1
|
Al-Saari N, Azmi NSA, Samsulrizal NH. Trichoderma Genes for Abiotic Stress Tolerance in Plants. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Poosapati S, Ravulapalli PD, Viswanathaswamy DK, Kannan M. Proteomics of Two Thermotolerant Isolates of Trichoderma under High-Temperature Stress. J Fungi (Basel) 2021; 7:1002. [PMID: 34946985 PMCID: PMC8704589 DOI: 10.3390/jof7121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Several species of the soil borne fungus of the genus Trichoderma are known to be versatile, opportunistic plant symbionts and are the most successful biocontrol agents used in today's agriculture. To be successful in field conditions, the fungus must endure varying climatic conditions. Studies have indicated that a high atmospheric temperature coupled with low humidity is a major factor in the inconsistent performance of Trichoderma under field conditions. Understanding the molecular modulations associated with Trichoderma that persist and deliver under abiotic stress conditions will aid in exploiting the value of these organisms for such uses. In this study, a comparative proteomic analysis, using two-dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption/time-of-flight (MALDI-TOF-TOF) mass spectrometry, was used to identify proteins associated with thermotolerance in two thermotolerant isolates of Trichoderma: T. longibrachiatum 673, TaDOR673 and T. asperellum 7316, TaDOR7316; with 32 differentially expressed proteins being identified. Sequence homology and conserved domains were used to identify these proteins and to assign a probable function to them. The thermotolerant isolate, TaDOR673, seemed to employ the stress signaling MAPK pathways and heat shock response pathways to combat the stress condition, whereas the moderately tolerant isolate, TaDOR7316, seemed to adapt to high-temperature conditions by reducing the accumulation of misfolded proteins through an unfolded protein response pathway and autophagy. In addition, there were unique, as well as common, proteins that were differentially expressed in the two isolates studied.
Collapse
Affiliation(s)
- Sowmya Poosapati
- Department of Plant Pathology, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India;
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Prasad Durga Ravulapalli
- Department of Plant Pathology, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India;
| | | | - Monica Kannan
- Proteomics Facility, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India;
| |
Collapse
|
3
|
Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Monte E. Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl Environ Microbiol 2011; 77:3009-16. [PMID: 21421791 PMCID: PMC3126390 DOI: 10.1128/aem.02486-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/04/2011] [Indexed: 12/25/2022] Open
Abstract
The synthesis of reactive oxygen species (ROS) is one of the first events following pathogenic interactions in eukaryotic cells, and NADPH oxidases are involved in the formation of such ROS. The nox1 gene of Trichoderma harzianum was cloned, and its role in antagonism against phytopathogens was analyzed in nox1-overexpressed transformants. The increased levels of nox1 expression in these transformants were accompanied by an increase in ROS production during their direct confrontation with Pythium ultimum. The transformants displayed an increased hydrolytic pattern, as determined by comparing protease, cellulase, and chitinase activities with those for the wild type. In confrontation assays against P. ultimum the nox1-overexpressed transformants were more effective than the wild type, but not in assays against Botrytis cinerea or Rhizoctonia solani. A transcriptomic analysis using a Trichoderma high-density oligonucleotide (HDO) microarray also showed that, compared to gene expression for the interaction of wild-type T. harzianum and P. ultimum, genes related to protease, cellulase, and chitinase activities were differentially upregulated in the interaction of a nox1-overexpressed transformant with this pathogen. Our results show that nox1 is involved in T. harzianum ROS production and antagonism against P. ultimum.
Collapse
Affiliation(s)
- M. Montero-Barrientos
- Spanish-Portuguese Center for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus of Villamayor, Río Duero 12, 37185 Salamanca, Spain
| | - R. Hermosa
- Spanish-Portuguese Center for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus of Villamayor, Río Duero 12, 37185 Salamanca, Spain
| | - R. E. Cardoza
- Area de Microbiología, Escuela Universitaria de Ciencias de la Salud, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24400 Ponferrada, Spain
| | - S. Gutiérrez
- Area de Microbiología, Escuela Universitaria de Ciencias de la Salud, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24400 Ponferrada, Spain
| | - E. Monte
- Spanish-Portuguese Center for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus of Villamayor, Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
4
|
Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from 'omics to the field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:395-417. [PMID: 20455700 DOI: 10.1146/annurev-phyto-073009-114314] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Structural and functional genomics investigations are making an important impact on the current understanding and application of microbial agents used for plant disease control. Here, we review the case of Trichoderma spp., the most widely applied biocontrol fungi, which have been extensively studied using a variety of research approaches, including genomics, transcriptomics, proteomics, metabolomics, etc. Known for almost a century for their beneficial effects on plants and the soil, these fungi are the subject of investigations that represent a successful case of translational research, in which 'omics-generated novel understanding is directly translated in to new or improved crop treatments and management methods. We present an overview of the latest discoveries on the Trichoderma expressome and metabolome, of the complex and diverse biotic interactions established in nature by these microbes, and of their proven or potential importance to agriculture and industry.
