1
|
Zheng H, Fan S, Luo J, Wen Q, Zang H. MicroRNA-150-3p enhances the antitumour effects of CGP57380 and is associated with a favourable prognosis in non-small cell lung cancer. Sci Rep 2025; 15:1973. [PMID: 39809860 PMCID: PMC11733271 DOI: 10.1038/s41598-025-85793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
MicroRNA (miRNA) dysregulation has been identified in several carcinomas, including non-small cell lung cancer (NSCLC), and is known to play a role in the development and progression of this disease. We initially conducted a miRNA microarray analysis, which revealed that the MNK inhibitor CGP57380 increased the expression of miR-150-3p. A similar analysis was performed using data from The Cancer Genome Atlas (TCGA). Cell proliferation, colony formation and migration assays were validated in A549 and H157 cells treated with miR-150-3p mimics. Quantitative polymerase chain reaction (qPCR) was then used to detect potential target genes. We observed significant downregulation of miR-150-3p in NSCLC samples compared with normal samples (P = 0.035). High miR-150-3p expression was associated with longer overall survival (P = 0.005), as determined via a tissue microarray (TMA). These results were validated in the TCGA and revealed that miR-150-3p was expressed at low levels in NSCLC tissues (P < 0.0001) and that patients with high miR-150-3p expression had a better prognosis (P = 0.042). Moreover, the combination of miR-150-3p and CGP57380 exerted a synergistic inhibitory effect on colony formation, growth, and migration and induced apoptosis in NSCLC cell lines. We investigated the potential targets of miR-150-3p and successfully validated six potential target genes through qPCR analysis. High miR-150-3p expression may enhance the response to immunotherapy, cisplatin and gemcitabine. In summary, this study underscores the promising therapeutic implications of combining miR-150-3p and CGP57380 for NSCLC treatment. Additionally, this study provides valuable insights into the molecular mechanisms underlying the effects of this treatment.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Epigenome-wide association study of depression symptomatology in elderly monozygotic twins. Transl Psychiatry 2019; 9:214. [PMID: 31477683 PMCID: PMC6718679 DOI: 10.1038/s41398-019-0548-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/15/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
Depression is a severe and debilitating mental disorder diagnosed by evaluation of affective, cognitive and physical depression symptoms. Severity of these symptoms strongly impacts individual's quality of life and is influenced by a combination of genetic and environmental factors. One of the molecular mechanisms allowing for an interplay between these factors is DNA methylation, an epigenetic modification playing a pivotal role in regulation of brain functioning across lifespan. The aim of this study was to investigate if there are DNA methylation signatures associated with depression symptomatology in order to identify molecular mechanisms contributing to pathophysiology of depression. We performed an epigenome-wide association study (EWAS) of continuous depression symptomatology score measured in a cohort of 724 monozygotic Danish twins (346 males, 378 females). Through EWAS analyses adjusted for sex, age, flow-cytometry based blood cell composition, and twin relatedness structure in the data we identified depression symptomatology score to be associated with blood DNA methylation levels in promoter regions of neuropsin (KLK8, p-value = 4.7 × 10-7) and DAZ associated protein 2 (DAZAP2, p-value = 3.13 × 10-8) genes. Other top associated probes were located in gene bodies of MAD1L1 (p-value = 5.16 × 10-6), SLC29A2 (p-value = 6.15 × 10-6) and AKT1 (p-value = 4.47 × 10-6), all genes associated before with development of depression. Additionally, the following three measures (a) DNAmAge (calculated with Horvath and Hannum epigenetic clock estimators) adjusted for chronological age, (b) difference between DNAmAge and chronological age, and (c) DNAmAge acceleration were not associated with depression symptomatology score in our cohort. In conclusion, our data suggests that depression symptomatology score is associated with DNA methylation levels of genes implicated in response to stress, depressive-like behaviors, and recurrent depression in patients, but not with global DNA methylation changes across the genome.
