1
|
Szekalska M, Czajkowska-Kośnik A, Maciejewski B, Misztalewska-Turkowicz I, Wilczewska AZ, Bernatoniene J, Winnicka K. Mucoadhesive Alginate/Pectin Films Crosslinked by Calcium Carbonate as Carriers of a Model Antifungal Drug-Posaconazole. Pharmaceutics 2023; 15:2415. [PMID: 37896175 PMCID: PMC10610174 DOI: 10.3390/pharmaceutics15102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The mucosal membrane of the oral cavity, due to its unique structure and availability, constitutes an appropriate site for the delivery of drugs, both with local and systemic effects. Mucoadhesive buccal films are drug dosage forms that due to their convenience of application, flexibility and size, are characterized by patients' compliance. Sodium alginate and pectin are natural polymers from the polysaccharides group, with mucoadhesive properties, that are widely applied to obtain buccal films. However, their hydrophilic nature and poor water resistance limit their application in sustained drug release formulations. Hence, the aim of this investigation was to design alginate/pectin buccal films by a one-step crosslinking technique-with the application of calcium carbonate. This technique was applied to prepare crosslinked alginate and alginate/pectin mucoadhesive films with a model antifungal drug-posaconazole. The obtained formulations were evaluated for the impact of crosslinking and pectin's presence on their pharmaceutical, mucoadhesive, mechanical and physicochemical properties. Additionally, the antifungal activity of the prepared films against Candida spp. was evaluated. It was shown that pectin's presence in the formulations improved flexibility, mucoadhesion and antifungal activity. The crosslinking process reduced mucoadhesiveness and antifungal activity but significantly enhanced the mechanical properties and stability and enabled prolonged drug release.
Collapse
Affiliation(s)
- Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| | - Anna Czajkowska-Kośnik
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| | - Bartosz Maciejewski
- Department of Pharmaceutical Technology, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Iwona Misztalewska-Turkowicz
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland (A.Z.W.)
| | - Agnieszka Zofia Wilczewska
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland (A.Z.W.)
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| |
Collapse
|
2
|
Laitano R, Calzetta L, Cavalli F, Cazzola M, Rogliani P. Delivering monoclonal antibodies via inhalation: a systematic review of clinical trials in asthma and COPD. Expert Opin Drug Deliv 2023; 20:1041-1054. [PMID: 37342873 DOI: 10.1080/17425247.2023.2228681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Advances in understanding the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD) led to investigation of biologic drugs targeting specific inflammatory pathways. No biologics are licensed for COPD while all the approved monoclonal antibodies (mAbs) for severe asthma treatment are systemically administered. Systemic administration is associated with low target tissue exposure and risk of systemic adverse events. Thus, delivering mAbs via inhalation may be an attractive approach for asthma and COPD treatment due to direct targeting of the airways. AREAS COVERED This systematic review of randomized control trials (RCTs) evaluated the potential role of delivering mAbs via inhalation in asthma and COPD treatment. Five RCTs were deemed eligible for a qualitative analysis. EXPERT OPINION Compared to systemic administration, delivering mAbs via inhalation is associated with rapid onset of action, greater efficacy at lower doses, minimal systemic exposure, and lower risk of adverse events. Although some of the inhaled mAbs included in this study showed a certain level of efficacy and safety in asthmatic patients, delivering mAbs via inhalation is still challenging and controversial. Further adequately powered and well-designed RCTs are needed to assess the potential role of inhaled mAbs in the treatment of asthma and COPD.
Collapse
Affiliation(s)
- Rossella Laitano
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Francesco Cavalli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
3
|
Puri V, Kaur VP, Singh A, Singh C. Recent advances on drug delivery applications of mucopenetrative/mucoadhesive particles: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Knoll P, Hörmann N, Nguyen Le NM, Wibel R, Gust R, Bernkop-Schnürch A. Charge converting nanostructured lipid carriers containing a cell penetrating peptide for enhanced cellular uptake. J Colloid Interface Sci 2022; 628:463-475. [DOI: 10.1016/j.jcis.2022.07.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
5
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
6
|
A Therapeutically Active Minibody Exhibits an Antiviral Activity in Oseltamivir-Resistant Influenza-Infected Mice via Direct Hydrolysis of Viral RNAs. Viruses 2022; 14:v14051105. [PMID: 35632846 PMCID: PMC9146509 DOI: 10.3390/v14051105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Emerging Oseltamivir-resistant influenza strains pose a critical public health threat due to antigenic shifts and drifts. We report an innovative strategy for controlling influenza A infections by use of a novel minibody of the 3D8 single chain variable fragment (scFv) showing intrinsic viral RNA hydrolyzing activity, cell penetration activity, and epidermal cell penetration ability. In this study, we examined 3D8 scFv’s antiviral activity in vitro on three different H1N1 influenza strains, one Oseltamivir-resistant (A/Korea/2785/2009pdm) strain, and two Oseltamivir-sensitive (A/PuertoRico/8/1934 and A/X-31) strains. Interestingly, the 3D8 scFv directly digested viral RNAs in the ribonucleoprotein complex. scFv’s reduction of influenza viral RNA including viral genomic RNA, complementary RNA, and messenger RNA during influenza A infection cycles indicated that this minibody targets all types of viral RNAs during the early, intermediate, and late stages of the virus’s life cycle. Moreover, we further addressed the antiviral effects of 3D8 scFv to investigate in vivo clinical outcomes of influenza-infected mice. Using both prophylactic and therapeutic treatments of intranasal administered 3D8 scFv, we found that Oseltamivir-resistant H1N1-infected mice showed 90% (prophylactic effects) and 40% (therapeutic effects) increased survival rates, respectively, compared to the control group. The pathological signs of influenza A in the lung tissues, and quantitative analyses of the virus proliferations supported the antiviral activity of the 3D8 single chain variable fragment. Taken together, these results demonstrate that 3D8 scFv has antiviral therapeutic potentials against a wide range of influenza A viruses via the direct viral RNA hydrolyzing activity.