Collapse
Affiliation(s)
- Matteo Lorito
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale (ArBoPaVe), Università di Napoli Federico II, Portici, Napoli, Italy 80138.
| | | | | | | |
Collapse
|
5
|
Morán-Diez ME, Cardoza RE, Gutiérrez S, Monte E, Hermosa R. TvDim1 of Trichoderma virens is involved in redox-processes and confers resistance to oxidative stresses. Curr Genet 2009; 56:63-73. [PMID: 19998038 DOI: 10.1007/s00294-009-0280-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/05/2009] [Accepted: 11/21/2009] [Indexed: 12/23/2022]
Abstract
The evolutionarily conserved Dim1 proteins belong to the TRX fold superfamily. An EST showing high identity values with genes coding for Dim1 proteins was selected from an EST library collection of Trichoderma virens T59. Here, we report the cloning, characterization, and functional analysis of a T. virens T59 TvDim1 gene. The TvDim1 gene, with a sequence size of 614 bp, was PCR-amplified and found to contain three introns. The TvDim1 gene was present as a single copy in the T. virens genome and was also present in another five Trichoderma strains investigated. Increased levels of expression and redox-activity were detected when the fungus was grown in the presence of H(2)O(2). The overexpression and silencing of TvDim1 in T. harzianum T34 gave rise to transformants, with higher and lower growth, redox-activity, and quantities of biomass, respectively, than the wild-type strain after culture under oxidative stress.
Collapse
Affiliation(s)
- M Eugenia Morán-Diez
- Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, C/Río Duero s/n, Campus de Villamayor, 37185, Salamanca, Spain
| | | | | | | | | |
Collapse
|
6
|
Samolski I, de Luis A, Vizcaíno JA, Monte E, Suárez MB. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. BMC Microbiol 2009; 9:217. [PMID: 19825185 PMCID: PMC2768740 DOI: 10.1186/1471-2180-9-217] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 10/13/2009] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND It has recently been shown that the Trichoderma fungal species used for biocontrol of plant diseases are capable of interacting with plant roots directly, behaving as symbiotic microorganisms. With a view to providing further information at transcriptomic level about the early response of Trichoderma to a host plant, we developed a high-density oligonucleotide (HDO) microarray encompassing 14,081 Expressed Sequence Tag (EST)-based transcripts from eight Trichoderma spp. and 9,121 genome-derived transcripts of T. reesei, and we have used this microarray to examine the gene expression of T. harzianum either alone or in the presence of tomato plants, chitin, or glucose. RESULTS Global microarray analysis revealed 1,617 probe sets showing differential expression in T. harzianum mycelia under at least one of the culture conditions tested as compared with one another. Hierarchical clustering and heat map representation showed that the expression patterns obtained in glucose medium clustered separately from the expression patterns observed in the presence of tomato plants and chitin. Annotations using the Blast2GO suite identified 85 of the 257 transcripts whose probe sets afforded up-regulated expression in response to tomato plants. Some of these transcripts were predicted to encode proteins related to Trichoderma-host (fungus or plant) associations, such as Sm1/Elp1 protein, proteases P6281 and PRA1, enchochitinase CHIT42, or QID74 protein, although previously uncharacterized genes were also identified, including those responsible for the possible biosynthesis of nitric oxide, xenobiotic detoxification, mycelium development, or those related to the formation of infection structures in plant tissues. CONCLUSION The effectiveness of the Trichoderma HDO microarray to detect different gene responses under different growth conditions in the fungus T. harzianum strongly indicates that this tool should be useful for further assays that include different stages of plant colonization, as well as for expression studies in other Trichoderma spp. represented on it. Using this microarray, we have been able to define a number of genes probably involved in the transcriptional response of T. harzianum within the first hours of contact with tomato plant roots, which may provide new insights into the mechanisms and roles of this fungus in the Trichoderma-plant interaction.
