1
|
Zhao X, Qu Q, Zhang Y, Zhao P, Qiu J, Zhang X, Duan X, Song X. Research Progress of Eucommia ulmoides Oliv and Predictive Analysis of Quality Markers Based on Network Pharmacology. Curr Pharm Biotechnol 2024; 25:860-895. [PMID: 38902931 DOI: 10.2174/0113892010265000230928060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 06/22/2024]
Abstract
Du Zhong is a valuable Chinese medicinal herb unique to China. It is a national second- class precious protected tree, known as "plant gold", which has been used to treat various diseases since ancient times. The main active ingredients are lignans, phenylprophetons, flavonoids, iridoids and steroids and terpenoids, which have pharmacological effects such as lowering blood pressure, enhancing immunity, regulating bone metabolism, protecting nerve cells, protecting liver and gallbladder and regulating blood lipids. In this paper, a comprehensive review of Eucommia ulmoides Oliv. was summarized from the processing and its compositional changes, applications, chemical components, pharmacological effects, and pharmacokinetics, and the Q-marker of Eucommia ulmoides Oliv. is preliminarily predicted from the aspects of traditional efficacy, medicinal properties and measurability of chemical composition, and the pharmacodynamic substance basis and potential Q-marker of Eucommia ulmoides Oliv. are further analyzed through network pharmacology. It is speculated that quercetin, kaempferol, β-sitosterol, chlorogenic acid and pinoresinol diglucoside components are selected as quality markers of Eucommia ulmoides Oliv., which provide a basis for the quality control evaluation and follow-up research and development of Eucommia ulmoides Oliv.
Collapse
Affiliation(s)
- Xiaomei Zhao
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Qiong Qu
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Ying Zhang
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Peiyuan Zhao
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Jinqing Qiu
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xinbo Zhang
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xi Duan
- Laboratory Department, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, China
| | - Xiao Song
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
- Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, 100029, China
| |
Collapse
|
2
|
Li Z, Zheng Y, Liu K, Liang Y, Lu J, Li Q, Zhao B, Liu X, Li X. Lignans as multi-targeted natural products in neurodegenerative diseases and depression: Recent perspectives. Phytother Res 2023; 37:5599-5621. [PMID: 37669911 DOI: 10.1002/ptr.8003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/09/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023]
Abstract
As the global population ages, the treatment of neurodegenerative diseases is becoming more and more important. There is an urgent need to discover novel drugs that are effective in treating neurological diseases. In recent years, natural products and their biological activities have gained widespread attention. Lignans are a class of metabolites extensively present in Chinese herbal medicine and possess good pharmacological effects. Latest studies have demonstrated their neuroprotective pharmacological activity in preventing acute/chronic neurodegenerative diseases and depression. In this review, the pharmacological effects of these disorders, the pharmacokinetics, safety, and clinical trials of lignans were summarized according to the scientific literature. These results proved that lignans mainly exert antioxidant and anti-inflammatory activities. Anti-apoptosis, regulation of nervous system functions, and modulation of synaptic signals are also potential effects. Despite the substantial evidence of the neuroprotective potential of lignans, it is not sufficient to support their use in the clinical management. Our study suggests that lignans can be used as prospective agents for the treatment of neurodegenerative diseases and depression, with a view to informing their further development and utilization.
Collapse
Affiliation(s)
- Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Li XY, Fu YJ, Fu YF, Wei W, Xu C, Yuan XH, Gu CB. Simultaneous quantification of fourteen characteristic active compounds in Eucommia ulmoides Oliver and its tea product by ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-QqQ-MS/MS). Food Chem 2022; 389:133106. [PMID: 35504080 DOI: 10.1016/j.foodchem.2022.133106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
Abstract
Various kinds of bioactive compounds contribute to versatile health-promoting properties of Eucommia ulmoides Oliver (E. ulmoides). In present study, we developed a UPLC-QqQ-MS/MS method for simultaneous quantification of fourteen characteristic active compounds, including 3 lignans, 4 iridoids, 3 flavonoids and 4 phenolics in E. ulmoides and its tea product for the first time. The running time of the method is 6.5 min. It has good linearity, sensitivity, precision, accuracy, and stability. Using this high-throughput method, the distributions of fourteen characteristic active compounds in E. ulmoides and its tea product were clarified. Also, it was found that E. ulmoides tea exhibited superiority in contents of chlorogenic acid as compared with natural resources. Overall, the study provided a rapid, reliable, and efficient analysis method, which could be applied for the quality evaluation of E. ulmoides natural resources and their relative products in the field of food and medicine.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Yue-Feng Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Wei Wei
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Cheng Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Xiao-Han Yuan
- Life Science and Biotechnique Research Center, Northeast Agricultural University, Harbin 150030, PR China
| | - Cheng-Bo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China.
