1
|
Polle JE, Calhoun S, McKie-Krisberg Z, Prochnik S, Neofotis P, Yim WC, Hathwaik LT, Jenkins J, Molina H, Bunkenborg J, Grigoriev IV, Barry K, Schmutz J, Jin E, Cushman JC, Magnusson JK. Genomic adaptations of the green alga Dunaliella salina to life under high salinity. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Herath HMLPB, Elvitigala DAS, Godahewa GI, Whang I, Lee J. Molecular insights into a molluscan transferrin homolog identified from disk abalone (Haliotis discus discus) evidencing its detectable role in host antibacterial defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:222-233. [PMID: 26191782 DOI: 10.1016/j.dci.2015.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
The basic function of transferrin is to bind iron (III) ions in the medium and to deliver them to the locations where they are required for metabolic processes. It also takes part in the host immune defense mainly via its ability to bind to iron (III) ions. Hence, transferrin is also identified as an important acute-phase protein in host immunity. Abalones are major shellfish aquaculture crops that are susceptible to a range of marine microbial infections. Since transferrin is known to be a major player in innate immunity, in the present study we sought to identify, and molecularly and functionally characterize a transferrin-like gene from disk abalone (Haliotis discus discus) named as AbTrf. AbTrf consisted of a 2187-bp open reading frame (ORF) which encodes a 728 amino acid (aa) protein. The putative amino acid sequence of AbTrf harbored N- and C-terminal transferrin-like domains, active sites for iron binding, and conserved cysteine residues. A constitutive tissue specific AbTrf expression pattern was detected by qPCR in abalones where mantle and muscle showed high AbTrf expression levels. Three immune challenge experiments were conducted using Vibrio parahaemolyticus, Listeria monocytogenes and LPS as stimuli and, subsequently, AbTrf mRNA expression levels were quantified in gill and hemocytes in a time-course manner. The mRNA expression was greatly induced in both tissues in response to both challenges. Evidencing the functional property of transferrins, recombinant AbTrf N-terminal domain (AbTrf-N) showed dose-dependent iron (III) binding activity detected by chrome azurol S (CAS) assay system. Moreover, recombinant AbTrf-N could significantly inhibit the growth of iron-dependent bacterium, Escherichia coli in a dose-dependent manner. However, AbTrf-N was unable to show any detectable bacteriostatic activity against iron-independent bacterium Lactobacillus plantarum (L. plantarum) even at its highest concentration. Collectively, our results suggest that AbTrf might play a significant role in the host innate immunity, possibly by withholding iron from pathogens.
Collapse
Affiliation(s)
- H M L P B Herath
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
3
|
Lambert LA. Molecular evolution of the transferrin family and associated receptors. Biochim Biophys Acta Gen Subj 2011; 1820:244-55. [PMID: 21693173 DOI: 10.1016/j.bbagen.2011.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/01/2011] [Accepted: 06/07/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND In vertebrates, serum transferrins are essential iron transporters that have bind and release Fe(III) in response to receptor binding and changes in pH. Some family members such as lactoferrin and melanotransferrin can also bind iron while others have lost this ability and have gained other functions, e.g., inhibitor of carbonic anhydrase (mammals), saxiphilin (frogs) and otolith matrix protein 1 (fish). SCOPE OF REVIEW This article provides an overview of the known transferrin family members and their associated receptors and interacting partners. MAJOR CONCLUSIONS The number of transferrin genes has proliferated as a result of multiple duplication events, and the resulting paralogs have developed a wide array of new functions. Some homologs in the most primitive metazoan groups resemble both serum and melanotransferrins, but the major yolk proteins show considerable divergence from the rest of the family. Among the transferrin receptors, the lack of TFR2 in birds and reptiles, and the lack of any TFR homologs among the insects draw attention to the differences in iron transport and regulation in those groups. GENERAL SIGNIFICANCE The transferrin family members are important because of their clinical significance, interesting biochemical properties, and evolutionary history. More work is needed to better understand the functions and evolution of the non-vertebrate family members. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Lisa A Lambert
- Department of Biology, Chatham University, Woodland Road, Pittsburgh, PA 15232, USA.
