1
|
Nie L, Li S, Cao M, Han N, Chen Y. A brief review of preparation and applications of monolithic aerogels in atmospheric environmental purification. J Environ Sci (China) 2025; 149:209-220. [PMID: 39181635 DOI: 10.1016/j.jes.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 08/27/2024]
Abstract
Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages, such as fine building block size together with high specific surface area, abundant pore structure, etc. Additionally, monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications. This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels, covering types of monolithic aerogels including SiO2, graphene, metal oxides and their combinations, along with their preparation methods. In particular, recent developments for VOC adsorption, CO2 capture, catalytic oxidation of VOCs and catalytic reduction of CO2 are highlighted. Finally, challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed. This review provides valuable insights for designing and utilizing monolithic aerogel-based functional materials.
Collapse
Affiliation(s)
- Linfeng Nie
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuangde Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengjie Cao
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Science & Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Science & Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Li YY, Ren Y, He J, Xiao H, Li JR. Recent Advances of the Effect of H 2O on VOC Oxidation over Catalysts: Influencing Factors, Inhibition/Promotion Mechanisms, and Water Resistance Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1034-1059. [PMID: 39762185 DOI: 10.1021/acs.est.4c08745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Water vapor is a significant component in real volatile organic compounds (VOCs) exhaust gas and has a considerable impact on the catalytic performance of catalysts for VOC oxidation. Important progress has been made in the reaction mechanisms of H2O and water resistance strategies for VOC oxidation in recent years. Despite advancements in catalytic technology, most catalysts still exhibit low activity under humid conditions, presenting a challenge in reducing the adverse effects of H2O on VOC oxidation. To develop water-resistant catalysts, understanding the mechanistic role of H2O and implementing effective water-resistance strategies with influencing factors are imperative. This Perspective systematically summarizes related research on the impact of H2O on VOC oxidation, drawing from over 390 papers published between 2013 and 2024. Five main influencing factors are proposed to clarify their effects on the role of H2O. Five inhibition/promotion mechanisms of H2O are introduced, elucidating their role in the catalytic oxidation of various VOCs. Additionally, different kinds of water resistance strategies are discussed, including the fabrication of hydrophobic materials, the design of specific structures and morphologies, and the introduction of additional elements for catalyst modification. Finally, scientific challenges and opportunities for enhancing the design of efficient and water-resistant catalysts for practical applications in VOC purification are highlighted.
Collapse
Affiliation(s)
- Ying-Ying Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Yong Ren
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, PR China
| | - Jun He
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, PR China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- Ningbo Key Laboratory of Urban Environmental Pollution and Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315800, P.R. China
| | - Jian-Rong Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- Ningbo Key Laboratory of Urban Environmental Pollution and Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315800, P.R. China
| |
Collapse
|
3
|
Kondratowicz T, Gajewska M, Li J, Li MMJ, Turner ZR, Chen C, O'Hare D. Hollow-SiO 2@Cu x Zn y Mg z Al-LDHs as catalyst precursors for CO 2 hydrogenation to methanol. Chem Sci 2025; 16:1327-1335. [PMID: 39697415 PMCID: PMC11651139 DOI: 10.1039/d4sc07292h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
We report a new synthetic strategy for preparing well-organised, spherical and mesoporous, mixed-metal, hollow-core@layered double hydroxides. Hollow-SiO2@Cu x Zn y Mg z Al-LDHs (x + y + z = 2.32 ± 0.06) were prepared by exploiting a unique "memory effect" feature of LDH materials. The reconstruction with simultaneous incorporation of Cu2+ and Zn2+ into the LDH shell was achieved by exposing hollow-SiO2@Mg2Al-LDO to an aqueous solution containing Cu2+ and Zn2+ cations. The effect of a single reconstruction step with various concentrations of Cu2+ and Zn2+ solutions (20-80 mM), as well as the implementation of five successive cycles of calcination-reconstruction on the chemical composition, morphology, texture and structure of the resulting materials are described. Hollow-SiO2@Cu x Zn y Mg z Al-LDHs are precursors to active catalysts for CO2 hydrogenation to methanol. The most active catalyst exhibits a space-time yield for methanol of 1.68 gMeOH gCu -1 h-1 at 270 °C (3 : 1 CO2 : H2, 30 bar) which represents a 1.7-fold increase in space-time yield compared to commercial Cu/ZnO/Al2O3 catalyst under the same conditions.