| |
Collapse
|
4
|
Huang L, Lyu Q, Zheng W, Yang Q, Cao G. Traditional application and modern pharmacological research of Eucommia ulmoides Oliv. Chin Med 2021; 16:73. [PMID: 34362420 PMCID: PMC8349065 DOI: 10.1186/s13020-021-00482-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
As a Traditional Chinese Medicine, Eucommia ulmoides Oliv. has been used for the treatment of various diseases since ancient times, involving lumbar pain, knee pain, osteoporosis, hepatoprotection, paralysis, intestinal haemorrhoids, vaginal bleeding, abortion, spermatorrhoea, foot fungus, anti-aging etc. With the developing discovery of E. ulmoides extracts and its active components in various pharmacological activities, E. ulmoides has gained more and more attention. Up to now, E. ulmoides has been revealed to show remarkable therapeutic effects on hypertension, hyperglycemia, diabetes, obesity, osteoporosis, Parkinson's disease, Alzheimer's disease, sexual dysfunction. E. ulmoides has also been reported to possess antioxidant, anti-inflammatory, neuroprotective, anti-fatigue, anti-aging, anti-cancer and immunoregulation activities etc. Along these lines, this review summarizes the traditional application and modern pharmacological research of E. ulmoides, providing novel insights of E. ulmoides in the treatment of various diseases.
Collapse
Affiliation(s)
- Lichuang Huang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Wanying Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Jeong SH, Jang JH, Cho HY, Lee YB. Simultaneous determination of three iridoid glycosides of Rehmannia glutinosa in rat biological samples using a validated hydrophilic interaction-UHPLC-MS/MS method in pharmacokinetic and in vitro studies. J Sep Sci 2020; 43:4148-4161. [PMID: 32914932 DOI: 10.1002/jssc.202000809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to develop a method for simultaneous analysis of aucubin, catalpol, and geniposide, which are representative iridoid glycoside constituents of Rehmannia glutinosa, in rat plasma, urine, and feces using hydrophilic interaction ultra high-performance liquid chromatography with tandem mass spectrometry. The three components were separated using 10 mmol/L aqueous ammonium formate containing 0.01% (v/v) formic acid and acetonitrile as a mobile phase by gradient elution at a flow rate of 0.2 mL/min, equipped with a Kinetex® HILIC column (50 × 2.1 mm, 2.6 μm). Quantitation of this analysis was performed on a triple quadrupole mass spectrometer employing electrospray ionization and operated in multiple reaction monitoring mode. The chromatograms showed high resolution, sensitivity, and selectivity with no interference with plasma constituents. In all three iridoid glycosides, both the intra- and interbatch precisions (coefficient of variation %) were less than 4.81%. The accuracy was 96.56-103.55% for aucubin, 95.23-106.21% for catalpol, and 94.50-104.16% for geniposide. The developed analytical method satisfied the criteria of international guidance and was successfully applied to pharmacokinetic studies including oral bioavailability of aucubin, catalpol, and geniposide, and their urinary and fecal excretion ratios after oral or intravenous administration to rats. The new method was also applied to measure plasma protein binding ratios in vitro.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, Gyeonggi-do, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Hu H, Wu L, Li M, Xue C, Wang G, Chen S, Huang Y, Zheng L, Wang A, Li Y, Gong Z. Comparative absorption kinetics of seven active ingredients of Eucommia ulmoides extracts by intestinal in situ circulatory perfusion in normal and spontaneous hypertensive rats. Biomed Chromatogr 2019; 34:e4714. [PMID: 31633806 DOI: 10.1002/bmc.4714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 11/11/2022]
Abstract
Eucommia ulmoides Oliv. (E. ulmoides) is a valuable and nourishing medicinal herb in China that has been used in the treatment of hypertension. Given the fact that most traditional Chinese medicine is mainly used to treat disease, investigating the pharmacokinetics of traditional Chinese medicines in the pathological state is more useful than that in the normal state. However, the differences in the absorption kinetics of active ingredients of E. ulmoides extract between pathological and physiological conditions have not been reported. Therefore, in this study, the rat intestinal in situ circulatory perfusion model was used to investigate the differences in absorption kinetics of seven active ingredients of E. ulmoides extract in normal and spontaneously hypertensive rats, namely, genipinic acid, protocatechuic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, (+)-pinoresinol di-O-β-D-glucopyranoside and (+)-pinoresinol 4'-O-β-D-glucopyranoside. Our results indicate that the pathological state of spontaneous hypertension may change the absorption of active components of E. ulmoides extracts, and these findings may provide a reference for improving the rational use of E. ulmoides in the clinic.