Collapse
|
7
|
Recent Development of Drug Delivery Systems through Microfluidics: From Synthesis to Evaluation. Pharmaceutics 2022; 14:pharmaceutics14020434. [PMID: 35214166 PMCID: PMC8880124 DOI: 10.3390/pharmaceutics14020434] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Conventional drug administration usually faces the problems of degradation and rapid excretion when crossing many biological barriers, leading to only a small amount of drugs arriving at pathological sites. Therapeutic drugs delivered by drug delivery systems to the target sites in a controlled manner greatly enhance drug efficacy, bioavailability, and pharmacokinetics with minimal side effects. Due to the distinct advantages of microfluidic techniques, microfluidic setups provide a powerful tool for controlled synthesis of drug delivery systems, precisely controlled drug release, and real-time observation of drug delivery to the desired location at the desired rate. In this review, we present an overview of recent advances in the preparation of nano drug delivery systems and carrier-free drug delivery microfluidic systems, as well as the construction of in vitro models on-a-chip for drug efficiency evaluation of drug delivery systems. We firstly introduce the synthesis of nano drug delivery systems, including liposomes, polymers, and inorganic compounds, followed by detailed descriptions of the carrier-free drug delivery system, including micro-reservoir and microneedle drug delivery systems. Finally, we discuss in vitro models developed on microfluidic devices for the evaluation of drug delivery systems, such as the blood–brain barrier model, vascular model, small intestine model, and so on. The opportunities and challenges of the applications of microfluidic platforms in drug delivery systems, as well as their clinical applications, are also discussed.
Collapse
|
8
|
Barmpatsalou V, Dubbelboer IR, Rodler A, Jacobson M, Karlsson E, Pedersen BL, Bergström CAS. Physiological properties, composition and structural profiling of porcine gastrointestinal mucus. Eur J Pharm Biopharm 2021; 169:156-167. [PMID: 34687897 DOI: 10.1016/j.ejpb.2021.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022]
Abstract
The gastrointestinal mucus is a hydrogel that lines the luminal side of the gastrointestinal epithelium, offering barrier protection from pathogens and lubrication of the intraluminal contents. These barrier properties likewise affect nutrients and drugs that need to penetrate the mucus to reach the epithelium prior to absorption. In order to assess the potential impact of the mucus on drug absorption, we need information about the nature of the gastrointestinal mucus. Today, most of the relevant available literature is mainly derived from rodent studies. In this work, we used a larger animal species, the pig model, to characterize the mucus throughout the length of the gastrointestinal tract. This is the first report of the physiological properties (physical appearance, pH and water content), composition (protein, lipid and metabolite content) and structural profiling (rheology and gel network) of the porcine gastrointestinal mucus. These findings allow for direct comparisons between the characteristics of mucus from various segments and can be further utilized to improve our understanding of the role of the mucus on region dependent drug absorption. Additionally, the present work is expected to contribute to the assessment of the porcine model as a preclinical species in the drug development process.
Collapse
Affiliation(s)
- Vicky Barmpatsalou
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Ilse R Dubbelboer
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Agnes Rodler
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Medicinal Chemistry, Uppsala University, BMC P.O. Box 574, SE-751 23, Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, SE-750 07, Uppsala, Sweden
| | - Eva Karlsson
- Oral Product Development, Pharmaceutical Technology & Development Operations, AstraZeneca, Gothenburg, Sweden
| | - Betty Lomstein Pedersen
- Product Development & Drug Delivery, Global Pharmaceutical R&D, Ferring Pharmaceuticals A/S, Kay Fiskers Plads 11, DK-2300, Copenhagen, Denmark
| | - Christel A S Bergström
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
9
|
Dully M, Ceresnakova M, Murray D, Soulimane T, Hudson SP. Lipid Cubic Systems for Sustained and Controlled Delivery of Antihistamine Drugs. Mol Pharm 2021; 18:3777-3794. [PMID: 34547899 PMCID: PMC8493555 DOI: 10.1021/acs.molpharmaceut.1c00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/03/2022]
Abstract
Antihistamines are capable of blocking mediator responses in allergic reactions including allergic rhinitis and dermatological reactions. By incorporating various H1 receptor antagonists into a lipid cubic phase network, these active ingredients can be delivered locally over an extended period of time owing to the mucoadhesive nature of the system. Local delivery can avoid inducing unwanted side effects, often observed after systematic delivery. Lipid-based antihistamine delivery systems are shown here to exhibit prolonged release capabilities. In vitro drug dissolution studies investigated the extent and release rate of two model first-generation and two model second-generation H1 antagonist antihistamine drugs from two monoacyglycerol-derived lipid models. To optimize the formulation approach, the systems were characterized macroscopically and microscopically by small-angle X-ray scattering and polarized light to ascertain the mesophase accessed upon an incorporation of antihistamines of varying solubilities and size. The impact of encapsulating the antihistamine molecules on the degree of mucoadhesivity of the lipid cubic systems was investigated using multiparametric surface plasmon resonance. With the ultimate goal of developing therapies for the treatment of allergic reactions, the ability of the formulations to inhibit mediator release utilizing RBL-2H3 mast cells with the propensity to release histamine upon induction was explored, demonstrating no interference from the lipid excipient on the effectiveness of the antihistamine molecules.
