1
|
Tian W, Gao P, Zong DP, Liu JJ, Zhang MY, Wang CC, Wang ZX, Wang JM, Niu YY, Xiang P. The oral bioaccessibility and gingival cytotoxicity of metal(loid)s in wild vegetables from mining areas: Implication for human oral health. Front Nutr 2022; 9:1042300. [DOI: 10.3389/fnut.2022.1042300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BackgroundHeavy metal(loid)s are frequently detected in vegetables posing potential human health risks, especially for those grown around mining areas. However, the oral bioaccessibility and gingival cytotoxicity of heavy metals in wild vegetables remain unclear.MethodsIn this study, we assessed the total and bioaccessible Cr, As, Cd, Pb, and Ni in four wild vegetables from mining areas in Southwest China. In addition, the cytotoxicity and underlying mechanisms of vegetable saliva extracts on human gingival epithelial cells (HGEC) were studied.ResultsThe Plantago asiatica L. (PAL) showed the highest bioaccessible Cr, As, Cd, and Pb, while the greatest bioaccessible Ni was in Taraxacum mongolicum (TMM). The Pteridium aquilinum (PAM), Chenopodium album L. (CAL), and TMM extracts decreased cell viability, induced apoptosis, caused DNA damage, and disrupted associated gene expressions. However, PAL extracts which have the highest bioaccessible heavy metals did not present adverse effects on HGEC, which may be due to its inhibition of apoptosis by upregulating p53 and Bcl-2.ConclusionOur results indicated that polluted vegetable intake caused toxic effects on human gingiva. The heavy metals in vegetables were not positively related to human health risks. Collectively, both bioaccessibility and toxic data should be considered for accurate risk assessment.
Collapse
|
2
|
Song L, Li H, Li T, Xu J, Chen H. Sequential Speciation Analysis of Heavy Metals in Drinking Water Pipe Scales by Mass Spectrometry. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Liu X, Li L, Li F, Zhao W, Luo L, Bi X, Li X, You T. An ultra-high-sensitivity electrochemiluminescence aptasensor for Pb 2+ detection based on the synergistic signal-amplification strategy of quencher abscission and G-quadruplex generation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127480. [PMID: 34666293 DOI: 10.1016/j.jhazmat.2021.127480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Signal amplification provides an effective way to improve detection performance. Herein, an ultrasensitive electrochemiluminescence (ECL) aptasensor for Pb2+ detection was developed based on a dual signal-amplification strategy of the abscission of a quencher and the generation of a G-quadruplex by one-step and simultaneous way. Nitrogen-doped carbon quantum dots linked with complementary DNA (cDNA-NCQDs) at the sensing interface was applied as the quencher of a tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium(II) (Ru(dcbpy)32+)/tripropylamine system to minimize the ECL signal due to the intermolecular hydrogen bond-induced energy-transfer process. Upon the addition of Pb2+, its specific binding with the aptamer triggered the abscission of cDNA-NCQDs, accompanied by the formation of G-quadruplex on the surface of the electrode, both of which amplified the intensity of the light emission. The ECL amplification efficiency induced by the above two mechanisms (78.6%) was valuably greater than that of their sum value (69.3%). This synergistic effect resulted in high detection sensitivity of the ECL aptasensor, which allowed to thereby obtain Pb2+ measurements in the range of 1 fM - 10 nM with an ultra-low detection limit of 0.19 fM. The Pb2+-mediated synergistic signal-amplification ECL strategy can provide a new approach for integrating various amplification strategies.
Collapse
Affiliation(s)
- Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Fang Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wanlin Zhao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
4
|
Elemental Speciation Analysis in Environmental Studies: Latest Trends and Ecological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212135. [PMID: 34831893 PMCID: PMC8623758 DOI: 10.3390/ijerph182212135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Speciation analysis is a key aspect of modern analytical chemistry, as the toxicity, environmental mobility, and bioavailability of elemental analytes are known to depend strongly on an element’s chemical species. Henceforth, great efforts have been made in recent years to develop methods that allow not only the determination of elements as a whole, but also each of its separate species. Environmental analytical chemistry has not ignored this trend, and this review aims to summarize the latest methods and techniques developed with this purpose. From the perspective of each relevant element and highlighting the importance of their speciation analysis, different sample treatment methods are introduced and described, with the spotlight on the use of modern nanomaterials and novel solvents in solid phase and liquid-liquid microextractions. In addition, an in-depth discussion of instrumental techniques aimed both at the separation and quantification of metal and metalloid species is presented, ranging from chromatographic separations to electro-chemical speciation analysis. Special emphasis is made throughout this work on the greenness of these developments, considering their alignment with the precepts of the Green Chemistry concept and critically reviewing their environmental impact.