Collapse
Affiliation(s)
- Tomasz Kondratowicz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44 (0)1865 272686
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow Mickiewicza 30 30-059 Krakow Poland
| | - Jiangtong Li
- Department of Applied Physics, The Hong Kong Polytechnic University P. R. China
| | - Molly Meng-Jung Li
- Department of Applied Physics, The Hong Kong Polytechnic University P. R. China
| | - Zoë R Turner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44 (0)1865 272686
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44 (0)1865 272686
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44 (0)1865 272686
| |
Collapse
|
4
|
Vergara-Arenas B, Nicholls RL, Negrón-Silva GE, Lomas-Romero L, Morales-Sern JA, Nguyen BN. Effects of Mixed Metal Oxide Catalysts on the Synthesis of Cyclic Carbonates from Epoxides under Atmospheric CO 2 Pressure. ACS OMEGA 2025; 10:673-682. [PMID: 39829508 PMCID: PMC11740258 DOI: 10.1021/acsomega.4c07538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
One use of CO2 as a starting material in organic transformations is in the synthesis of cyclic carbonates and polycarbonates. Due to the low reactivity of CO2, this transformation must be carried out in the presence of an efficient catalyst. Although several catalytic systems have been developed in the past decade, reducing the CO2 pressure at which the reaction is carried out remains one of the main challenges of the process. In this context, in the present work, we describe the catalytic activity of mixed metal oxides in the synthesis of cyclic carbonates from CO2 (1 atm) and epoxides at 70 °C. Using these materials as catalysts represents significant benefits since they are very stable, cost-effective, and can be reused in several reaction cycles.
Collapse
Affiliation(s)
- Blanca
Ivonne Vergara-Arenas
- Departamento
de Química, Universidad Autónoma
Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de
México C. P. 09340, México
| | - Rachel L. Nicholls
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Guillermo E. Negrón-Silva
- Departamento
de Ciencias Básicas, Universidad
Autónoma Metropolitana-Azcapotzalco, Av. San Pablo No. 180, Ciudad
de México C. P. 02200, México
| | - Leticia Lomas-Romero
- Departamento
de Química, Universidad Autónoma
Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de
México C. P. 09340, México
| | - José Antonio Morales-Sern
- Centro
de Investigaciones Científicas, Instituto de Química
Aplicada, Universidad del Papaloapan, Tuxtepec, Oaxaca 68301, México
| | - Bao N. Nguyen
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
5
|
Zhou L, Zhang H, Jin J, Xu L, Ouyang J, Ao X, Adesina AA. Honeycomb-like macroporous crosslinked chitosan assisted EDTA-intercalated Ca-Mg-Al layered hydrotalcite composite foams for efficient U(VI) biosorption. Int J Biol Macromol 2024; 279:135011. [PMID: 39182893 DOI: 10.1016/j.ijbiomac.2024.135011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The biosorption is considered to be highly efficient for the separation of radionuclide from radioactive wastewater. Herein, the crosslinked chitosan assisted EDTA intercalated Ca-Mg-Al layered double hydroxides composite foam (CS-EDTA-LDH) was synthesized by combining EDTA intercalation and freeze-drying methods. The macroporous and ultralight properties of CS-EDTA-LDH facilitates its rapid adsorption and facile recovery, and the inorganic/organic incorporation can avoid pore collapse and provide numerous adsorption sites, while the EDTA intercalation can enhance the complex capture of U(VI). The CS-EDTA-LDH presents various functional groups (carboxyl, hydroxyl and amino groups) for U(VI) adsorption, and the adsorption capacity for U(VI) reached 272.3 mg/g at pH 5.0 and 298 K. The adsorption kinetics of U(VI) conformed to PSO equation, whereas the isotherms conformed to the Freundlich model, indicating heterogeneous adsorption with diffusion process as a rate-controlling step. The thermodynamic parameters indicate that U(VI) adsorption by CS-EDTA-LDH is endothermic and spontaneous in nature. The adsorption mechanism is related to the synergic complexation by multi-functional groups, ion exchange, and possible isomeric substitution. Overall, CS-EDTA-LDH could be a promising biosorbent for the cleanup of radioactive pollution due to its high performance for U(VI) adsorption and facile recovery.