| |
Collapse
|
4
|
Alkayal F, Albion RL, Tillett RL, Hathwaik LT, Lemos MS, Cushman JC. Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:437-49. [PMID: 21802602 DOI: 10.1016/j.plantsci.2010.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 06/28/2010] [Accepted: 07/01/2010] [Indexed: 05/10/2023]
Abstract
The unicellular, halotolerant, green alga, Dunaliella salina (Chlorophyceae) has the unique ability to adapt and grow in a wide range of salt conditions from about 0.05 to 5.5M. To better understand the molecular basis of its salinity tolerance, a complementary DNA (cDNA) library was constructed from D. salina cells adapted to 2.5M NaCl, salt-shocked at 3.4M NaCl for 5h, and used to generate an expressed sequence tag (EST) database. ESTs were obtained for 2831 clones representing 1401 unique transcripts. Putative functions were assigned to 1901 (67.2%) ESTs after comparison with protein databases. An additional 154 (5.4%) ESTs had significant similarity to known sequences whose functions are unclear and 776 (27.4%) had no similarity to known sequences. For those D. salina ESTs for which functional assignments could be made, the largest functional categories included protein synthesis (35.7%), energy (photosynthesis) (21.4%), primary metabolism (13.8%) and protein fate (6.8%). Within the protein synthesis category, the vast majority of ESTs (80.3%) encoded ribosomal proteins representing about 95% of the approximately 82 subunits of the cytosolic ribosome indicating that D. salina invests substantial resources in the production and maintenance of protein synthesis. The increased mRNA expression upon salinity shock was verified for a small set of selected genes by real-time, quantitative reverse-transcription-polymerase chain reaction (qRT-PCR). This EST collection also provided important new insights into the genetic underpinnings for the biosynthesis and utilization of glycerol and other osmoprotectants, the carotenoid biosynthetic pathway, reactive oxygen-scavenging enzymes, and molecular chaperones (heat shock proteins) not described previously for D. salina. EST discovery also revealed the existence of RNA interference and signaling pathways associated with osmotic stress adaptation. The unknown ESTs described here provide a rich resource for the identification of novel genes associated with the mechanistic basis of salinity stress tolerance and other stress-adaptive traits.
Collapse
Affiliation(s)
- Fadi Alkayal
- Dasman Center for Research and Treatment of Diabetes, P.O Box 1180, Dasman, Kuwait
| | | | | | | | | | | |
Collapse
|
5
|
Mojaat M, Pruvost J, Foucault A, Legrand J. Effect of organic carbon sources and Fe2+ ions on growth and β-carotene accumulation by Dunaliella salina. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Paz Y, Shimoni E, Weiss M, Pick U. Effects of iron deficiency on iron binding and internalization into acidic vacuoles in Dunaliella salina. PLANT PHYSIOLOGY 2007; 144:1407-15. [PMID: 17513481 PMCID: PMC1914149 DOI: 10.1104/pp.107.100644] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Uptake of iron in the halotolerant alga Dunaliella salina is mediated by a transferrin-like protein (TTf), which binds and internalizes Fe(3+) ions. Recently, we found that iron deficiency induces a large enhancement of iron binding, which is associated with accumulation of three other plasma membrane proteins that associate with TTf. In this study, we characterized the kinetic properties of iron binding and internalization and identified the site of iron internalization. Iron deficiency induces a 4-fold increase in Fe binding, but only 50% enhancement in the rate of iron uptake and also increases the affinity for iron and bicarbonate, a coligand for iron binding. These results indicate that iron deprivation leads to accumulation and modification of iron-binding sites. Iron uptake in iron-sufficient cells is preceded by an apparent time lag, resulting from prebound iron, which can be eliminated by unloading iron-binding sites. Iron is tightly bound to surface-exposed sites and hardly exchanges with medium iron. All bound iron is subsequently internalized. Accumulation of iron inhibits further iron binding and internalization. The vacuolar inhibitor bafilomycin inhibits iron uptake and internalization. Internalized iron was localized by electron microscopy within vacuolar structures that were identified as acidic vacuoles. Iron internalization is accompanied by endocytosis of surface proteins into these acidic vacuoles. A novel kinetic mechanism for iron uptake is proposed, which includes two pools of bound/compartmentalized iron separated by a rate-limiting internalization stage. The major parameter that is modulated by iron deficiency is the iron-binding capacity. We propose that excessive iron binding in iron-deficient cells serves as a temporary reservoir for iron that is subsequently internalized. This mechanism is particularly suitable for organisms that are exposed to large fluctuations in iron availability.