Collapse
|
3
|
Yang L, Li X, Qin X, Wang Q, Zhou K, Li H, Zhang X, Wang Q, Li W. Deleted in azoospermia-associated protein 2 regulates innate immunity by stimulating Hippo signaling in crab. J Biol Chem 2019; 294:14704-14716. [PMID: 31395655 DOI: 10.1074/jbc.ra119.009559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/23/2019] [Indexed: 11/06/2022] Open
Abstract
The Hippo-signaling pathway plays a critical role in both normal animal physiology and pathogenesis. Because pharmacological interventions targeting this pathway have diverse clinical implications, a better understanding of its regulation in various conditions and organisms is crucial. Here, we identified deleted in azoospermia-associated protein 2 (DAZAP2) in the Chinese mitten crab (Eriocheir sinensis), designated EsDAZAP2, as a Hippo-regulatory protein highly similar to proteins in various species of insects, fish, and mammals. We found that a bacterial infection significantly induces EsDAZAP2 expression, and an EsDAZAP2 knockdown both suppresses antimicrobial peptide (AMP) expression in vitro and results in increased viable bacterial counts and mortality in vivo, suggesting that EsDAZAP2 plays a critical role in innate immunity. Using yeast two-hybrid screening and co-immunoprecipitation assays, we found that EsDAZAP2 regulates the Toll pathway rather than the immune deficiency and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways. Our findings also demonstrate that EsDAZAP2 binds to the Hippo protein, Salvador (Sav). Moreover, by examining the regulation of Dorsal, a transcription factor that regulates AMP expression in E. sinensis, we provide experimental evidence indicating that EsDAZAP2 promotes Hippo pathway activation in innate immunity, with EsDAZAP2 and Hippo binding to different Sav domains. To the best of our knowledge, this is the first report of a DAZAP2-regulated Hippo-signaling pathway operating in animal innate immunity.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xuejie Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiang Qin
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiying Wang
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kaimin Zhou
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Li
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital, affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qun Wang
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiwei Li
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Li J, Hu WX, Luo SQ, Xiong DH, Sun S, Wang YP, Bu XF, Liu J, Hu J. Promoter methylation induced epigenetic silencing of DAZAP2, a downstream effector of p38/MAPK pathway, in multiple myeloma cells. Cell Signal 2019; 60:136-145. [PMID: 31034872 DOI: 10.1016/j.cellsig.2019.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 02/02/2023]
Abstract
Multiple myeloma (MM) is hematological malignancy characterized by clonal proliferation of malignant plasma cells in the bone marrow environment. Previously, we identified DAZAP2 as a candidate cancer suppressor gene, the downregulation of which is regulated by its own promoter methylation status. In the current study, we analyzed the DAZAP2 promoter in MM cell lines KM3, MM.1S, OPM-2, and ARH77 by bisulfite genomic sequencing assay. We identified the binding site for transcription factor cyclic adenosine monophosphate response element binding (CREB) in the DAZAP2 promoter CpG2, and we found that hypermethylation of the CREB binding motif in the DAZAP2 promoter is responsible for the reduced DAZAP2 expression in MM cells. Later we checked the p38/MAPK signaling cascade, which is reported to regulate expression and function of CREB. Our results showed that the p38/MAPK signaling pathway drives the expression of DAZAP2 by phosphorylation of CREB, and hypermethylation of CREB binding motif in DAZAP2 promoter can inhibit binding of CREB to the latter, thus downregulating DAZAP2 expression. Moreover, treating the MM cells with 5-aza-2' deoxycytidine to demethylate DAZAP2 promoter restored the binding of CREB to its binding motif, and thus upregulated DAZAP2 expression. Our results not only identified DAZAP2 as a new downstream target of p38/MAPK/CREB signaling cascade, but we also clarified that the downregulation of DAZAP2 in MM cells is caused by hypermethylation of CREB binding motif in its own promoter region, which implies that demethylation of DAZAP2 promoter can be a novel therapeutic strategy for MM treatment.
Collapse
Affiliation(s)
- Jiang Li
- Molecular Biology Research Center, School of Life Science, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Wei-Xin Hu
- Molecular Biology Research Center, School of Life Science, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Sai-Qun Luo
- Molecular Biology Research Center, School of Life Science, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - De-Hui Xiong
- Molecular Biology Research Center, School of Life Science, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Science, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Yan-Peng Wang
- Molecular Biology Research Center, School of Life Science, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Xiu-Fen Bu
- Molecular Biology Research Center, School of Life Science, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Science, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Jingping Hu
- Molecular Biology Research Center, School of Life Science, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| |
Collapse
|
5
|
Zepp JA, Wu L, Qian W, Ouyang W, Aronica M, Erzurum S, Li X. TRAF4-SMURF2-mediated DAZAP2 degradation is critical for IL-25 signaling and allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:2826-37. [PMID: 25681341 DOI: 10.4049/jimmunol.1402647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IL-25 promotes type 2 immunity by inducing the expression of Th2-associated cytokines. Although it is known that the IL-25R (IL-17RB) recruits the adaptor protein ACT1, the IL-25R signaling mechanism remains poorly understood. While screening for IL-25R components, we found that IL-25 responses were impaired in Traf4 (-/-) cells. Administering IL-25 to Traf4 (-/-) mice resulted in blunted airway eosinophilia and Th2 cytokine production. Notably, IL-25R recruitment of TRAF4 was required for the ACT1/IL-25R interaction. Mechanistically, TRAF4 recruited the E3-ligase SMURF2, to degrade the IL-25R-inhibitory molecule DAZAP2. Silencing Dazap2 increased ACT1/IL-25R interaction and IL-25 responsiveness. Moreover, a tyrosine within the IL-25R elicited DAZAP2 interference. This study indicates that TRAF4-SMURF2-mediated DAZAP2 degradation is a crucial initiating event for the IL-25 response.