Collapse
Affiliation(s)
- Ilanit Samolski
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca. Campus de Villamayor-Parque Científico, 37185 Villamayor, Salamanca, Spain
| | - Alberto de Luis
- Centro de Investigación Biomédica de La Rioja (CIBIR). Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - Juan Antonio Vizcaíno
- EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Enrique Monte
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca. Campus de Villamayor-Parque Científico, 37185 Villamayor, Salamanca, Spain
| | - M Belén Suárez
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca. Campus de Villamayor-Parque Científico, 37185 Villamayor, Salamanca, Spain
- Current address: Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca. Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
7
|
Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E. The ThPG1 endopolygalacturonase is required for the trichoderma harzianum-plant beneficial interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1021-31. [PMID: 19589077 DOI: 10.1094/mpmi-22-8-1021] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Considering the complexity of the in vivo interactions established by a mycoparasitic biocontrol agent at the plant rhizosphere, proteomic, genomic, and transcriptomic approaches were used to study a novel Trichoderma gene coding for a plant cell wall (PCW)-degrading enzyme. A proteome analysis, using a three-component (Trichoderma spp.-tomato plantlets-pathogen) system, allowed us to identify a differentially expressed Trichoderma harzianum endopolygalacturonase (endoPG). Spot 0303 remarkably increased only in the presence of the soilborne pathogens Rhizoctonia solani and Pythium ultimum, and corresponded to an expressed sequence tag from a T. harzianum T34 cDNA library that was constructed in the presence of PCW polymers and used to isolate the Thpg1 gene. Compared with the wild-type strain, Thpg1-silenced transformants showed lower PG activity, less growth on pectin medium, and reduced capability to colonize tomato roots. These results were combined with microarray comparative data from the transcriptome of Arabidopsis plants inoculated with the wild type or a Thpg1-silenced transformant (ePG5). The endoPG-encoding gene was found to be required for active root colonization and plant defense induction by T. harzianum T34. In vivo assays showed that Botrytis cinerea leaf necrotic lesions were slightly smaller in plants colonized by ePG5, although no statistically significant differences were observed.
Collapse
Affiliation(s)
- Eugenia Morán-Diez
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE). Departamento de Microbiología y Genética, Universidad de Salamanca, Campus de Villamayor, C/ Duero 12. 37185 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà D, Woo SL, Lorito M. Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:291-301. [PMID: 19245323 DOI: 10.1094/mpmi-22-3-0291] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Successful biocontrol interactions often require that the beneficial microbes involved are resistant or tolerant to a variety of toxicants, including antibiotics produced by themselves or phytopathogens, plant antimicrobial compounds, and synthetic chemicals or contaminants. The ability of Trichoderma spp., the most widely applied biocontrol fungi, to withstand different chemical stresses, including those associated with mycoparasitism, is well known. In this work, we identified an ATP-binding cassette transporter cell membrane pump as an important component of the above indicated resistance mechanisms that appears to be supported by an extensive and powerful cell detoxification system. The encoding gene, named Taabc2, was cloned from a strain of Trichoderma atroviride and characterized. Its expression was found to be upregulated in the presence of pathogen-secreted metabolites, specific mycotoxins and some fungicides, and in conditions that stimulate the production in Trichoderma spp. of antagonism-related factors (toxins and enzymes). The key role of this gene in antagonism and biocontrol was demonstrated by the characterization of the obtained deletion mutants. They suffered an increased susceptibility to inhibitory compounds either secreted by pathogenic fungi or possibly produced by the biocontrol microbe itself and lost, partially or entirely, the ability to protect tomato plants from Pythium ultimum and Rhizoctonia solani attack.