Collapse
Affiliation(s)
- Michele Dully
- Department
of Chemical Sciences, SSPC, the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy,
Co. Limerick V94 T9PX, Ireland
| | - Miriama Ceresnakova
- Department
of Chemical Sciences, SSPC, the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy,
Co. Limerick V94 T9PX, Ireland
| | - David Murray
- COOK
Ireland Limited, O’Halloran
Rd, Castletroy, Co. Limerick V94 N8X2, Ireland
| | - Tewfik Soulimane
- Department
of Chemical Sciences, SSPC, the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy,
Co. Limerick V94 T9PX, Ireland
| | - Sarah P. Hudson
- Department
of Chemical Sciences, SSPC, the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy,
Co. Limerick V94 T9PX, Ireland
| |
Collapse
|
10
|
Hilario GM, Sulczewski FB, Liszbinski R, Mello LD, Hagen G, Fazolo T, Neto J, Dallegrave E, Romão P, Aguirre T, Rodrigues Junior LC. Development and immunobiological evaluation of nanoparticles containing an immunodominant epitope of herpes simplex virus. IET Nanobiotechnol 2021; 15:532-544. [PMID: 34694744 PMCID: PMC8675790 DOI: 10.1049/nbt2.12043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus (HSV) 1 and 2 are viruses that infect individuals worldwide and for which there is no cure or vaccine available. The protective response against herpes is mostly mediated by CD8 T lymphocytes that respond to the immunodominant SSIEFARL epitope. However, there are some obstacles concerning the use of free SSIEFARL for vaccine or immunotherapy. The aim of this study was to evaluate the feasibility of nanoencapsulation of SSIEFARL and its immunostimulatory properties. Nano/SSIEFARL was produced by interfacial polymerization in methylmetacrylate, and the physico-chemical properties, morphology and immunobiological parameters were evaluated. To evaluate the ex vivo capacity of Nano/SSIEFARL, we used splenocytes from HSV-1-infected mice to enhance the frequency of SSIEFARL-specific CD8 T lymphocytes. The results indicate that Nano/SSIEFARL has a spherical shape, an average diameter of 352 ± 22 nm, the PDI was 0.361 ± 0.009 and is negatively charged (-26.30 ± 35). The stability at 4°C was 28 days. Also, Nano/SSIEFARL is not toxic for cells at low concentrations in vitro and it is taken up by JAWS II dendritic cells. No histopathological changes were observed in kidneys, liver and lymph nodes of animals treated with Nano/SSIEFARL. Nan/SSIEFARL increased the production of IL-1β, TNF-α and IL-12 by the dendritic cells. Finally, Nano/SSIEFARL expanded the frequency of SSIEFARL-specific CD8+T lymphocytes at the same rate as free SSIEFARL. In conclusion all data together indicate that SSIEFARL is suitable for nanoencapsulation, and the system produced presents some immunoadjuvant properties that can be used to improve the immune response against herpes.
Collapse
Affiliation(s)
- Gabriel M Hilario
- Laboratorio de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Fernando B Sulczewski
- Laboratorio de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Raquel Liszbinski
- Laboratorio de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Larissa D Mello
- Laboratório de Nanotecnologia, Universidade Franciscana, Brazil
| | - Gustavo Hagen
- Laboratorio de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Tiago Fazolo
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Jayme Neto
- Laboratorio de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Eliane Dallegrave
- Laboratório de Pesquisa em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Pedro Romão
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Tanira Aguirre
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Luiz C Rodrigues Junior
- Laboratorio de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| |
Collapse
|
11
|
Phan VHG, Trang Duong HT, Tran PT, Thambi T, Ho DK, Murgia X. Self-Assembled Amphiphilic Starch Based Drug Delivery Platform: Synthesis, Preparation, and Interactions with Biological Barriers. Biomacromolecules 2020; 22:572-585. [PMID: 33346660 DOI: 10.1021/acs.biomac.0c01430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Core-shell structured nanoparticles (NPs) render the simultaneous coloading capacity of both hydrophobic and hydrophilic drugs and may eventually enhance therapeutic efficacy. In this study, we employed a facile squalenoylation technology to synthesize a new amphiphilic starch derivative from partially oxidized starch, which self-assembled into core-shell starch NPs (StNPs) only at a squalenyl degree of substitution (DoS) of ∼1%. The StNPs characteristics could be tuned as the functions of the polymer molecular weight, DoS, and NPs concentration. The biopharmaceutical features of the StNPs, including colloidal stability, carrier properties, and biocompatibility, were carefully investigated. The interaction study between StNPs and mucin glycoproteins, the main organic component of mucus, revealed a moderate mucin interacting profile. Furthermore, the StNPs also showed good penetration through Pseudomonas aeruginosa biofilms. These results nominate StNPs as a versatile drug delivery platform with potential applications for mucosal drug delivery and the treatment of persistent infections.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Huu Thuy Trang Duong
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Phu-Tri Tran
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, United States
| | | | - Duy-Khiet Ho
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Xabier Murgia
- Kusudama Therapeutics, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San, Sebastián 20014, Spain
| |
Collapse
|
12
|
Heinrich MA, Martina B, Prakash J. Nanomedicine strategies to target coronavirus. NANO TODAY 2020; 35:100961. [PMID: 32904707 PMCID: PMC7457919 DOI: 10.1016/j.nantod.2020.100961] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
