1
|
Jebali A, Nayeri EK, Roohana S, Aghaei S, Ghaffari M, Daliri K, Fuente G. Nano-carbohydrates: Synthesis and application in genetics, biotechnology, and medicine. Adv Colloid Interface Sci 2017; 240:1-14. [PMID: 27988019 DOI: 10.1016/j.cis.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/08/2023]
Abstract
Combining nanoparticles with carbohydrate has triggered an exponential growth of research activities for the design of novel functional bionanomaterials, nano-carbohydrates. Recent advances in versatile synthesis of glycosylated nanoparticles have paved the way towards diverse biomedical applications. The accessibility of a wide variety of these structured nanosystems, in terms of shape, size, and organization around stable nanoparticles, has readily contributed to their development and application in nanomedicine. Glycosylated gold nanoparticles, glycosylated quantum dots, fullerenes, single-wall nanotubes, and self-assembled glyconanoparticles using amphiphilic glycopolymers or glycodendrimers have received considerable attention for their application in powerful imaging, therapeutic, and biodiagnostic devices. Recently, nano-carbohydrates were used for different types of microarrays to detect proteins and nucleic acids.
Collapse
Affiliation(s)
- Ali Jebali
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Elham Khajeh Nayeri
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran; Department of Biology, Ashkezar Branch, Islamic Azad University, Ashkezar, Iran
| | - Sima Roohana
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran; Department of Biology, Ashkezar Branch, Islamic Azad University, Ashkezar, Iran
| | - Shiva Aghaei
- Department of Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maede Ghaffari
- Department of Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Karim Daliri
- Department of Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Garcia Fuente
- Department of Nanobiotechnology, Institute of Advanced Tech, Barcelona, Spain.
| |
Collapse
|
2
|
The application of glycosphingolipid arrays to autoantibody detection in neuroimmunological disorders. Curr Opin Chem Biol 2014; 18:78-86. [DOI: 10.1016/j.cbpa.2014.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/13/2022]
|
3
|
El-Hawiet A, Kitova EN, Klassen JS. Quantifying Protein Interactions with Isomeric Carbohydrate Ligands Using a Catch and Release Electrospray Ionization-Mass Spectrometry Assay. Anal Chem 2013; 85:7637-44. [DOI: 10.1021/ac401627t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amr El-Hawiet
- Alberta Glycomics Centre and Department
of Chemistry, University of Alberta, Edmonton,
Alberta, Canada T6G 2G2
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department
of Chemistry, University of Alberta, Edmonton,
Alberta, Canada T6G 2G2
| | - John S. Klassen
- Alberta Glycomics Centre and Department
of Chemistry, University of Alberta, Edmonton,
Alberta, Canada T6G 2G2
| |
Collapse
|
4
|
El-Hawiet A, Kitova EN, Klassen JS. Quantifying Carbohydrate–Protein Interactions by Electrospray Ionization Mass Spectrometry Analysis. Biochemistry 2012; 51:4244-53. [DOI: 10.1021/bi300436x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amr El-Hawiet
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| |
Collapse
|
5
|
Fang Y, Xu W, Wu J, Xu ZK. Enzymatic transglycosylation of PEG brushes by β-galactosidase. Chem Commun (Camb) 2012; 48:11208-10. [DOI: 10.1039/c2cc35369e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
El-Hawiet A, Shoemaker GK, Daneshfar R, Kitova EN, Klassen JS. Applications of a catch and release electrospray ionization mass spectrometry assay for carbohydrate library screening. Anal Chem 2011; 84:50-8. [PMID: 22128847 DOI: 10.1021/ac202760e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Applications of a catch and release electrospray ionization mass spectrometry (CaR-ESI-MS) assay for screening carbohydrate libraries against target proteins are described. Direct ESI-MS measurements were performed on solutions containing a target protein (a single chain antibody, an antigen binding fragment, or a fragment of a bacterial toxin) and a library of carbohydrates containing multiple specific ligands with affinities in the 10(3) to 10(6) M(-1) range. Ligands with moderate affinity (10(4) to 10(6) M(-1)) were successfully detected from mixtures containing >200 carbohydrates (at concentrations as low as 0.25 μM each). Additionally, the absolute affinities were estimated from the abundance of free and ligand-bound protein ions determined from the ESI mass spectrum. Multiple low affinity ligands (~10(3) M(-1)) were successfully detected in mixtures containing >20 carbohydrates (at concentrations of ~10 μM each). However, identification of specific interactions required the use of the reference protein method to correct the mass spectrum for the occurrence of nonspecific carbohydrate-protein binding during the ESI process. The release of the carbohydrate ligands, as ions, was successfully demonstrated using collision-induced dissociation performed on the deprotonated ions of the protein-carbohydrate complexes. The use of ion mobility separation, performed on deprotonated carbohydrate ions following their release from the complex, allowed for the positive identification of isomeric ligands.