Collapse
Affiliation(s)
- Michelina Ruocco
- CNR-Istituto per la Protezione delle Piante sez. Portici, Via Università 130, 80055 Portici, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Cloning and characterization of the Thcut1 gene encoding a cutinase of Trichoderma harzianum T34. Curr Genet 2008; 54:301-12. [DOI: 10.1007/s00294-008-0218-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/03/2008] [Accepted: 10/13/2008] [Indexed: 11/26/2022]
|
10
|
Montero-Barrientos M, Hermosa R, Nicolás C, Cardoza RE, Gutiérrez S, Monte E. Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genet Biol 2008; 45:1506-13. [DOI: 10.1016/j.fgb.2008.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 12/01/2022]
|
11
|
Montero-Barrientos M, Cardoza RE, Gutiérrez S, Monte E, Hermosa R. The heterologous overexpression of hsp23, a small heat-shock protein gene from Trichoderma virens, confers thermotolerance to T. harzianum. Curr Genet 2007; 52:45-53. [PMID: 17581753 DOI: 10.1007/s00294-007-0140-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/28/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
Abstract
An EST showing high values of identity with genes coding for small heat shock proteins (sHSPs) was selected from an EST library collection of Trichoderma virens T59. The cDNA gene (hsp23) with a sequence size of 645 bp long was amplified by PCR. The expression of this gene was evaluated in cultures grown at temperatures ranging from 4 to 41 degrees C. An increased level of expression was detected when the fungus was grown at extreme temperatures (4, 10 or 41 degrees C). A high-expression level was also observed when the fungus was grown in 10% ethanol for 4 h. The hsp23 gene was present as a unique copy in the T. virens genome, and a homologous gene was also present in other five investigated Trichoderma species. Strain T. harzianum T34 was transformed with the hsp23 gene from T. virens T59 under the control of the pki (pyruvate kinase) promoter from T. reesei and the ble (phleomycin resistance) gene as selection marker. Statistically significant differences were detected between the strains T34 and two selected transformants in the biomass quantities obtained after heat shock treatment and in the colony diameters after incubation at 4 degrees C for 2 months.
Collapse
Affiliation(s)
- Marta Montero-Barrientos
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
12
|
Suárez MB, Vizcaíno JA, Llobell A, Monte E. Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Curr Genet 2007; 51:331-42. [PMID: 17415567 DOI: 10.1007/s00294-007-0130-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
Proteolytic enzymes (EC 3.4) secreted by Trichoderma strains are receiving increasing attention because of their potential implication in the Trichoderma biocontrol abilities. We have used an expressed sequence tag (EST) approach to identify genes encoding extracellular peptidases in T. harzianum CECT 2413 grown under several biocontrol-related conditions. Based on BlastX results and Gene Ontology annotation, a total of 61 (among 3478) unique sequences (unisequences) were predicted to encode enzymes with peptidase activity, three corresponding to secreted peptidases already known from this Trichoderma strain (PAPA, PRA1 and P6281). Further manual screening based on the functional identity and cellular location of the best matches revealed ten unisequences encoding novel extracellular peptidases. We report the characterization of the corresponding genes as well as a potential orthologous gene of the intracellular peptidase PAPB from T. asperellum. In each case, full-length coding sequences were obtained, and deduced proteins were compared at phylogenetic level with peptidases from other organisms. T. harzianum CECT 2413 novel peptidases included six serine endopeptidases (EC 3.4.21) belonging to the families S1, S8 and S53, three aspartic endopeptidases (EC 3.4.23) of the family A1, one metallo-endopeptidase (EC 3.4.24) of the family M35, and one aminopeptidase (EC 3.4.11) of the family M28. Results obtained by Northern blot analyses demonstrated that the genes within a family are differentially regulated in response to different culture conditions, suggesting that they have diverse functional roles.
Collapse
Affiliation(s)
- M Belén Suárez
- Centro Hispano-Luso de Investigaciones Agrarias, Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain.
| | | | | | | |
Collapse
|
13
|
Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turrà D, Fogliano V, Scala F, Lorito M. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 2006; 50:307-21. [PMID: 17008992 DOI: 10.1007/s00294-006-0091-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/07/2006] [Accepted: 07/09/2006] [Indexed: 01/17/2023]
Abstract
The main molecular factors involved in the complex interactions occurring between plants (bean), two different fungal pathogens (Botrytis cinerea, Rhizoctonia solani) and an antagonistic strain of the genus Trichoderma were investigated. Two-dimensional (2-D) electrophoresis was used to analyze separately collected proteomes from each single, two- or three-partner interaction (i.e., plant, pathogenic and antagonistic fungus alone and in all possible combinations). Differential proteins were subjected to mass spectrometry and in silico analysis to search for homologies with known proteins. In the plant proteome, specific pathogenesis-related proteins and other disease-related factors (i.e., potential resistance genes) seem to be associated with the interaction with either one of the two pathogens and/or T. atroviride. This finding is in agreement with the demonstrated ability of Trichoderma spp. to induce systemic resistance against various microbial pathogens. On the other side, many differential proteins obtained from the T. atroviride interaction proteome showed interesting homologies with a fungal hydrophobin, ABC transporters, etc. Virulence factors, like cyclophilins, were up-regulated in the pathogen proteome during the interaction with the plant alone or with the antagonist too. We isolated and confidently identified a large number of protein factors associated to the multi-player interactions examined.