Collapse
Affiliation(s)
- Hejia Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Linlin Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Mei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Cun Xue
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Siying Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Aimin Wang
- Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Chang R, Liu J, Luo Y, Huang T, Li Q, Wen J, Chen W, Zhou T. Isoflavones' effects on pharmacokinetic profiles of main iridoids from Gardeniae Fructus in rats. J Pharm Anal 2019; 10:571-580. [PMID: 33425451 PMCID: PMC7775847 DOI: 10.1016/j.jpha.2019.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Gardeniae Fructus (GF) and Semen Sojae Praeparatum (SSP) are both medicine food homologies and widely used in Chinese clinical prescriptions together. The research investigated the pharmacokinetics of four iridoids in normal rats and isolfavones-fed rats, which were administered with isolfavones from SSP for 7, 14, 21 and 28 consecutive days. A validated LC-MS/MS method was developed for determining shanzhiside, genipin-1-gentiobioside, geniposide and their metabolite genipin in rat plasma. Plasma samples were pretreated by solid-phase extraction using paeoniflorin as the internal standard. The chromatographic separation was performed on a Waters Atlantis T3 (4.6 mm × 150 mm, 3 μm) column using a gradient mobile phase consisting of acetonitril and water (containing 0.06% acetic acid). The mass detection was under the multiple reaction monitoring (MRM) mode via polarity switching between negative and positive ionization modes. The calibration curves exhibited good linearity (r > 0.997) for all components. The lower limit of quantitation was in the range of 1–10 ng/mL. The intra-day and inter-day precisions (RSD) at three different levels were both less than 12.2% and the accuracies (RE) ranged from −10.1% to 16.4%. The extraction recovery of them ranged from 53.8% to 99.7%. Pharmacokinetic results indicated the bioavailability of three iridoid glycosides and the metabolite, genipin in normal rats was higher than that in rats exposed to isoflavones. With the longer time of administration of isoflavones, plasma concentrations of iridoids decreased, while genipin sulfate, the phase Ⅱ metabolite of genposide and genipin-1-gentiobioside, appeared the rising exposure. The pharmacokinetic profiles of main iridoids from GF were altered by isoflavones. A LC-MS/MS method for determination of four iridoids in rat plasma was developed and applied. The bioavailability of four iridoids decreased in rats with their increasing isoflavones exposure time. Isoflavones could alter the fate of iridoids in vivo when GF and SSP were prescribed together to obtain toxicity-reducing.
Collapse
Affiliation(s)
- Ruirui Chang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | | | - Qiang Li
- Shimadzu China Co.LTD., Shanghai, 200233, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
8
|
Cao T, Fei J, Zu G, Han G, Lai Z, Ren N, Zhang Q. Phylogenetic analysis and characterization of the complete chloroplast genome of Dipsacus asperoides, the endemic medicinal herb in China. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:2557-2559. [PMID: 33365625 PMCID: PMC7706563 DOI: 10.1080/23802359.2019.1640648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dipsacus asperoides is a traditional and endemic medicinal herb in China. Its roots was considered top grade herb as early as in the Shen Nong Herbal Classic. In this study, we assembled and analyzed the complete chloroplast genome of D. asperoides. The complete chloroplast genome is 160,481 bp in length, exhibiting a large single-copy region (88,546 bp), a small single-copy region (19,671 bp), and two inverted-repeat regions (26,132 bp in each one). The chloroplast genome of D. asperoides contains 133 genes, including 89 protein-coding genes (PCGs), 36 transfer RNA (tRNAs), and eight ribosome RNA (rRNAs). The overall nucleotide content of the chloroplast genome is A of 30.2%, T of 31.0%, C of 19.7%, and G of 19.1%, with a total AT content of 61.2% and GC content of 38.8%. However, the phylogenetic Maximum-Likelihood (ML) analysis based on the amino acid sequences of 89 PCGs from 14 species chloroplast genome that D. asperoides is closely related to Dipsacus asper. This study can be used for medicinal herb value research and clinical drug development.