Collapse
Affiliation(s)
- Jarod A Zepp
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Ling Wu
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195; Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Wen Qian
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, CA 94080; and
| | - Mark Aronica
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Serpil Erzurum
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195;
| |
Collapse
|
6
|
Vacca M, D'Amore S, Graziano G, D'Orazio A, Cariello M, Massafra V, Salvatore L, Martelli N, Murzilli S, Sasso GL, Mariani-Costantini R, Moschetta A. Clustering nuclear receptors in liver regeneration identifies candidate modulators of hepatocyte proliferation and hepatocarcinoma. PLoS One 2014; 9:e104449. [PMID: 25116592 PMCID: PMC4130532 DOI: 10.1371/journal.pone.0104449] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022] Open
Abstract
Background & Aims Liver regeneration (LR) is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs) are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis. Methods & Results We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs) and oxysterol (liver X receptors, Lxrs) sensors, circadian masters RevErbα and RevErbβ, glucocorticoid receptor (Gr) and constitutive androxane receptor (Car). In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF) analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrβ; Pparδ) as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARδ agonist GW501516 reduces the proliferative potential of hepatoma cells. Conclusions Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation.
Collapse
Affiliation(s)
- Michele Vacca
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
- Unit of General Pathology, Aging Research Center (Ce.S.I.), “Gabriele D'Annunzio” University and Foundation, Chieti, Italy
- Interdisciplinary Department of Medicine, “Aldo Moro” University of Bari, Bari, Italy
| | - Simona D'Amore
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
| | - Giusi Graziano
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
| | - Andria D'Orazio
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Marica Cariello
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
| | - Vittoria Massafra
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Lorena Salvatore
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Nicola Martelli
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Stefania Murzilli
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Giuseppe Lo Sasso
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Renato Mariani-Costantini
- Unit of General Pathology, Aging Research Center (Ce.S.I.), “Gabriele D'Annunzio” University and Foundation, Chieti, Italy
| | - Antonio Moschetta
- Interdisciplinary Department of Medicine, “Aldo Moro” University of Bari, Bari, Italy
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
- * E-mail:
| |
Collapse
|
7
|
Luo SQ, Hu JP, Qu Q, Li J, Ren W, Zhang JM, Zhong Y, Hu WX. The effects of promoter methylation on downregulation of DAZAP2 in multiple myeloma cell lines. PLoS One 2012; 7:e40475. [PMID: 22792345 PMCID: PMC3392238 DOI: 10.1371/journal.pone.0040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
Our previous studies had shown that DAZAP2 was profoundly downregulated in bone marrow mononuclear cells from multiple myeloma patients. In this report, we analyzed epigenetic changes in multiple myeloma cell lines to understand the molecular mechanisms underlying the downregulation of DAZAP2. Four multiple myeloma cell lines, KM3, MM.1S, OPM-2 and ARH-77, were studied. The results of methylation specific PCR (MSP) showed that the promoter of DAZAP2 was methylated for KM3, MM.1S, OPM-2 and unmethylated for ARH-77. The DAZAP2 promoter region was amplified to obtain a series of different length sequences. All of the amplified sequences were inserted to luciferase reporter vector. The constructs were transfected into COS-7 cells and the luciferase activities were measured to search for the core region of DAZAP2 promoter. Two CpG islands were found in DAZAP2 promoter region. The results of luciferase assay showed that CpG island 1 displayed weak transcriptional activity, whereas CpG island 2 exhibited strong transcriptional activity (273 folds) compared to the control. The sequence that covered both CpG islands 1 and 2 showed higher activity (1,734 folds) compared to the control, suggesting that the two islands had synergistic effect on regulating DAZAP2 expression. We also found that M. Sss I methylase could inhibit the luciferase activity, whereas demethylation using 5-aza-2′-deoxycytidine treatment rescued the expression of DAZAP2 for multiple myeloma cell lines. These data revealed that methylation of DAZAP2 promoter was involved in downregulation of DAZAP2 in multiple myeloma cells.