Collapse
Affiliation(s)
- Yakov Paz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
7
|
Katz A, Waridel P, Shevchenko A, Pick U. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol Cell Proteomics 2007; 6:1459-72. [PMID: 17569891 DOI: 10.1074/mcp.m700002-mcp200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The halotolerant alga Dunaliella salina is a recognized model photosynthetic organism for studying plant adaptation to high salinity. The adaptation mechanisms involve major changes in the proteome composition associated with energy metabolism and carbon and iron acquisition. To clarify the molecular basis for the remarkable resistance to high salt, we performed a comprehensive proteomics analysis of the plasma membrane. Plasma membrane proteins were recognized by tagging intact cells with a membrane-impermeable biotin derivative. Proteins were resolved by two-dimensional blue native/SDS-PAGE and identified by nano-LC-MS/MS. Of 55 identified proteins, about 60% were integral membrane or membrane-associated proteins. We identified novel surface coat proteins, lipid-metabolizing enzymes, a new family of membrane proteins of unknown function, ion transporters, small GTP-binding proteins, and heat shock proteins. The abundance of 20 protein spots increased and that of two protein spots decreased under high salt. The major salt-regulated proteins were implicated in protein and membrane structure stabilization and within signal transduction pathways. The migration profiles of native protein complexes on blue native gels revealed oligomerization or co-migration of major surface-exposed proteins, which may indicate mechanisms of stabilization at high salinity.
Collapse
Affiliation(s)
- Adriana Katz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
8
|
Paz Y, Katz A, Pick U. A Multicopper Ferroxidase Involved in Iron Binding to Transferrins in Dunaliella salina Plasma Membranes. J Biol Chem 2007; 282:8658-66. [PMID: 17227764 DOI: 10.1074/jbc.m609756200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The halotolerant alga Dunaliella salina is unique among plants in that it utilizes a transferrin (TTf) to mediate iron acquisition (Fisher, M., Zamir, A., and Pick, U. (1998) J. Biol. Chem. 273, 17553-17558). Two new proteins that are induced by iron deprivation were identified in plasma membranes of D. salina as follows: a multicopper ferroxidase termed D-Fox and an internally duplicated glycoprotein (p130B). D-Fox and p130B are accessible to glycolytic, proteolytic, and biotin surface tagging treatments, suggesting that they are surface-exposed glycoproteins. Induction of D-Fox was also manifested by ferroxidase activity in plasma membrane preparations. These results are puzzling because ferroxidases in yeast and in Chlamydomonas reinhardtii function in redox-mediated iron uptake, a mechanism that is not known to operate in D. salina. Two lines of evidence suggest that D-Fox and p130B interact with D. salina triplicated transferrin (TTf). First, chemical cross-linking combined with mass spectroscopy analysis showed that D-Fox and p130B associate with TTf and with another plasma membrane transferrin. Second, detergent-solubilized D-Fox and p130B comigrated on blue native gels with plasma membrane transferrins. 59Fe autoradiography indicated that this complex binds Fe3+ ions. Also, the induction of D-Fox and p130B is kinetically correlated with enhanced iron binding and uptake activities. These results suggest that D-Fox and p130B associate with plasma membrane transferrins forming a complex that enhances iron binding and iron uptake. We propose that the function of D-Fox in D. salina has been modified during evolution from redox-mediated to transferrin-mediated iron uptake, following a gene transfer event of transferrins from an ancestral animal cell.