Collapse
Affiliation(s)
- Limin Zhou
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, 330013 Nanchang, China; State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Hui Zhang
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Jieyun Jin
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Li Xu
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Jinbo Ouyang
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Xianqian Ao
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | | |
Collapse
|
6
|
Yang S, Gu J, Dai B, Zhang L. A Critical Review of the Synthesis and Applications of Spinel-Derived Catalysts to Bio-Oil Upgrading. CHEMSUSCHEM 2024:e202401115. [PMID: 39370395 DOI: 10.1002/cssc.202401115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The transformation of renewable bio-oil into value-added chemicals and bio-oil through catalytic processes embodies an efficient approach within the realm of advancing sustainable energy. Spinel-based catalysts have garnered significant attention owing to their ability to precisely tune metals within the framework, thereby facilitating adjustments to structural, physical, and electronic properties, coupled with their remarkable thermal stability. This review aims to provide a comprehensive overview of recent advancements in spinel-based catalysts tailored specifically for upgrading bio-oil. Its objective is to shed light on their potential to address the limitations of conventional catalysts, thereby advancing sustainable biofuel production. Initially, a comprehensive analysis is conducted on different metal oxide composites in terms of their similarity and dissimilarity on properties. Subsequently, the synthesis methodologies of spinels are scrutinised and potential avenues for their modification are explored. Following this, an in-depth discussion ensues regarding the utilisation of spinels as catalysts or catalyst precursors for catalytic cracking, ketonisation, catalytic hydrodeoxygenation, steam and aqueous-phase reforming, as well as electrocatalytic upgrading of bio-oil, with a specific emphasis on elucidating their catalytic reactivity, and underlying structure-activity correlation and catalysis mechanisms. Finally, the challenges and potential prospects in utilising spinels for the catalytic valorisation of renewable biofuel are addressed, with a specific focus on the use of machine learning - based approaches to optimise the structure and activity of spinel catalysts. This review aims to provide specific directions for further exploration and maximisation of the spinel catalysts in the bio-oil upgrading field.
Collapse
Affiliation(s)
- Sasha Yang
- Department of Chemical and Biological Engineering, Monash University, Victoria, 3800, Australia
| | - Jinxing Gu
- Department of Chemical and Biological Engineering, Monash University, Victoria, 3800, Australia
| | - Baiqian Dai
- Department of Chemical and Biological Engineering, Monash University, Victoria, 3800, Australia
| | - Lian Zhang
- Department of Chemical and Biological Engineering, Monash University, Victoria, 3800, Australia
| |
Collapse
|
7
|
Li Z, Ma J, Dong X. RuNi/TiZr-MMO Catalysts Derived from Zr-Modified NiTi-LDH for CO-Selective Methanation. Molecules 2024; 29:3309. [PMID: 39064888 PMCID: PMC11279186 DOI: 10.3390/molecules29143309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
CO-selective methanation (CO-SMET) is an efficient hydrogen-rich (H2-rich) gas purification technology for proton exchange membrane fuel cells. It is vital to develop suitable catalysts with good low-temperature activity for CO-SMET reactions. In this study, RuNi/TiZrx-mixed metal oxide (RuNi/TiZrx-MMO) catalysts with different molar ratios of Zr/Ti, derived from a Zr-promoted NiTi-layered double hydroxide (NiTi-LDH) precursor were successfully prepared using the co-precipitation and wet impregnation methods. The RuNi/TiZr0.2-MMO catalyst possesses higher catalytic performance in a lower temperature window of 180-280 °C, which can reduce the CO concentration to be below 10 ppm. The characterization results obtained from XRD, BET, SEM, TEM, XPS, TPR, and TPD suggest that the addition of ZrO2 increases the surface area of the catalyst, improves the dispersion of metallic nanoparticles, increases the reducibility of Ni species on the RuNi/TiZr0.2-MMO catalyst's surface, and enhances the adsorption and activation ability of CO, resulting in remarkable catalytic performance at lower reaction temperatures. Moreover, the RuNi/TiZr0.2-MMO catalyst demonstrated long-term catalytic stability and carbon resistance.