Collapse
Affiliation(s)
- Amr El-Hawiet
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | |
Collapse
|
7
|
Kaufmann S, Sobek J, Textor M, Reimhult E. Supported lipid bilayer microarrays created by non-contact printing. LAB ON A CHIP 2011; 11:2403-2410. [PMID: 21623437 DOI: 10.1039/c1lc20073a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Arrays of supported lipid bilayers (SLBs) provide great potential for future drug development and multiplexed biological research, but are difficult to prepare due to the sensitivity of both the lipid and protein structural arrangement to air exposure. A novel way to produce arrays of SLBs is presented based on non-contact dispensing of vesicles to a substrate through a thin surface confined water film. The approach presents many degrees of freedom since it is not limited to a specific substrate, lipid composition, linker or controlled environment. The method allows adjustment of spot size (180-360 μm) by repeated dispensing as well as control over the composition of the spots and subsequent analytes. SLB formation by vesicle adsorption and rupture allows for incorporation of membrane proteins through pre-formed proteoliposomes. Dispensing through a dip-and-rinse water film avoids contamination, disruptive drying and the need for complex buffer compositions. Furthermore, no humidity control is necessary which simplifies the production step and prolongs the life-time of the spotting system. We characterize the method with respect to control over spot size, bilayer mobility and the formation process as well as demonstrate the possibility to fuse bilayer spots with subsequently added vesicles. Since complex lipid compositions and multiple spotting nozzles can be used, this novel technique is expected to be a promising platform for future applications, e.g. patterning to monitor peptide/protein-lipid interactions, for glycomics using glycolipids or lipopolysaccharides, and to study mixing of spatially confined lipid membranes.
Collapse
Affiliation(s)
- Stefan Kaufmann
- Laboratory for Surface Science and Technolgy, Department of Materials ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
8
|
Katrlík J, Svitel J, Gemeiner P, Kozár T, Tkac J. Glycan and lectin microarrays for glycomics and medicinal applications. Med Res Rev 2010; 30:394-418. [PMID: 20099267 DOI: 10.1002/med.20195] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three different array formats to study a challenging field of glycomics are presented here, based on the use of a panel of immobilized glycan or lectins, and on in silico computational approach. Glycan and lectin arrays are routinely used in combination with other analytical tools to decipher a complex nature of glycan-mediated recognition responsible for signal transduction of a broad range of biological processes. Fundamental aspects of the glycan and lectin array technology are discussed, with the focus on the choice and availability of the biorecognition elements, fabrication protocols, and detection platforms involved. Moreover, practical applications of both technologies especially in the field of clinical diagnostics are provided. The future potential of a complementary in silico array technology to reveal details of the protein-glycan-binding profiles is discussed here.
