1
|
Ye Q, Men C, Tian L, Liu Y, Zhan L, Li YF, Huang CZ, Zhen SJ. Preparation of a molecularly imprinted test strip for point-of-care detection of thiodiglycol, a sulfur mustard poisoning metabolic marker. Talanta 2021; 234:122701. [PMID: 34364498 DOI: 10.1016/j.talanta.2021.122701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Conventional methods for the detection of the sulfur mustard poisoning metabolic marker, thiodiglycol (TDG), require expensive instruments and reagents as well as professional operators. To address these problems, a novel test strip based on a molecularly imprinted sensitive membrane (MIM) was developed in this work for point-of-care (POC) detection of TDG. The TDG test strip was prepared conveniently by coating molecular imprinted polymers (MIPs) on a nitrocellulose membrane. When the sample contained TDG, the MIPs could specifically bind with TDG. A great number of AuNPs (AuNPs) could then be adsorbed on the test strip via the formation of an Au-S bond between TDG and AuNPs, giving the test strip the obvious red color of AuNPs. In the absence of TDG, the test strip exhibited much lighter color because it could not adsorb AuNPs. By monitoring the color change of the test strip, TDG could be detected from 1.0 ng/mL to 100.0 μg/mL with a detection limit of 0.23 ng/mL (3σ) under the optimal conditions (the molar ratio of TDG to MAA was 1:2; the eluent was chloroform; the elution time was 50 min; the reaction time between MIPs and TDG was 15 min; the adsorption time of AuNPs was 40 min; the temperature of the reaction system was 35 °C). This method has excellent selectivity and has been used to detect TDG in urine, showing great potential for POC detection of TDG in clinical samples.
Collapse
Affiliation(s)
- Qichao Ye
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chen Men
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lili Tian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuxin Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Science, Southwest University, Chongqing, 400715, PR China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Science, Southwest University, Chongqing, 400715, PR China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Liu Z, Liu L, Cui G, Wu X, Kuang H. Development of an immunochromatographic strip assay based on a monoclonal antibody for detection of cimaterol. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1674787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Ziying Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, People’s Republic of China
| | - Gang Cui
- Department of Biotechnology, Yancheng Teachers University, Yancheng, People’s Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
3
|
ZHANG LM, ZHANG DY, ZENG Y, LI JP. A Cimaterol Molecularly Imprinted Sensor Based on DNA-assisted Recognition. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61124-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron 2018; 112:54-71. [DOI: 10.1016/j.bios.2018.04.028] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/31/2023]
|