1
|
Ghouri I, Demir M, Khan SA, Mansoor MA, Iqbal M. Unveiling the Potential of Protein-Based Sustainable Antibacterial Materials. Probiotics Antimicrob Proteins 2025; 17:737-762. [PMID: 39422822 DOI: 10.1007/s12602-024-10381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
The surge in bacterial growth and the escalating resistance against a multitude of antibiotic drugs have burgeoned into an alarming global threat, necessitating urgent and innovative interventions. In response to this peril, scientists have embarked on the development of advanced biocompatible antibacterial materials, aiming to counteract not only bacterial infections but also the pervasive issue of food spoilage resulting from microbial proliferation. Protein-based biopolymers and their meticulously engineered composites are at the forefront of this endeavor. Their potential in combating this severe global concern presents an approach that intersects the domains of biomedicine and environmental science. The present review article delves into the intricate extraction processes employed to derive various proteins from their natural sources, unraveling the complex biochemical pathways that underpin their antibacterial properties. Expanding on the foundational knowledge, the review also provides a comprehensive synthesis of functionalized proteins modified to enhance their antibacterial efficacy, unveiling a realm of possibilities for tailoring solutions to specific biomedical and environmental applications. The present review navigates through their antibacterial applications; from wound dressings to packaging materials with inherent antibacterial properties, the potential applications underscore the versatility and adaptability of these materials. Moreover, this comprehensive review serves as a valuable roadmap, guiding future research endeavors in reshaping the landscape of natural antibacterial materials on a global scale.
Collapse
Affiliation(s)
- Iqra Ghouri
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- Materials Institute, TUBITAK Marmara Research Center, 41470, Gebze, Turkey
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Adil Mansoor
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
2
|
Guan T, Zhang Z, Li X, Cui S, McClements DJ, Wu X, Chen L, Long J, Jiao A, Qiu C, Jin Z. Preparation, Characteristics, and Advantages of Plant Protein-Based Bioactive Molecule Delivery Systems. Foods 2022; 11:foods11111562. [PMID: 35681312 PMCID: PMC9180007 DOI: 10.3390/foods11111562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
As a renewable resource, the market trend of plant protein has increased significantly in recent years. Compared with animal protein, plant protein production has strong sustainability factors and a lower environmental impact. Many bioactive substances have poor stability, and poor absorption effects limit their application in food. Plant protein-based carriers could improve the water solubility, stability, and bioavailability of bioactive substances by different types of delivery systems. In this review, we present a detailed and concise summary of the effects and advantages of various plant protein-based carriers in the encapsulation, protection, and delivery of bioactive substances. Furthermore, the research progress of food-grade bioactive ingredient delivery systems based on plant protein preparation in recent years is summarized, and some current challenges and future research priorities are highlighted. There are some key findings and conclusions: (i) plant proteins have numerous functions: as carriers for transportation systems, a shell or core of a system, or food ingredients; (ii) plant protein-based carriers could improve the water solubility, stability, and bioavailability of bioactive substances by different types of delivery systems; and (iii) plant protein-based carriers stabilize bioactive substances with potential applications in the food and nutrition fields.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food & Bioengineering, Xihua University, Chengdu 610039, China; (T.G.); (X.W.)
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Shaoning Cui
- Department of Food, Yantai Nanshan University, Yantai 264005, China;
| | | | - Xiaotian Wu
- College of Food & Bioengineering, Xihua University, Chengdu 610039, China; (T.G.); (X.W.)
| | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
- Correspondence: ; Tel.: +86-5108-5327-006
| |
Collapse
|