With the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, the middle east respiratory syndrome CoV (MERS-CoV) in 2012 and the recently discovered SARS-CoV-2 in December 2019, the 21st first century has so far faced the outbreak of three major coronaviruses (CoVs). In particular, SARS-CoV-2 spread rapidly over the globe affecting nearly 25.000.000 people up to date. Recent evidences pointing towards mutations within the viral spike proteins of SARS-CoV-2 that are considered the cause for this rapid spread and currently around 300 clinical trials are running to find a treatment for SARS-CoV-2 infections. Nanomedicine, the application of nanocarriers to deliver drugs specifically to a target sites, has been applied for different diseases, such as cancer but also in viral infections. Nanocarriers can be designed to encapsulate vaccines and deliver them towards antigen presenting cells or function as antigen-presenting carriers themselves. Furthermore, drugs can be encapsulated into such carriers to directly target them to infected cells. In particular, virus-mimicking nanoparticles (NPs) such as self-assembled viral proteins, virus-like particles or liposomes, are able to replicate the infection mechanism and can not only be used as delivery system but also to study viral infections and related mechanisms. This review will provide a detailed description of the composition and replication strategy of CoVs, an overview of the therapeutics currently evaluated in clinical trials against SARS-CoV-2 and will discuss the potential of NP-based vaccines, targeted delivery of therapeutics using nanocarriers as well as using NPs to further investigate underlying biological processes in greater detail.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Byron Martina
- Artemis One Health Research Institute, 2629JD, Delft, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
13
|
Liang W, Pan HW, Vllasaliu D, Lam JKW. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020; 12:E1025. [PMID: 33114726 PMCID: PMC7693150 DOI: 10.3390/pharmaceutics12111025] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Harry W. Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| |
Collapse
|
14
|
Vedadghavami A, Zhang C, Bajpayee AG. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. NANO TODAY 2020; 34:100898. [PMID: 32802145 PMCID: PMC7425807 DOI: 10.1016/j.nantod.2020.100898] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Negatively charged tissues are ubiquitous in the human body and are associated with a number of common diseases yet remain an outstanding challenge for targeted drug delivery. While the anionic proteoglycans are critical for tissue structure and function, they make tissue matrix dense, conferring a high negative fixed charge density (FCD) that makes drug penetration through the tissue deep zones and drug delivery to resident cells extremely challenging. The high negative FCD of these tissues is now being utilized by taking advantage of electrostatic interactions to create positively charged multi-stage delivery methods that can sequentially penetrate through the full thickness of tissues, create a drug depot and target cells. After decades of work on attempting delivery using strong binding interactions, significant advances have recently been made using weak and reversible electrostatic interactions, a characteristic now considered essential to drug penetration and retention in negatively charged tissues. Here we discuss these advances using examples of negatively charged tissues (cartilage, meniscus, tendons and ligaments, nucleus pulposus, vitreous of eye, mucin, skin), and delve into how each of their structures, tissue matrix compositions and high negative FCDs create barriers to drug entry and explore how charge interactions are being used to overcome these barriers. We review work on tissue targeting cationic peptide and protein-based drug delivery, compare and contrast drug delivery designs, and also present examples of technologies that are entering clinical trials. We also present strategies on further enhancing drug retention within diseased tissues of lower FCD by using synergistic effects of short-range binding interactions like hydrophobic and H-bonds that stabilize long-range charge interactions. As electrostatic interactions are incorporated into design of drug delivery materials and used as a strategy to create properties that are reversible, tunable and dynamic, bio-electroceuticals are becoming an exciting new direction of research and clinical work.
Collapse
Affiliation(s)
- Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Jøraholmen MW, Bhargava A, Julin K, Johannessen M, Škalko-Basnet N. The Antimicrobial Properties of Chitosan Can be Tailored by Formulation. Mar Drugs 2020; 18:md18020096. [PMID: 32023890 PMCID: PMC7074233 DOI: 10.3390/md18020096] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Topical administration of drugs into the vagina can provide local therapy of vaginal infections, preventing the possible systemic side effects of the drugs. The natural polysaccharide chitosan is known for its excellent mucoadhesive properties, safety profile, and antibacterial effects, and thus it can be utilized in improving localized vaginal therapy by prolonging the residence time of a drug at the vaginal site while acting as an antimicrobial in synergy. Therefore, we aimed to explore the potential of chitosan, namely chitosan-coated liposomes and chitosan hydrogel, as an excipient with intrinsic antimicrobial properties. Liposomes were prepared by the thin-film hydration method followed by vesicle size reduction by sonication to the desired size, approximately 200 nm, and coated with chitosan (0.01, 0.03, 0.1, and 0.3%, w/v, respectively). The mucoadhesive properties of chitosan-coated liposomes were determined through their binding efficiency to mucin compared to non-coated liposomes. Non-coated liposomal suspensions were incorporated in chitosan hydrogels forming the liposomes-in-hydrogel formulations, which were further assessed for their texture properties in the presence of biological fluid simulants. The antibacterial effect of chitosan-coated liposomes (0.03%, 0.1% and 0.3%, w/v) and chitosan hydrogels (0.1% and 0.3%, w/w) on Staphylococcus epidermidis and Staphylococcus aureus was successfully confirmed.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway; (M.W.J.); (A.B.)
| | - Abhilasha Bhargava
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway; (M.W.J.); (A.B.)
| | - Kjersti Julin
- Research group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Sykehusveien 44, 9037 Tromsø, Norway; (K.J.); (M.J.)
| | - Mona Johannessen
- Research group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Sykehusveien 44, 9037 Tromsø, Norway; (K.J.); (M.J.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway; (M.W.J.); (A.B.)