Collapse
Affiliation(s)
| | | | - Xinfa Dong
- Guangdong Provincial Key Laboratory of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; (Z.L.); (J.M.)
| |
Collapse
|
8
|
Gao F, Wang X, Cui WG, Liu Y, Yang Y, Sun W, Chen J, Liu P, Pan H. Topologically Porous Heterostructures for Photo/Photothermal Catalysis of Clean Energy Conversion. SMALL METHODS 2023; 7:e2201532. [PMID: 36813753 DOI: 10.1002/smtd.202201532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Indexed: 06/18/2023]
Abstract
As a straightforward way to fix solar energy, photo/photothermal catalysis with semiconductor provides a promising way to settle the energy shortage and environmental crisis in many fields, especially in clean energy conversion. Topologically porous heterostructures (TPHs), featured with well-defined pores and mainly composed by the derivatives of some precursors with specific morphology, are a major part of hierarchical materials in photo/photothermal catalysis and provide a versatile platform to construct efficient photocatalysts for their enhanced light absorption, accelerated charges transfer, improved stability, and promoted mass transportation. Therefore, a comprehensive and timely review on the advantages and recent applications of the TPHs is of great importance to forecast the potential applications and research trend in the future. This review initially demonstrates the advantages of TPHs in photo/photothermal catalysis. Then the universal classifications and design strategies of TPHs are emphasized. Besides, the applications and mechanisms of photo/photothermal catalysis in hydrogen evolution from water splitting and COx hydrogenation over TPHs are carefully reviewed and highlighted. Finally, the challenges and perspectives of TPHs in photo/photothermal catalysis are also critically discussed.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Ping Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
9
|
Development of Quinary Layered Double Hydroxide-Derived High-Entropy Oxides for Toluene Catalytic Removal. Catalysts 2023. [DOI: 10.3390/catal13010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this work, a novel method for the preparation of high-entropy oxides (HEO) was successfully developed using multivariate composition layered double hydroxides (LDHs) as precursor. Thermal treatment over 600 °C led to the complete transformation of LDHs to single spinel phase HEOs. The performance of the obtained HEO catalysts in the removal of volatile organic compounds (VOCs) was studied with the catalytic oxidation of toluene as the probe reaction. The optimized HEO-600 catalyst showed impressive activity and stability over toluene catalytic oxidation, which resulted from the vast quantity of surface oxygen vacancies and the relative variable metal valence. The T50 and T90 values of HEO-600 were 246 and 254 °C, and the T90 value only presented a slight increase to 265 °C after a 10-cycle test. This work developed a simple way to obtain HEO materials and provide technical support for the application of HEO catalysts for VOCs removal.
Collapse
|
10
|
Catalytic Degradation of Toluene over MnO2/LaMnO3: Effect of Phase Type of MnO2 on Activity. Catalysts 2022. [DOI: 10.3390/catal12121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Series of α, β, γ, δ type MnO2 supported on LaMnO3 perovskite was developed by a one-pot synthesis route. Compared with α-MnO2, β-MnO2, γ-MnO2, δ-MnO2 and LaMnO3 oxides, all MnO2/LaMnO3 showed promotional catalytic performance for toluene degradation. Among them, α-MnO2/LaMnO3 holds the best active and mineralization efficiency. By the analysis of N2 adsorption-desorption, XPS and H2-TPR, it can be inferred that the improved activity should be ascribed to the higher proportion of lattice oxygen, better low-temperature reducibility and larger specific surface area. Besides, the byproducts from the low-temperature reaction of toluene oxidation were detected by a TD/GC-MS, confirming the presence of the intermediates. Combined with the in-situ DRIFTS, the catalytic degradation path of toluene oxidation has also been discussed in depth.