Collapse
Affiliation(s)
- Sai-Qun Luo
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jing-Ping Hu
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Qiang Qu
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jiang Li
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wei Ren
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jia-Ming Zhang
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Zhong
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wei-Xin Hu
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
- * E-mail:
| |
Collapse
|
8
|
Popova A, Kzhyshkowska J, Nurgazieva D, Goerdt S, Gratchev A. Smurf2 regulates IL17RB by proteasomal degradation of its novel binding partner DAZAP2. Immunobiology 2012; 217:321-8. [DOI: 10.1016/j.imbio.2011.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022]
|
9
|
Lukas J, Mazna P, Valenta T, Doubravska L, Pospichalova V, Vojtechova M, Fafilek B, Ivanek R, Plachy J, Novak J, Korinek V. Dazap2 modulates transcription driven by the Wnt effector TCF-4. Nucleic Acids Res 2009; 37:3007-20. [PMID: 19304756 PMCID: PMC2685103 DOI: 10.1093/nar/gkp179] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A major outcome of the canonical Wnt/beta-catenin-signalling pathway is the transcriptional activation of a specific set of target genes. A typical feature of the transcriptional response induced by Wnt signalling is the involvement of Tcf/Lef factors that function in the nucleus as the principal mediators of signalling. Vertebrate Tcf/Lef proteins perform two well-characterized functions: in association with beta-catenin they activate gene expression, and in the absence of Wnt ligands they bind TLE/Groucho proteins to act as transcriptional repressors. Although the general characteristics of Tcf/Lef factors are well understood, the mechanisms that control their specific roles in various cellular backgrounds are much less defined. In this report we reveal that the evolutionary conserved Dazap2 protein functions as a TCF-4 interacting partner. We demonstrate that a short region proximal to the TCF-4 HMG box mediates the interaction and that all Tcf/Lef family members associate with Dazap2. Interestingly, knockdown of Dazap2 not only reduced the activity of Wnt signalling as measured by Tcf/beta-catenin reporters but additionally altered the expression of Wnt-signalling target genes. Finally, chromatin immunoprecipitation studies indicate that Dazap2 modulates the affinity of TCF-4 for its DNA-recognition motif.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Vladimir Korinek
- *To whom correspondence should be addressed. Tel:+4202 4106 3146; Fax:+4202 4447 2282;
| |
Collapse
|
10
|
Abstract
The repression of translation in environmentally stressed eukaryotic cells causes the sequestration of translation initiation factors and the 40S ribosomal subunit into discrete cytoplasmic foci called stress granules (SGs). Most components of the preinitiation complex, such as eIF3, eIF4A, eIF4E, eIF4G, and poly(A)-binding protein, congregate into SGs under stress conditions. However, the molecular basis of translation factor sequestration into SGs has not been clearly elucidated. Here, we report that proline-rich transcript in brain (PRTB) protein interacts with eIF4G and participates in SG formation. PRTB was recruited to SG under sodium arsenite and heat stress conditions. When overexpressed, PRTB inhibited global translation and formed SGs containing TIA-1, eIF4G, and eIF3. Knockdown of PRTB reduced the SG formation induced by sodium arsenite. These results suggest that PRTB not only is a component of SG formed by cellular stresses but also plays an important role in SG formation via an interaction with the scaffold protein eIF4G, which is associated with many translation factors and mRNAs.
Collapse
|
11
|
Akache B, Grimm D, Shen X, Fuess S, Yant SR, Glazer DS, Park J, Kay MA. A two-hybrid screen identifies cathepsins B and L as uncoating factors for adeno-associated virus 2 and 8. Mol Ther 2007; 15:330-9. [PMID: 17235311 PMCID: PMC7106033 DOI: 10.1038/sj.mt.6300053] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vectors based on different serotypes of adeno-associated virus hold great promise for human gene therapy, based on their unique tissue tropisms and distinct immunological profiles. A particularly interesting candidate is AAV8, which can efficiently and rapidly transduce a wide range of tissues in vivo. To further unravel the mechanisms behind AAV8 transduction, we used yeast two-hybrid analyses to screen a mouse liver complementary DNA library for cellular proteins capable of interacting with the viral capsid proteins. In total, we recovered approximately 700 clones, comprising over 300 independent genes. Sequence analyses revealed multiple hits for over 100 genes, including two encoding the endosomal cysteine proteases cathepsins B and L. Notably, these two proteases also physically interacted with the corresponding portion of the AAV2 capsid in yeast, but not with AAV5. We demonstrate that cathepsins B and L are essential for efficient AAV2- and AAV8-mediated transduction of mammalian cells, and document the ability of purified cathepsin B and L proteins to bind and cleave intact AAV2 and AAV8 particles in vitro. These data suggest that cathepsin-mediated cleavage could prime AAV capsids for subsequent nuclear uncoating, and indicate that analysis of additional genes recovered in our screen may help to further elucidate the mechanisms behind transduction by AAV8 and related serotypes.
Collapse
Affiliation(s)
- Bassel Akache
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Dirk Grimm
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Xuan Shen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Sally Fuess
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen R Yant
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Dariya S Glazer
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Julie Park
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Mark A Kay
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Department of Pediatrics, Stanford University, 300 Pasteur Drive, Room G305, Stanford, California 94305-5208, USA
| |
Collapse
|