- Correspondence: ; Tel.: +47-7764-6640
| |
Collapse
|
16
|
Harloff-Helleberg S, Fliervoet LAL, Fanø M, Schmitt M, Antopolski M, Urtti A, Nielsen HM. Exploring the mucoadhesive behavior of sucrose acetate isobutyrate: a novel excipient for oral delivery of biopharmaceuticals. Drug Deliv 2019; 26:532-541. [PMID: 31090468 PMCID: PMC6534213 DOI: 10.1080/10717544.2019.1606866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/02/2022] Open
Abstract
Oral drug delivery is an attractive noninvasive alternative to injectables. However, oral delivery of biopharmaceuticals is highly challenging due to low stability during transit in the gastrointestinal tract (GIT), resulting in low systemic bioavailability. Thus, novel formulation strategies are essential to overcome this challenge. An interesting approach is increasing retention in the GIT by utilizing mucoadhesive biomaterials as excipients. Here, we explored the potential of the GRAS excipient sucrose acetate isobutyrate (SAIB) to obtain mucoadhesion in vivo. Mucoadhesive properties of a 90% SAIB/10% EtOH (w/w) drug delivery system (DDS) were assessed using a biosimilar mucus model and evaluation of rheological behavior after immersion in biosimilar intestinal fluid. To ease readability of this manuscript, we will refer to this as SAIB DDS. The effect of SAIB DDS on cell viability and epithelial membrane integrity was tested in vitro prior to in vivo studies that were conducted using SPECT/CT imaging in rats. When combining SAIB DDS with biosimilar mucus, increased viscosity was observed due to secondary interactions between biosimilar mucus and sucrose ester predicting considerable mucoadhesion. Mucoadhesion was confirmed in vivo, as radiolabeled insulin entrapped in SAIB DDS, remained in the small intestine for up to 22 h after administration. Moreover, the integrity of the system was investigated using the dynamic gastric model under conditions simulating the chemical composition of stomach fluid and physical shear stress in the antrum under fasted conditions. In conclusion, SAIB is an interesting and safe biomaterial to promote high mucoadhesion in the GIT after oral administration.
Collapse
Affiliation(s)
- Stine Harloff-Helleberg
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - Lies A. L. Fliervoet
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, CG Utrecht, The Netherlands
| | - Mathias Fanø
- Bioneer: FARMA, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - Mechthild Schmitt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolski
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Arto Urtti
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| |
Collapse
|
17
|
Bajracharya R, Song JG, Back SY, Han HK. Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery. Comput Struct Biotechnol J 2019; 17:1290-1308. [PMID: 31921395 PMCID: PMC6944732 DOI: 10.1016/j.csbj.2019.09.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/14/2023] Open
Abstract
Advancements in biotechnology and protein engineering expand the availability of various therapeutic proteins including vaccines, antibodies, hormones, and growth factors. In addition, protein drugs hold many therapeutic advantages over small synthetic drugs in terms of high specificity and activity. This has led to further R&D investment in protein-based drug products and an increased number of drug approvals for therapeutic proteins. However, there are many biological and biopharmaceutical obstacles inherent to protein drugs including physicochemical and enzymatic destabilization, which limit their development and clinical application. Therefore, effective formulations of therapeutic proteins are needed to overcome the various physicochemical and biological barriers. In current medical practice, protein drugs are predominantly available in injectable formulations, which have disadvantages including pain, the possibility of infection, high cost, and low patient compliance. Consequently, non-invasive drug delivery systems for therapeutic proteins have gained great attention in the research and development of biomedicines. Therefore, this review covers the various formulation approaches to optimizing the delivery properties of protein drugs with an emphasis on improving bioavailability and patient compliance. It provides a comprehensive update on recent advancements in nanotechnologies with regard to non-invasive protein drug delivery systems, which is also categorized by the route of administrations including oral, nasal, transdermal, pulmonary, ocular, and rectal delivery systems.