Collapse
Affiliation(s)
- Roberta Marra
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Università degli Studi di Napoli Federico II, Portici (NA), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vizcaíno JA, González FJ, Suárez MB, Redondo J, Heinrich J, Delgado-Jarana J, Hermosa R, Gutiérrez S, Monte E, Llobell A, Rey M. Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413. BMC Genomics 2006; 7:193. [PMID: 16872539 PMCID: PMC1562415 DOI: 10.1186/1471-2164-7-193] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/27/2006] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The filamentous fungus Trichoderma harzianum is used as biological control agent of several plant-pathogenic fungi. In order to study the genome of this fungus, a functional genomics project called "TrichoEST" was developed to give insights into genes involved in biological control activities using an approach based on the generation of expressed sequence tags (ESTs). RESULTS Eight different cDNA libraries from T. harzianum strain CECT 2413 were constructed. Different growth conditions involving mainly different nutrient conditions and/or stresses were used. We here present the analysis of the 8,710 ESTs generated. A total of 3,478 unique sequences were identified of which 81.4% had sequence similarity with GenBank entries, using the BLASTX algorithm. Using the Gene Ontology hierarchy, we performed the annotation of 51.1% of the unique sequences and compared its distribution among the gene libraries. Additionally, the InterProScan algorithm was used in order to further characterize the sequences. The identification of the putatively secreted proteins was also carried out. Later, based on the EST abundance, we examined the highly expressed genes and a hydrophobin was identified as the gene expressed at the highest level. We compared our collection of ESTs with the previous collections obtained from Trichoderma species and we also compared our sequence set with different complete eukaryotic genomes from several animals, plants and fungi. Accordingly, the presence of similar sequences in different kingdoms was also studied. CONCLUSION This EST collection and its annotation provide a significant resource for basic and applied research on T. harzianum, a fungus with a high biotechnological interest.
Collapse
Affiliation(s)
- Juan Antonio Vizcaíno
- IBVF-CIC Isla de la Cartuja, CSIC/Universidad de Sevilla. Avda. Américo Vespucio s/n. 41092, Sevilla, Spain
| | - Francisco Javier González
- Newbiotechnic, S. A. (NBT). Parque Industrial de Bollullos A-49 (PIBO). 41110, Bollullos de la Mitación. Sevilla, Spain
| | - M Belén Suárez
- IBVF-CIC Isla de la Cartuja, CSIC/Universidad de Sevilla. Avda. Américo Vespucio s/n. 41092, Sevilla, Spain
- Spanish-Portuguese Center of Agricultural Research (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, lab 208, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain
| | - José Redondo
- Newbiotechnic, S. A. (NBT). Parque Industrial de Bollullos A-49 (PIBO). 41110, Bollullos de la Mitación. Sevilla, Spain
| | - Julian Heinrich
- Newbiotechnic, S. A. (NBT). Parque Industrial de Bollullos A-49 (PIBO). 41110, Bollullos de la Mitación. Sevilla, Spain
| | - Jesús Delgado-Jarana
- IBVF-CIC Isla de la Cartuja, CSIC/Universidad de Sevilla. Avda. Américo Vespucio s/n. 41092, Sevilla, Spain
| | - Rosa Hermosa
- Spanish-Portuguese Center of Agricultural Research (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, lab 208, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain
| | - Santiago Gutiérrez
- Area of Microbiology. Escuela Superior y Técnica de Ingeniería Agraria. Universidad de León, Campus de Ponferrada. Avda. Astorga s/n. 24400, Ponferrada, Spain
| | - Enrique Monte
- Newbiotechnic, S. A. (NBT). Parque Industrial de Bollullos A-49 (PIBO). 41110, Bollullos de la Mitación. Sevilla, Spain
| | - Antonio Llobell
- IBVF-CIC Isla de la Cartuja, CSIC/Universidad de Sevilla. Avda. Américo Vespucio s/n. 41092, Sevilla, Spain
| | - Manuel Rey