Collapse
Affiliation(s)
- Jaroslav Katrlík
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
9
|
Seo JH, Kim CS, Hwang BH, Cha HJ. A functional carbohydrate chip platform for analysis of carbohydrate-protein interaction. NANOTECHNOLOGY 2010; 21:215101. [PMID: 20431189 DOI: 10.1088/0957-4484/21/21/215101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A carbohydrate chip based on glass or other transparent surfaces has been suggested as a potential tool for high-throughput analysis of carbohydrate-protein interactions. Here we proposed a facile, efficient, and cost-effective method whereby diverse carbohydrate types are modified in a single step and directly immobilized onto a glass surface, with retention of functional orientation. We modified various types of carbohydrates by reductive amination, in which reducing sugar groups were coupled with 4-(2-aminoethyl)aniline, which has di-amine groups at both ends. The modified carbohydrates were covalently attached to an amino-reactive NHS-activated glass surface by formation of stable amide bonds. This proposed method was applied for efficient construction of a carbohydrate microarray to analyze carbohydrate-protein interactions. The carbohydrate chip prepared using our method can be successfully used in diverse biomimetic studies of carbohydrates, including carbohydrate-biomolecule interactions, and carbohydrate sensor chip or microarray development for diagnosis and screening.
Collapse
Affiliation(s)
- Jeong Hyun Seo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
10
|
Abstract
We describe microarraying of carbohydrates for protein screening using either disulfide bridge or Schiff base imine immobilization chemistries on plasmachemical deposited functional nanolayers. The commonly observed issue of nonspecific background binding of proteins is overcome by spotting carbohydrates through a protein-resistant overlayer yielding spatially localized interaction with a reactive functional underlayer.
Collapse
Affiliation(s)
- L G Harris
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, UK
| | | | | | | | | |
Collapse
|
11
|
Perez-Balderas F, Morales-Sanfrutos J, Hernandez-Mateo F, Isac-García J, Santoyo-Gonzalez F. Click Multivalent Homogeneous Neoglycoconjugates - Synthesis and Evaluation of Their Binding Affinities. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801170] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Gemeiner P, Mislovičová D, Tkáč J, Švitel J, Pätoprstý V, Hrabárová E, Kogan G, Kožár T. Lectinomics. Biotechnol Adv 2009; 27:1-15. [DOI: 10.1016/j.biotechadv.2008.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 06/22/2008] [Accepted: 07/10/2008] [Indexed: 12/23/2022]
|
13
|
Zou L, Pang HL, Chan PH, Huang ZS, Gu LQ, Wong KY. Trityl-derivatized carbohydrates immobilized on a polystyrene microplate. Carbohydr Res 2008; 343:2932-8. [PMID: 18823619 DOI: 10.1016/j.carres.2008.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/14/2008] [Accepted: 08/19/2008] [Indexed: 02/04/2023]
Abstract
Carbohydrate biosensors, including carbohydrate arrays, are attracting increased attention for the comprehensive and high-throughput investigation of protein-carbohydrate interactions. Here, we describe an effective approach to fabricating a robust microplate-based carbohydrate array capable of probing protein binding and screening for inhibitors in a high-throughout manner. This approach involves the derivatization of carbohydrates with a trityl group through an alkyl linker and the immobilization of the trityl-derivatized carbohydrates (mannose and maltose) onto microplates noncovalently to construct carbohydrate arrays. The trityl carbohydrate derivative has very good immobilization efficiency for polystyrene microplates and strong resistance to aqueous washing. The carbohydrate arrays can probe the interactions with the lectin Concanavalin A and screen this protein for the well-known inhibitors methyl alpha-D-mannopyranoside and methyl alpha-D-glucopyranoside in a high-throughput manner. The method described in this paper represents a convenient way of fabricating robust noncovalent carbohydrate arrays on microplates and offers a convenient platform for high-throughput drug screening.