Collapse
|
11
|
Li G, Shui Z, Duan X, Yang H, Zhao Z, Zhao T, Zhang Z, Jiang G, Ren H, Cheng J, Hao Z. Unveiling the Balance between Catalytic Activity and Water Resistance over Co 3O 4 Catalysts for Propane Oxidation: The Role of Crystal Facet and Oxygen Vacancy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Ziyi Shui
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Xiaoxiao Duan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Hongling Yang
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing100037, China
| | - Zeyu Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Ting Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Guoxia Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Hongna Ren
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| |
Collapse
|
12
|
Yu Q, Li C, Ma D, Zhao J, Liu X, Liang C, Zhu Y, Zhang Z, Yang K. Layered double hydroxides-based materials as novel catalysts for gaseous VOCs abatement: Recent advances and mechanisms. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Aghababai Beni A, Jabbari H. Nanomaterials for Environmental Applications. RESULTS IN ENGINEERING 2022; 15:100467. [DOI: 10.1016/j.rineng.2022.100467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
|
14
|
L-asparagine Assisted Synthesis of Pt/CeO2 Nanospheres for Toluene Combustion. Catalysts 2022. [DOI: 10.3390/catal12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pt1/CeO2 nanospheres (Pt/CeO2-NS) were synthesized by the bath oiling method with L-asparagine as a necessary additive. Owing to the morphology control effect and coordination interaction of L-asparagine, CeO2 nanospheres can retain their nanosphere structure and show stronger electronic metal-support interaction with highly dispersed Pt. Moreover, the toluene catalytic combustion performance of Pt/CeO2-NS was investigated. The structure-performance relationship is analyzed according to the coordination state of Pt. The Pt/CeO2-NS catalyst exhibited superior catalytic activity than the commercial CeO2-supported Pt catalyst, which is attributed to its higher oxygen vacancy and Pt4+.
Collapse
|
15
|
Zhang K, Ding H, Pan W, Mu X, Qiu K, Ma J, Zhao Y, Song J, Zhang Z. Research Progress of a Composite Metal Oxide Catalyst for VOC Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9220-9236. [PMID: 35580211 DOI: 10.1021/acs.est.2c02772] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) are atmospheric pollutants that have been of concern for researchers in recent years because they are toxic, difficult to remove, and widely sourced and easily cause damage to the environment and human body. Most scholars use low-temperature plasma biological treatment, catalytic oxidation, adsorption, condensation, and recovery techniques to treat then effectively. Among them, catalytic oxidation technology has the advantages of a high catalytic efficiency, low energy consumption, high safety factor, high treatment efficiency, and less secondary pollution; it is currently widely used for VOC degradation technology. In this paper, the catalytic oxidation technology for the degradation of multiple types of VOCs as well as the development of a single metal oxide catalyst have been briefly introduced. We also focus on the research progress of composite metal oxide catalysts for the removal of VOCs by comparing and analyzing the metal component ratio, preparation method, and types of precursors and the catalysts' influence on the catalytic performance. In addition, the reason for catalyst deactivation and a correlation between the chemical state of the catalyst and the electron distribution are discussed. Development of a composite metal oxide catalyst for the catalytic oxidation of VOCs has been proposed.
Collapse
Affiliation(s)
- Kai Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Honglei Ding
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Shanghai Power Environmental Protection Engineering Technology Research Center, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Weiguo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Shanghai Power Environmental Protection Engineering Technology Research Center, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Xiaotian Mu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Kaina Qiu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Junchi Ma
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Yuetong Zhao
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Jie Song
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| | - Ziyi Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
| |
Collapse
|
16
|
Li C, He L, Yao X, Yao Z. Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase. CHEMOSPHERE 2022; 295:133868. [PMID: 35131275 DOI: 10.1016/j.chemosphere.2022.133868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase may possess great advantages in its high removal efficiency, mild conditions, good reliability, wide applicability, and little potential secondary pollution, which has aroused extensive research interests in the past decade. This Overview Article summarizes the latest achievements to eliminate VOCs by chemical oxidation in liquid phase including gas-liquid mass transfer, homogeneous/heterogeneous oxidation, electrochemical oxidation, and coupling technologies. Important research contributions are highlighted in terms of mass transfer, catalytic materials, removal/mineralization efficiency, and reaction mechanism to evaluate their potential industrial applications. The current challenges and future strategies are discussed from the viewpoint of the deep degradation of refractory VOC substrates and their intermediates. It is anticipated that this review will attract more attention toward the development and application of chemical oxidation methods to clear complex industrial organic exhaust gas.