Collapse
|
18
|
Castaño AG, García-Díaz M, Torras N, Altay G, Comelles J, Martínez E. Dynamic photopolymerization produces complex microstructures on hydrogels in a moldless approach to generate a 3D intestinal tissue model. Biofabrication 2019; 11:025007. [DOI: 10.1088/1758-5090/ab0478] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Poinard B, Kamaluddin S, Tan AQQ, Neoh KG, Kah JCY. Polydopamine Coating Enhances Mucopenetration and Cell Uptake of Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4777-4789. [PMID: 30694045 DOI: 10.1021/acsami.8b18107] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mucus is an endogenous viscoelastic biopolymer barrier that limits the entry of foreign pathogens and therapeutic carriers to the underlying mucosal cells. This could be overcome with a hydrophilic and nonpositively charged carrier surface that minimizes interactions with the mucin glycoprotein fibers. Although PEGylation remains an attractive surface strategy to enhance mucopenetration, cell uptake of PEGylated nanoparticles (NPs) often remains poor. Here, we demonstrated polydopamine (PDA) coating to enhance both mucopenetration and cell uptake of NPs. PDA was polymerized on carboxylated polystyrene (PS) NPs to form a PDA coating, and the resulting PS-PDA achieved a similar level of mucopenetration as our PEGylated PS (PS-PEG) positive control in three separate studies: NP-mucin interaction test, transwell assay, and multiple particle tracking. Compared to water, the diffusions of PS-PDA and PS-PEG in reconstituted mucus solution were only 3.5 and 2.4 times slower, respectively, whereas the diffusion of bare PS was slowed by up to 250 times. However, the uptake of PS-PDA (61.2 ± 6.1%) was almost three times higher than PS-PEG (24.6 ± 5.4%) in T24 cells, which were used as a model for underlying mucosal cells. Our results showed a novel unreported functionality of PDA coating in enhancing both mucopenetration and cell uptake of NPs for mucosal drug delivery applications, not possible with conventional PEGylation strategies.
Collapse
Affiliation(s)
- Barbara Poinard
- NUS Graduate School of Integrative Sciences and Engineering , National University of Singapore , 117456 Singapore
| | - Syafiqah Kamaluddin
- Department of Biomedical Engineering , National University of Singapore , 117583 Singapore
| | - Angeline Qiao Qi Tan
- School of Life Sciences & Chemical Technology , Ngee Ann Polytechnic , 599489 Singapore
| | - Koon Gee Neoh
- NUS Graduate School of Integrative Sciences and Engineering , National University of Singapore , 117456 Singapore
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 117585 Singapore
| | - James Chen Yong Kah
- NUS Graduate School of Integrative Sciences and Engineering , National University of Singapore , 117456 Singapore
- Department of Biomedical Engineering , National University of Singapore , 117583 Singapore
| |
Collapse
|
20
|
Birch D, Diedrichsen RG, Christophersen PC, Mu H, Nielsen HM. Evaluation of drug permeation under fed state conditions using mucus-covered Caco-2 cell epithelium. Eur J Pharm Sci 2018. [DOI: 10.1016/j.ejps.2018.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Brako F, Thorogate R, Mahalingam S, Raimi-Abraham B, Craig DQM, Edirisinghe M. Mucoadhesion of Progesterone-Loaded Drug Delivery Nanofiber Constructs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13381-13389. [PMID: 29595052 DOI: 10.1021/acsami.8b03329] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mucoadhesive delivery systems have attracted remarkable interest recently, especially for their potential to prolong dosage form resident times at sites of application such as the vagina or nasal cavity, thereby improving convenience and compliance as a result of less frequent dosage. Mucoadhesive capabilities need to be routinely quantified during the development of these systems. This is however logistically challenging due to difficulties in obtaining and preparing viable mucosa tissues for experiments. Utilizing artificial membranes as a suitable alternative for quicker and easier analyses of mucoadhesion of these systems is currently being explored. In this study, the mucoadhesive interactions between progesterone-loaded fibers (with varying carboxymethyl cellulose (CMC) content) and either artificial (cellulose acetate) or mucosa membranes are investigated by texture analysis and results across models are compared. Mucoadhesion to artificial membrane was about 10 times that of mucosa, though statistically significant ( p = 0.027) association between the 2 data sets was observed. Furthermore, a hypothesis relating fiber-mucosa interfacial roughness (and unfilled void spaces on mucosa) to mucoadhesion, deduced from some classical mucoadhesion theories, was tested to determine its validity. Points of interaction between the fiber and mucosa membrane were examined using atomic force microscopy (AFM) to determine the depths of interpenetration and unfilled voids/roughness, features crucial to mucoadhesion according to the diffusion and mechanical theories of mucoadhesion. A Kendall's tau and Goodman-Kruskal's gamma tests established a monotonic relationship between detaching forces and roughness, significant with p-values of 0.014 and 0.027, respectively. A similar relationship between CMC concentration and interfacial roughness was also confirmed. We conclude that AFM analysis of surface geometry following mucoadhesion can be explored for quantifying mucoadhesion as data from interfacial images correlates significantly with corresponding detaching forces, a well-established function of mucoadhesion.
Collapse
Affiliation(s)
- Francis Brako
- Department of Mechanical Engineering , University College London , Torrington Place , London WC1E 7JE , U.K
- School of Pharmacy , University College London , 29-39 Brunswick Square , London WC1N 1AX , U.K
| | - Richard Thorogate
- London Nanotechnology Centre , 19 Gordon Street, Bloomsbury , London WC1H 0AH , U.K
| | | | - Bahijja Raimi-Abraham
- School of Pharmacy , University College London , 29-39 Brunswick Square , London WC1N 1AX , U.K
| | - Duncan Q M Craig
- School of Pharmacy , University College London , 29-39 Brunswick Square , London WC1N 1AX , U.K
| | - Mohan Edirisinghe
- Department of Mechanical Engineering , University College London , Torrington Place , London WC1E 7JE , U.K
| |
Collapse
|
22
|
Nordgård CT, Draget KI. Co association of mucus modulating agents and nanoparticles for mucosal drug delivery. Adv Drug Deliv Rev 2018; 124:175-183. [PMID: 29307632 DOI: 10.1016/j.addr.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/26/2017] [Accepted: 01/02/2018] [Indexed: 01/27/2023]
Abstract
Nanoparticulate drug delivery systems (nDDS) offer a variety of options when it comes to routes of administration. One possible path is crossing mucosal barriers, such as in the airways and in the GI tract, for systemic distribution or local treatment. The main challenge with this administration route is that the size and surface properties of the nanoparticles, as opposed to small molecular drugs, very often results in mucosal capture, immobilization and removal, which in turn results in a very low bioavailability. Strategies to overcome this challenge do exist, like surface 'stealth' modification with PEG. Here we review an alternative or supplemental strategy, co-association of mucus modulating agents with the nDDS to improve bioavailability, where the nDDS may be surface modified or unmodified. This contribution presents some examples on how possible co-association systems may be achieved, using currently marketed mucolytic drugs, alternative formulations or novel agents.