- Newbiotechnic, S. A. (NBT). Parque Industrial de Bollullos A-49 (PIBO). 41110, Bollullos de la Mitación. Sevilla, Spain
| |
Collapse
|
15
|
Delgado-Jarana J, Sousa S, González F, Rey M, Llobell A. ThHog1 controls the hyperosmotic stress response in Trichoderma harzianum. Microbiology (Reading) 2006; 152:1687-1700. [PMID: 16735732 DOI: 10.1099/mic.0.28729-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trichoderma harzianumis a widespread mycoparasitic fungus, able to successfully colonize a wide range of substrates under different environmental conditions. Transcript profiling revealed a subset of genes induced inT. harzianumunder hyperosmotic shock. Thehog1gene, a homologue of the MAPKHOG1gene that controls the hyperosmotic stress response inSaccharomyces cerevisiae, was characterized.T. harzianum hog1complemented thehog1Δ mutation inS. cerevisiae, but showed different features to yeast alleles: improved osmoresistance by expression of thehog1allele and a lack of lethality when thehog1F315Sallele was overexpressed. ThHog1 protein was phosphorylated inT. harzianumunder different stress conditions such as hyperosmotic or oxidative stress, among others. By using a ThHog1-GFP fusion, the protein was shown to be localized in nuclei under these stress conditions. Two mutant strains ofT. harzianumwere constructed: one carrying thehog1F315Sallele, and a knockdownhog1-silenced strain. The silenced strain was highly sensitive to osmotic stress, and showed intermediate levels of resistance against oxidative stress, indicating that the main role of ThHog1 protein is in the hyperosmotic stress response. Stress cross-resistance experiments showed evidences of a secondary role of ThHog1 in oxidative stress. The strain carrying thehog1F315Sallele was highly resistant to the calcineurin inhibitor cyclosporin A, which suggests the existence of links between the two pathways. The two mutant strains showed a strongly reduced antagonistic activity against the plant pathogensPhoma betaeandColletotrichum acutatum, which points to a role of ThHog1 protein in fungus–fungus interactions.
Collapse
Affiliation(s)
- Jesús Delgado-Jarana
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/CSIC, CIC Isla de la Cartuja, Sevilla, Spain
| | - Sonia Sousa
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/CSIC, CIC Isla de la Cartuja, Sevilla, Spain
| | - Fran González
- Newbiotechnic SA, Parque Industrial Bollullos de la Mitación, Sevilla, Spain
| | - Manuel Rey
- Newbiotechnic SA, Parque Industrial Bollullos de la Mitación, Sevilla, Spain
| | - Antonio Llobell
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/CSIC, CIC Isla de la Cartuja, Sevilla, Spain
| |
Collapse
|
16
|
Woo SL, Scala F, Ruocco M, Lorito M. The Molecular Biology of the Interactions Between Trichoderma spp., Phytopathogenic Fungi, and Plants. PHYTOPATHOLOGY 2006; 96:181-5. [PMID: 18943922 DOI: 10.1094/phyto-96-0181] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT Trichoderma-based biofungicides are a reality in agriculture, with more than 50 formulations today available as registered products worldwide. Several strategies have been applied to identify the main genes and compounds involved in this complex, three-way cross-talk between the fungal antagonist, the plant, and microbial pathogens. Proteome and genome analysis have greatly enhanced our ability to conduct holistic and genome-based functional studies. We have identified and determined the role of a variety of novel genes and gene-products, including ABC transporters, enzymes and other proteins that produce or act as novel elicitors of induced resistance, proteins responsible for a gene-for-gene avirulent interaction between Trichoderma spp. and plants, mycoparasitism-related inducers, plant proteins specifically induced by Trichoderma, etc. We have transgenically demonstrated the ability of Trichoderma spp. to transfer heterologous proteins into plant during root colonization, and have used green fluorescent protein and other markers to study the interaction in vivo and in situ between Trichoderma spp. and the fungal pathogen or the plant.
Collapse
|