Collapse
|
5
|
A new generation of highly sensitive potentiometric sensors based on ion imprinted polymeric nanoparticles/multiwall carbon nanotubes/polyaniline/graphite electrode for sub-nanomolar detection of lead(II) ions. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Yang S, Song Y, Ma Q, Cheng H, Wang Y, Liu J. Quantification of ultra-trace organolead species in environmental water by inductively coupled plasma mass spectrometry with online solid-phase extraction and high performance liquid chromatographic separation. Anal Chim Acta 2020; 1133:30-38. [DOI: 10.1016/j.aca.2020.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
|
7
|
Stolz A, Jooß K, Höcker O, Römer J, Schlecht J, Neusüß C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis 2018; 40:79-112. [PMID: 30260009 DOI: 10.1002/elps.201800331] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
Capillary electrophoresis (CE) offers fast and high-resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user-friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano-electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE-MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two-dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE-modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.
Collapse
Affiliation(s)
| | - Kevin Jooß
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Höcker
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jennifer Römer
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Johannes Schlecht
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| | | |
Collapse
|
8
|
Guo Y, Gu X, Jiang Y, Zhu W, Yao L, Liu Z, Gao H, Wang L. Antagonistic Effect of Laver, Pyropia yezonensis and P. haitanensis, on Subchronic Lead Poisoning in Rats. Biol Trace Elem Res 2018; 181:296-303. [PMID: 28577234 DOI: 10.1007/s12011-017-1050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Lead, one of the most harmful heavy metals, can cause various hazardous effects on living organisms. This study was undertaken to evaluate the antagonistic and protective effects of two economically important laver species, Pyropia yezoensis and P. haitanensis, against subchronic lead poisoning in rats by a 30-day feeding test. Sixty-four healthy Wistar rats were randomly divided into eight groups with eight rats (4♂ + 4♀) per group, among which, one group was served as the control, the others were respectively treated with lead acetate (5 mg/kg b w), and a combination of lead acetate and P. yezoensis or P. haitanensis at different dosages. Weight gain of rats was observed and recorded. Changes in antioxidant indexes, and liver and renal function markers were determined to evaluate the antagonistic effect. Lead content in rats was determined to investigate lead excretion effect of laver. The results showed that exposure to lead caused lead accumulation in kidney and liver, thus leading to significant oxidative damage and impaired liver and renal function compared to the control group. The co-treatment of laver slightly increased body weight compared to the lead-treated group. The co-administration of laver restored liver and renal function of rats by preventing the increment in the activities of alanine transaminase (ALT), alkaline phosphatase (ALP), and aspartate transaminase (AST), and the levels of blood urea nitrogen (BUN) and creatinine (Cr). The increasing of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities, and lowering of the enhanced malondialdehyde (MDA) contents of rats were observed in the laver co-treated groups, which indicated that laver enhanced the antioxidative capacity of rats. The laver also enhanced lead content in feces and reduced it in liver and kidney. The results indicated that P. yezoensis and P. haitanensis could maintain or promote the normal physiological and biochemical function of lead-induced subchronic poisoning of rats, probably owing to their enhancements of antioxidant capacity and lead excretion.
Collapse
Affiliation(s)
- Yingying Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China
| | - Xiaohui Gu
- Department of Food Engineering, Weihai Ocean Vocational College, 264300, Weihai, People's Republic of China
| | - Yanhua Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China.
| | - Wenjia Zhu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China
| | - Lin Yao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China
| | - Zhantao Liu
- Medical College, Qingdao University, 266021, Qingdao, People's Republic of China
| | - Hua Gao
- Medical College, Qingdao University, 266021, Qingdao, People's Republic of China
| | - Lianzhu Wang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China.
| |
Collapse
|