Collapse
Affiliation(s)
- Catherine Taylor Nordgård
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology NTNU, 7491 Trondheim, Norway.
| | - Kurt I Draget
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology NTNU, 7491 Trondheim, Norway.
| |
Collapse
|
23
|
García-Díaz M, Birch D, Wan F, Nielsen HM. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv Drug Deliv Rev 2018; 124:107-124. [PMID: 29117511 DOI: 10.1016/j.addr.2017.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
Mucosal administration of drugs and drug delivery systems has gained increasing interest. However, nanoparticles intended to protect and deliver drugs to epithelial surfaces require transport through the surface-lining mucus. Translation from bench to bedside is particularly challenging for mucosal administration since a variety of parameters will influence the specific barrier properties of the mucus including the luminal fluids, the microbiota, the mucus composition and clearance rate, and the condition of the underlying epithelia. Besides, after administration, nanoparticles interact with the mucosal components, forming a biomolecular corona that modulates their behavior and fate after mucosal administration. These interactions are greatly influenced by the nanoparticle properties, and therefore different designs and surface-engineering strategies have been proposed. Overall, it is essential to evaluate these biomolecule-nanoparticle interactions by complementary techniques using complex and relevant mucus barrier matrices.
Collapse
Affiliation(s)
- María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ditlev Birch
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
Abstract
Pulmonary delivery in animal models can be performed using either direct administration methods or by passive inhalation. Direct pulmonary delivery requires the animal to be endotracheally intubated, whereas passive delivery uses a nose-only or a whole-body chamber. Endotracheal delivery of therapeutics and vaccines allows investigators to deliver the payload directly into the lung without the limitations associated with passive pulmonary administration methods. Additionally, endotracheal delivery can achieve deep lung delivery without the involvement of other exposure routes and is more reproducible and quantitative than passive pulmonary delivery in terms of accurate dosing. Here we describe the endotracheal delivery of both liquids and dry powders for preclinical models of treatment and exposure.
Collapse
|
25
|
González-Alvarez M, Coll C, Gonzalez-Alvarez I, Giménez C, Aznar E, Martínez-Bisbal MC, Lozoya-Agulló I, Bermejo M, Martínez-Máñez R, Sancenón F. Gated Mesoporous Silica Nanocarriers for a "Two-Step" Targeted System to Colonic Tissue. Mol Pharm 2017; 14:4442-4453. [PMID: 29064714 DOI: 10.1021/acs.molpharmaceut.7b00565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colon targeted drug delivery is highly relevant not only to treat colonic local diseases but also for systemic therapies. Mesoporous silica nanoparticles (MSNs) have been demonstrated as useful systems for controlled drug release given their biocompatibility and the possibility of designing gated systems able to release cargo only upon the presence of certain stimuli. We report herein the preparation of three gated MSNs able to deliver their cargo triggered by different stimuli (redox ambient (S1), enzymatic hydrolysis (S2), and a surfactant or being in contact with cell membrane (S3)) and their performance in solution and in vitro with Caco-2 cells. Safranin O dye was used as a model drug to track cargo fate. Studies of cargo permeability in Caco-2 monolayers demonstrated that intracellular safranin O levels were significantly higher in Caco-2 monolayers when using MSNs compared to those of free dye. Internalization assays indicated that S2 nanoparticles were taken up by cells via endocytosis. S2 nanoparticles were selected for in vivo tests in rats. For in vivo assays, capsules were filled with S2 nanoparticles and coated with Eudragit FS 30 D to target colon. The enteric coated capsule containing the MSNs was able to deliver S2 nanoparticles in colon tissue (first step), and then nanoparticles were able to deliver safranin O inside the colonic cells after the enzymatic stimuli (second step). This resulted in high levels of safranin O in colonic tissue combined with low dye levels in plasma and body tissues. The results suggested that this combination of enzyme-responsive gated MSNs and enteric coated capsules may improve the absorption of drugs in colon to treat local diseases with a reduction of systemic effects.
