, Kimoto M, Matsumoto A, Tsubota T, Uchino K, Hui CC, Sezutsu H, Handa H, Suzuki Y. Silk gland factor-2, involved in fibroin gene transcription, consists of LIM homeodomain, LIM-interacting, and single-stranded DNA-binding proteins. J Biol Chem 2013; 288:31581-91. [PMID: 24022586 DOI: 10.1074/jbc.m113.514471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SGF-2 binds to promoter elements governing posterior silk gland-specific expression of the fibroin gene in Bombyx mori. We purified SGF-2 and showed that SGF-2 contains at least four gene products: the silkworm orthologues of LIM homeodomain protein Awh, LIM domain-binding protein (Ldb), a sequence-specific single-stranded DNA-binding protein (Lcaf), and the silk protein P25/fibrohexamerin (fhx). Using co-expression of these factors in Sf9 cells, Awh, Ldb, and Lcaf proteins were co-purified as a ternary complex that bound to the enhancer sequence in vitro. Lcaf interacts with Ldb as well as Awh through the conserved regions to mediate transcriptional activation in yeast. Misexpression of Awh in transgenic silkworms induces ectopic expression of the fibroin gene in the middle silk glands, where Ldb and Lcaf are expressed. Taken together, this study demonstrates that SGF-2 is a multisubunit activator complex containing Awh. Moreover, our results suggest that the Ldb·Lcaf protein complex serves as a scaffold to facilitate communication between transcriptional control elements.
Collapse
Affiliation(s)
- Kaoru Ohno
- From the National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki 444-8585
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bronstein R, Segal D. Modularity of CHIP/LDB transcription complexes regulates cell differentiation. Fly (Austin) 2011; 5:200-5. [PMID: 21406967 DOI: 10.4161/fly.5.3.14854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcription is the first step through which the cell operates, via its repertoire of transcription complexes, to direct cellular functions and cellular identity by generating the cell-specific transcriptome. The modularity of the composition of constituents of these complexes allows the cell to delicately regulate its transcriptome. In a recent study we have examined the effects of reducing the levels of specific transcription co-factors on the function of two competing transcription complexes, namely CHIP-AP and CHIP-PNR which regulate development of cells in the thorax of Drosophila. We found that changing the availability of these co-factors can shift the balance between these complexes leading to transition from utilization of CHIP-AP to CHIP-PNR. This is reflected in change in the expression profile of target genes, altering developmental cell fates. We propose that such a mechanism may operate in normal fly development. Transcription complexes analogous to CHIP-AP and CHIP-PNR exist in mammals and we discuss how such a shift in the balance between them may operate in normal mammalian development.
Collapse
Affiliation(s)
- Revital Bronstein
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
4
|
Zheng Q, Schaefer AM, Nonet ML. Regulation of C. elegans presynaptic differentiation and neurite branching via a novel signaling pathway initiated by SAM-10. Development 2010; 138:87-96. [PMID: 21115607 DOI: 10.1242/dev.055350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation.
Collapse
Affiliation(s)
- Qun Zheng
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
5
|
Enkhmandakh B, Makeyev AV, Bayarsaihan D. The role of the proline-rich domain of Ssdp1 in the modular architecture of the vertebrate head organizer. Proc Natl Acad Sci U S A 2006; 103:11631-6. [PMID: 16864769 PMCID: PMC1544221 DOI: 10.1073/pnas.0605209103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Indexed: 11/18/2022] Open
Abstract
Lim1, Ssdp1, and Ldb1 proteins are components of the Ldb1-associated transcriptional complex, which is important in the head-organizing activity during early mouse development. Depletion of each individual protein alone causes a headless phenotype. To explore in more detail the modular architecture of the complex, we have generated two different gene-trapped mouse lines that express truncated forms of Ssdp1. Embryos derived from the gene-trapped line that encodes a truncated Ssdp1 lacking the proline-rich sequence exhibit a lethal abnormal head-development phenotype, resembling mouse embryos deficient for Lim1, Ssdp1, or Otx2 genes. Embryos derived from the second gene-trapped line, in which most of the proline-rich domain of Ssdp1 is retained, did not show abnormalities in head development. Our data demonstrate that components of the Ldb1-dependent module can be subdivided further into discrete functional domains and that the proline-rich stretch of Ssdp1 is critical for embryonic head development. Furthermore, phylogenetic comparisons revealed that in Caenorhabditis elegans, a similar proline-rich sequence is absent in Ssdp but present in Ldb1. We conclude that although the overall architecture of the Ldb1-dependent module has been preserved, the genetic specification of its individual components has diversified during evolution, without compromising the function of the module.
Collapse
Affiliation(s)
- Badam Enkhmandakh
- *Department of Molecular, Cellular, and Craniofacial Biology, Birth Defects Center, University of Louisville, 501 South Preston Street, Louisville, KY 40292; and
| | - Alexandr V. Makeyev
- Department of Genetics and Development, Columbia University, 701 West 168th Street, New York, NY 10032
| | - Dashzeveg Bayarsaihan
- *Department of Molecular, Cellular, and Craniofacial Biology, Birth Defects Center, University of Louisville, 501 South Preston Street, Louisville, KY 40292; and
| |
Collapse
|