Collapse
Affiliation(s)
- Changming Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Li He
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
17
|
Zhou B, Ke Q, Wen M, Ying T, Cui G, Zhou Y, Gu Z, Lu H. Catalytic combustion of toluene on Pt/Al2O3 and Pd/Al2O3 catalysts with CeO2, CeO2-Y2O3, La2O3 as coating. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Zhang L, Xue L, Lin B, Zhao Q, Wan S, Wang Y, Jia H, Xiong H. Noble Metal Single-Atom Catalysts for the Catalytic Oxidation of Volatile Organic Compounds. CHEMSUSCHEM 2022; 15:e202102494. [PMID: 35049142 DOI: 10.1002/cssc.202102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Volatile organic compounds (VOCs) are detrimental to the environment and human health and must be eliminated before discharging. Oxidation by heterogeneous catalysts is one of the most promising approaches for the VOCs abatement. Precious metal catalysts are highly active for the catalytic oxidation of VOCs, but they are rare and their high price limits large-scale application. Supported metal single-atom catalysts (SACs) have a high atom efficiency and provide the possibility to circumvent such limitations. This Review summarizes recent advances in the use of metal SACs for the complete oxidation of VOCs, such as benzene, toluene, formaldehyde, and methanol, as well as aliphatic and Cl- and S-containing hydrocarbons. The structures of the metal SACs used and the reaction mechanisms of the VOC oxidation are discussed. The most widely used SACs are noble metals supported on oxides, especially on reducible oxides, such as Mn2 O3 and TiO2 . The reactivity of most SACs is related to the activity of surface lattice oxygen of the oxides. Furthermore, several metal SACs show better reactivity and improved S and Cl resistance than the corresponding nanocatalysts, indicating that SACs have potential for application in the oxidation of VOCs. The deactivation and regeneration mechanisms of the metal SACs are also summarized. It is concluded that the application of metal SACs in catalytic oxidation of VOCs is still in its infancy. This Review aims to elucidate structure-performance relationships and to guide the design of highly efficient metal SACs for the catalytic oxidation of VOCs.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Linli Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Bingyong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qingao Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shaolong Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Hongpeng Jia
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Haifeng Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
19
|
A comprehensive study on the treatment of various organic pollutants by NiCoFe layered double oxide: Material synthesis and characterization, decomposition mechanism exploration, and real water applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Liu L, Zhou B, Liu Y, Liu J, Hu L, Tang Y, Wang M. In-situ regulation of acid sites on Mn-based perovskite@mullite composite for promoting catalytic oxidation of chlorobenzene. J Colloid Interface Sci 2022; 606:1866-1873. [PMID: 34507177 DOI: 10.1016/j.jcis.2021.08.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/13/2023]
Abstract
A series of Sm-Mn perovskite@mullite composites with different amounts of acid sites were successfully synthesized by regulating the level of in situ etched-surface modification. X-ray diffraction (XRD) test showed that the crystal structure of catalyst gradually changed from perovskite to perovskite@mullite composites and mullite. The characterization of temperature programmed desorption with ammonia (NH3-TPD) confirmed the acid sites on the surface of catalyst can be deployed by the in-situ modification. The temperature-programmed reduction with hydrogen (H2-TPR), and N2 adsorption-desorption showed that the surface modification also increased the reducibility, surface area, and mesoporosity of catalyst. The catalytic activities were compared by a long-term catalytic oxidation of chlorobenzene evaluation for 20 h of uninterrupted reaction at a relatively low temperature of 300 °C, and the Sm-Mn perovskite@mullite composite (SMPM-1.2) possessed the best catalytic stability. The X-ray photoelectron spectroscopy (XPS) measurement determined that the high ratios of lattice oxygen and tetravalent manganese did not improve the stability of catalyst in the catalytic oxidation of chlorobenzene, but the activities trends of samples were consistent with the change of surface (Mn4++Mn3+)/Mn2+ ratios. Meanwhile, the catalytic experiments for benzene, toluene, o-xylene and acetone showed that the as-prepared catalyst was also suitable for the efficient removal of the different types of VOCs. This work supplied a method for the further development of high activity catalysts for the removal of VOCs.
Collapse
Affiliation(s)
- Lizhong Liu
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong, Jiangsu Province 226019, PR China
| | - Bing Zhou
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong, Jiangsu Province 226019, PR China
| | - Yuwei Liu
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong, Jiangsu Province 226019, PR China
| | - Jingyin Liu
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong, Jiangsu Province 226019, PR China.
| | - Lanping Hu
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong, Jiangsu Province 226019, PR China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong, Jiangsu Province 226019, PR China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, 9, Seyuan Road, Nantong, Jiangsu Province 226019, PR China.
| |
Collapse
|
21
|
Zhang J, Gao M, Wang R, Li X, Zhu P, Wang Y, Zheng Z. Oxygen Vacancies Regulated Selective Hydrogenation of α,β-unsaturated Aldehydes over LDH Surface Group Coordinated Transition Metal Photocatalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01298g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective hydrogenation of α,β-unsaturated aldehydes under mild conditions is a great challenge in achieving synthesis of corresponding alcohols. Herein, we report that a series of oxygen vacancies enriched MgAl-LDH coordinated...