Collapse
Affiliation(s)
- Yakov Paz
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
9
|
Varsano T, Wolf SG, Pick U. A Chlorophyll a/b-binding Protein Homolog That Is Induced by Iron Deficiency Is Associated with Enlarged Photosystem I Units in the Eucaryotic Alga Dunaliella salina. J Biol Chem 2006; 281:10305-15. [PMID: 16469742 DOI: 10.1074/jbc.m511057200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptation of the halotolerant alga Dunaliella salina to iron deprivation involves extensive changes of chloroplast morphology, photosynthetic activities, and induction of a major 45-kDa chloroplast protein termed Tidi. Partial amino acid sequencing of proteolytic peptides suggested that Tidi resembles chlorophyll a/b-binding proteins which compose light-harvesting antenna complexes (LHC) (Varsano, T., Kaftan, D., and Pick, U. (2003) J. Plant Nutr. 26, 2197-2210). Here we show that Tidi shares the highest amino acid sequence similarity with light-harvesting I chlorophyll a/b-binding proteins from higher plants but has an extended proline-rich N-terminal domain. The accumulation of Tidi is reversed by iron supplementation, and its level is inversely correlated with photosystem I (PS-I) reaction center proteins. In native gel electrophoresis, Tidi co-migrates with enlarged PS-I-LHC-I super-complexes. Single particle electron microscopy analysis revealed that PS-I units from iron-deficient cells are larger (31 and 37 nm in diameter) than PS-I units from control cells (22 nm). The 77 K chlorophyll fluorescence emission spectra of isolated complexes suggest that the Tidi-LHC-I antenna are functionally coupled to the reaction centers of PS-I. These findings indicate that Tidi acts as an accessory antenna of PS-I. The enlargement of PS-I antenna in algae and in cyanobacteria under iron deprivation suggests a common limitation that requires rebalancing of the energy distribution between the two photosystems.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Chlorophyll/chemistry
- Chlorophyll A
- Cloning, Molecular
- Cyanobacteria/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Eukaryota/metabolism
- Immunohistochemistry
- Iron/chemistry
- Iron/metabolism
- Iron Deficiencies
- Light
- Light-Harvesting Protein Complexes/metabolism
- Microscopy, Electron
- Molecular Sequence Data
- Photosystem I Protein Complex/chemistry
- Photosystem I Protein Complex/metabolism
- Proline/chemistry
- Protein Structure, Tertiary
- Proteins/chemistry
- RNA, Messenger/metabolism
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- Temperature
- Thylakoids/metabolism
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Tal Varsano
- Department of Biological Chemistry and Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
10
|
Lambert LA, Perri H, Meehan TJ. Evolution of duplications in the transferrin family of proteins. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:11-25. [PMID: 15621505 DOI: 10.1016/j.cbpc.2004.09.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/09/2004] [Accepted: 09/10/2004] [Indexed: 11/30/2022]
Abstract
The transferrin family is a group of proteins, defined by conserved amino acid motifs and putative function, found in both vertebrates and invertebrates. Included in this group are molecules known to bind iron, including serum transferrin, ovotransferrin, lactotransferrin, and melanotransferrin (MTF). Additional members of this family include inhibitor of carbonic anhydrase (ICA; mammals), major yolk protein (sea urchins), saxiphilin (frog), pacifastin (crayfish), and TTF-1 (algae). Most family members contain two lobes (N and C) of around 340 amino acids, the result of an ancient duplication event. In this article, we review the known functions of these proteins and speculate as to when the different homologs arose. From multiple-sequence alignments and neighbor-joining trees using 71 transferrin family sequences from 51 different species, including several novel sequences found in the Takifugu and Ciona genome databases, we conclude that melanotransferrins are much older (>670 MY) and more pervasive than previously thought, and the serum transferrin/melanotransferrin split may have occurred not long after lobe duplication. All subsequent duplication events diverged from the serum transferrin gene. The creation of such a large multiple-sequence alignment provides important information and could, in the future, highlight the role of specific residues in protein function.
Collapse
Affiliation(s)
- Lisa A Lambert
- Department of Biology, Chatham College, Woodland Road, Pittsburgh, PA 15232, USA.
| | | | | |
Collapse
|