Collapse
Affiliation(s)
- Lan Zou
- Department of Applied Biology and Chemical Technology, Central Laboratory of the Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Zou L, Pang HL, Chan PH, Huang ZS, Gu LQ, Wong KY. Covalent immobilization of carbohydrates on sol–gel-coated microplates. Analyst 2008; 133:1195-200. [DOI: 10.1039/b805346d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Dedola S, Nepogodiev SA, Field RA. Recent applications of the Cu(I)-catalysed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in carbohydrate chemistry. Org Biomol Chem 2007; 5:1006-17. [PMID: 17377651 DOI: 10.1039/b618048p] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article surveys recent applications of Cu(I)-catalysed 1,3-dipolar cycloaddition of azides and alkynes in carbohydrate chemistry, highlighting developments in the preparation of simple glycoside and oligosaccharide mimetics, glyco-macrocycles, glycopeptides, glyco-clusters and carbohydrate arrays.
Collapse
Affiliation(s)
- Simone Dedola
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UKNR4 7TJ
| | | | | |
Collapse
|
16
|
Pei Z, Yu H, Theurer M, Waldén A, Nilsson P, Yan M, Ramström O. Photogenerated carbohydrate microarrays. Chembiochem 2007; 8:166-8. [PMID: 17154195 PMCID: PMC4492527 DOI: 10.1002/cbic.200600447] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Indexed: 01/17/2023]
Affiliation(s)
- Zhichao Pei
- KTH–Royal Institute of Technology, Department of Chemistry, Teknikringen 30, 10044 Stockholm (Sweden), Fax: (+46) 8-7912333
| | - Hui Yu
- KTH–Royal Institute of Technology, Department of Chemistry, Teknikringen 30, 10044 Stockholm (Sweden), Fax: (+46) 8-7912333
| | - Matthias Theurer
- KTH–Royal Institute of Technology, Department of Chemistry, Teknikringen 30, 10044 Stockholm (Sweden), Fax: (+46) 8-7912333
| | - Annelie Waldén
- KTH–Royal Institute of Technology, Department of Biotechnology, AlbaNova University Center, 10691, Stockholm (Sweden)
| | - Peter Nilsson
- KTH–Royal Institute of Technology, Department of Biotechnology, AlbaNova University Center, 10691, Stockholm (Sweden)
| | - Mingdi Yan
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207-0751 (USA), Fax: (+1) 503-725-9525
| | - Olof Ramström
- KTH–Royal Institute of Technology, Department of Chemistry, Teknikringen 30, 10044 Stockholm (Sweden), Fax: (+46) 8-7912333
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207-0751 (USA), Fax: (+1) 503-725-9525
| |
Collapse
|
17
|
Ortega-Muñoz M, Lopez-Jaramillo J, Hernandez-Mateo F, Santoyo-Gonzalez F. Synthesis of Glyco-Silicas by Cu(I)-Catalyzed “Click-Chemistry” and their Applications in Affinity Chromatography. Adv Synth Catal 2006. [DOI: 10.1002/adsc.200600254] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Coullerez G, Seeberger PH, Textor M. Merging Organic and Polymer Chemistries to Create Glycomaterials for Glycomics Applications. Macromol Biosci 2006; 6:634-47. [PMID: 16881090 DOI: 10.1002/mabi.200600090] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
[Image: see text] Oligosaccharides at cell surfaces are known to play a critical role in many biological processes such as biorecognition, interactions between cells and with artificial surfaces, immune response, infection and inflammation. In order to facilitate studies of the role of sugars, an increasing number of novel tools are becoming available. New synthetic strategies now provide much more efficient access to complex carbohydrates or glycoconjugates. Branched carbohydrates and hybrids of carbohydrates conjugated to polymers have been prepared using solution and/or solid-phase synthesis and advanced methods of polymerization. These materials are essential for the development of methodologies to study and map the molecular structure-function relationship at interfaces. This article highlights recent advances in the synthesis of carbohydrates and polymer hybrids mimicking the properties and functionalities of the natural oligosaccharides, as well as selected applications in biology, biotechnology and diagnostics.
Collapse
Affiliation(s)
- Géraldine Coullerez
- Laboratory for Surface Science and Technology, BioInterfaceGroup, Department of Materials, ETH Zurich, Switzerland.
| | | | | |
Collapse
|
19
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|