Collapse
Affiliation(s)
- Marta González-Alvarez
- Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández , 03550 Elche, Spain
| | - Carmen Coll
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain.,CIBER en Biotecnología, Biomateriales y Nanomedicina (CIBER-BBN) , Spain
| | - Isabel Gonzalez-Alvarez
- Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández , 03550 Elche, Spain
| | - Cristina Giménez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain.,CIBER en Biotecnología, Biomateriales y Nanomedicina (CIBER-BBN) , Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain.,CIBER en Biotecnología, Biomateriales y Nanomedicina (CIBER-BBN) , Spain
| | - M Carmen Martínez-Bisbal
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain.,CIBER en Biotecnología, Biomateriales y Nanomedicina (CIBER-BBN) , Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València, IIS La Fe de Valencia , 46026 Valencia, Spain
| | - Isabel Lozoya-Agulló
- Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández , 03550 Elche, Spain
| | - Marival Bermejo
- Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández , 03550 Elche, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain.,CIBER en Biotecnología, Biomateriales y Nanomedicina (CIBER-BBN) , Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València, IIS La Fe de Valencia , 46026 Valencia, Spain.,Departamento de Química, Universitat Politècnica de València , 46022 Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain.,CIBER en Biotecnología, Biomateriales y Nanomedicina (CIBER-BBN) , Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València, IIS La Fe de Valencia , 46026 Valencia, Spain.,Departamento de Química, Universitat Politècnica de València , 46022 Valencia, Spain
| |
Collapse
|
26
|
Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm 2017; 532:555-572. [PMID: 28917986 PMCID: PMC5744044 DOI: 10.1016/j.ijpharm.2017.09.018] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Mucus is a selective barrier to particles and molecules, preventing penetration to the epithelial surface of mucosal tissues. Significant advances in transmucosal drug delivery have recently been made and have emphasized that an understanding of the basic structure, viscoelastic properties, and interactions of mucus is of great value in the design of efficient drug delivery systems. Mucins, the primary non-aqueous component of mucus, are polymers carrying a complex and heterogeneous structure with domains that undergo a variety of molecular interactions, such as hydrophilic/hydrophobic, hydrogen bonds and electrostatic interactions. These properties are directly relevant to the numerous mucin-associated diseases, as well as delivering drugs across the mucus barrier. Therefore, in this review we discuss regional differences in mucus composition, mucus physicochemical properties, such as pore size, viscoelasticity, pH, and ionic strength. These factors are also discussed with respect to changes in mucus properties as a function of disease state. Collectively, the review seeks to provide a state of the art roadmap for researchers who must contend with this critical barrier to drug delivery.
Collapse
Affiliation(s)
- Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA.
| |
Collapse
|
27
|
Targeted microbicides for preventing sexual HIV transmission. J Control Release 2017; 266:119-128. [PMID: 28951320 DOI: 10.1016/j.jconrel.2017.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022]
Abstract
Sexual transmission remains one of the most significant hurdles in the fight against HIV infection. The use of vaginal or rectal microbicides has been proposed for topical pre-exposure prophylaxis but available results from clinical trials of candidate products have been, at best, less than optimal. While waiting for the first product to get regulatory approval, novel approaches are being explored in order to enhance efficacy, as well as to assure safety. Strategies involving specific delivery of antiviral agents to key players involved in the early steps of sexual transmission have the potential to help achieving such purposes. Engineering systems that allow targeting cells, tissues or other biological structures of interest may provide a way to modulate local pharmacokinetics of promising microbicide molecules and, thus, maximize protection. This concise review discusses the identification and use of potential targets for such purpose, while detailing on several examples of targeted systems engineered as potential microbicide candidates. Furthermore, remaining challenges and hints for future work in the field of targeted microbicides are addressed.
Collapse
|
28
|
Bourganis V, Karamanidou T, Kammona O, Kiparissides C. Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. Eur J Pharm Biopharm 2017; 111:44-60. [DOI: 10.1016/j.ejpb.2016.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
29
|
Karamanidou T, Bourganis V, Kammona O, Kiparissides C. Lipid-based nanocarriers for the oral administration of biopharmaceutics. Nanomedicine (Lond) 2016; 11:3009-3032. [DOI: 10.2217/nnm-2016-0265] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biopharmaceutics have been recognized as the drugs of choice for the treatment of several diseases, mainly due to their high selectivity and potent action. Nonetheless, their oral administration is a rather challenging problem, since their bioavailability is significantly hindered by various physiological barriers along the GI tract, including their acid-induced hydrolysis in the stomach, their enzymatic degradation throughout the GI tract and their poor mucosa permeability. Lipid-based nanocarriers represent a viable means for enhancing the oral bioavailability of biomolecules while diminishing toxicity-related issues. The present review describes the main physiological barriers limiting the oral bioavailability of macromolecules and highlights recent advances in the field of lipid-based carriers as well as the respective lipid intestinal absorption mechanisms.
Collapse
Affiliation(s)
- Theodora Karamanidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
| | - Vassilis Bourganis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, PO Box 60361, 57001 Thessaloniki, Greece
| | - Costas Kiparissides
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, PO Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
30
|
Preclinical pharmacokinetic evaluation of praziquantel loaded in poly (methyl methacrylate) nanoparticle using a HPLC–MS/MS. J Pharm Biomed Anal 2016; 117:405-12. [DOI: 10.1016/j.jpba.2015.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 11/22/2022]
|
31
|
Truong-Le V, Lovalenti PM, Abdul-Fattah AM. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems. Adv Drug Deliv Rev 2015; 93:95-108. [PMID: 26277263 DOI: 10.1016/j.addr.2015.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems.
Collapse
|
32
|
Boegh M, Nielsen HM. Mucus as a Barrier to Drug Delivery - Understanding and Mimicking the Barrier Properties. Basic Clin Pharmacol Toxicol 2014; 116:179-86. [DOI: 10.1111/bcpt.12342] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/08/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Marie Boegh
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|