Collapse
|
22
|
Xing Y, Zhang H, Su W, Wang J, Zhang W, Wang Y, Ma M, Ma Z. Catalytic activity and stability of a Cr modified Co–Fe LDO catalyst in the simultaneous catalytic reduction of NOx and oxidation of o-DCB. NEW J CHEM 2022. [DOI: 10.1039/d1nj06230a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a Co–Fe LDO catalyst was prepared by combining K2Cr2O7 and Cr(NO3)3 to modify the LDH precursor.
Collapse
Affiliation(s)
- Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Sinosteel Maanshan Mine Research Institute Co. LTD, Anhui 243071, China
| | - Wei Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education, Beijing 100083, China
| | - Jiaqing Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbo Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengying Ma
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiliang Ma
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Recent Progress on Transition Metal Based Layered Double Hydroxides Tailored for Oxygen Electrode Reactions. Catalysts 2021. [DOI: 10.3390/catal11111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), namely, so-called oxygen electrode reactions, are two fundamental half-cell reactions in the energy storage and conversion devices, e.g., zinc–air batteries and fuel cells. However, the oxygen electrode reactions suffer from sluggish kinetics, large overpotential and complicated reaction paths, and thus require efficient and stable electrocatalysts. Transition-metal-based layered double hydroxides (LDHs) and their derivatives have displayed excellent catalytic performance, suggesting a major contribution to accelerate electrochemical reactions. The rational regulation of electronic structure, defects, and coordination environment of active sites via various functionalized strategies, including tuning the chemical composition, structural architecture, and topotactic transformation process of LDHs precursors, has a great influence on the resulting electrocatalytic behavior. In addition, an in-depth understanding of the structural performance and chemical-composition-performance relationships of LDHs-based electrocatalysts can promote further rational design and optimization of high-performance electrocatalysts. Finally, prospects for the design of efficient and stable LDHs-based materials, for mass-production and large-scale application in practice, are discussed.
Collapse
|
24
|
Bimetallic Pt-Co Nanoparticle Deposited on Alumina for Simultaneous CO and Toluene Oxidation in the Presence of Moisture. Processes (Basel) 2021. [DOI: 10.3390/pr9020230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Carbon monoxide (CO) and hydrocarbons (HCs) generally have competitive adsorption on the active site of noble-metal nano-catalysts, thus developing an effective way to reduce the passivation of competitive reaction with each other is an urgent problem. In this study, we successfully synthesized transition metal-noble metal (Pt-M) alloys via introducing inexpensive metal elements (M = Ni, Co and Cu) into Pt particles and then deposited on alumina support to form Pt-based catalysts. Subsequently, we choose CO and toluene as polluting gases to evaluate the catalytic activities of Pt-M/Al2O3 catalysts. Introducing inexpensive metal elements (M = Ni, Co, and Cu) significantly changed the physicochemical properties and catalytic activities of these Pt-based catalysts. It can be found that the Pt-Co/Al2O3 catalyst exhibited outstanding catalytic activity for CO and toluene oxidation under mixed gas atmosphere, compared with other Pt-based catalysts, which is due to the higher dispersity, more surface adsorption oxygen, and well redox ability. Surprisingly, H2O could promote the catalytic activities for CO/toluene co-oxidation over the Pt-Co/Al2O3 catalyst. Thus, the present synthetic strategy not only opens an avenue towards the synthesis of noble metal-based catalysts, but also provides an excellent tolerance to H2O in the catalytic process.
Collapse
|
25
|
Alorabi AQ, Shamshi Hassan M, Azizi M. Fe3O4-CuO-activated carbon composite as an efficient adsorbent for bromophenol blue dye removal from aqueous solutions. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Wu C, Xing X, Yang G, Tong T, Wang ZM, Bao J. Understanding the generation of long-chain hydrocarbons from CO2 and water using cobalt nanostructures and light. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|