Collapse
Affiliation(s)
- Tianyi Cao
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jun Fei
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, Zhejiang, China
| | - Gang Zu
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, Zhejiang, China
| | - Guihe Han
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, Zhejiang, China
| | - Zhen Lai
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, Zhejiang, China
| | - Ning Ren
- Hangzhou Xiaoshan Ruan Health Management Co., Ltd, Hangzhou, Zhejiang, China
| | - Quan Zhang
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Therapeutic Effect of Dipsacus asperoides C. Y. Cheng et T. M. Ai in Ovalbumin-Induced Murine Model of Asthma. Int J Mol Sci 2019; 20:ijms20081855. [PMID: 30991656 PMCID: PMC6514674 DOI: 10.3390/ijms20081855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Dipsacus asperoides C. Y. Cheng et T. M. Ai (DA) has been used in China as a traditional medicine to treat lumbar and knee pain, liver dysfunction, and fractures. We explored the suppressive effect of DA on allergic asthma using an ovalbumin (OVA)-induced asthma model. In the asthma model, female Balb/c mice were sensitized to OVA on day 0 and 14 to boost immune responses and then exposed to OVA solution by using an ultrasonic nebulizer on days 21 to 23. DA (20 and 40 mg/kg) was administered to mice by oral gavage on days 18 to 23. Methacholine responsiveness was determined on day 24 using a plethysmography. On day 25, we collected bronchoalveolar lavage fluid, serum, and lung tissue from animals under anesthesia. DA treatment effectively inhibited methacholine responsiveness, inflammatory cell infiltration, proinflammatory cytokines such as interleukin (IL)-5 and IL-13, and immunoglobulin (Ig) E in OVA-induced asthma model. Reductions in airway inflammation and mucus hypersecretion, accompanied by decreases in the expression of inducible nitric oxide synthase (iNOS) and the phosphorylation of nuclear factor kappa B (NF-κB), were also observed. Our results indicated that DA attenuated the asthmatic response, and that this attenuation was closely linked to NF-κB suppression. Thus, this study suggests that DA is a potential therapeutic for allergic asthma.
Collapse
|
10
|
Development of a Validated UHPLC-ESI (-)-HRMS Methodology for the Simultaneous Quantitative Determination of Hesperidin, Hesperetin, Naringin, and Naringenin in Chicken Plasma. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-018-01420-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Zhang H, Duan S, Wang L, Liu J, Qi W, Yuan D. Identification of the absorbed components and their metabolites of Tianma-Gouteng granule in rat plasma and bile using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2019; 33:e4480. [PMID: 30597588 DOI: 10.1002/bmc.4480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
Tianma-Gouteng granule (TGG), a Chinese herbal formula preparation, is clinically used for the treatment of cardio-cerebrovascular diseases such as hypertension, cerebral ischaemia, acute ischaemic stroke and Parkinson's disease. Although few reports have been published concerning the absorbed prototype components of TGG, the possible metabolic pathways of TGG in vivo remain largely unclear. In this study, a method using UPLC-Q/TOF MS was established for the detection and identification of the absorbed prototype components and related metabolites in rat plasma and bile after oral administration of TGG at high and normal clinical dosages. A total of 68 components were identified or tentatively identified in plasma and bile samples, including absorbed prototypes and their metabolites. The major absorbed components were gastrodin, isorhynchophylline, rhynchophylline, isocorynoxeine, corynoxeine, geissoschizine methyl ether baicalin, baicalein, wogonoside, wogonin, geniposidic acid, leonurine, 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside and emodin. The main metabolic pathways of these components involved phase I (isomerization, hydrolysis and reduction) and phase II (glucuronidation and sulfation) reaction, and the phase II biotransformation pathway was predominant. The present study provides rich information on the in vivo absorption and metabolism of TGG, and the results will be helpful for further studies on the pharmacokinetics and pharmacodynamics of TGG.
Collapse
Affiliation(s)
- Hongye Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shaorong Duan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Wang
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Liu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Wen Qi
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
12
|
Shi F, Pan H, Li Y, Huang L, Wu Q, Lu Y. A sensitive LC-MS/MS method for simultaneous quantification of geniposide and its active metabolite genipin in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Fuguo Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education; Zunyi Medical University; Zunyi China
| | - Hong Pan
- Department of clinical pharmacy; Zunyi Medical University; Zunyi China
| | - Yi Li
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education; Zunyi Medical University; Zunyi China
| | - Linyan Huang
- Department of clinical pharmacy; Zunyi Medical University; Zunyi China
| | - Qin Wu
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education; Zunyi Medical University; Zunyi China
| | - Yuanfu Lu
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education; Zunyi Medical University; Zunyi China
| |
Collapse
|
13
|
Li Y, Gong Z, Cao X, Wang Y, Wang A, Zheng L, Huang Y, Lan Y. A UPLC-MS Method for Simultaneous Determination of Geniposidic Acid, Two Lignans and Phenolics in Rat Plasma and its Application to Pharmacokinetic Studies of Eucommia ulmoides Extract in Rats. Eur J Drug Metab Pharmacokinet 2017; 41:595-603. [PMID: 25990756 DOI: 10.1007/s13318-015-0282-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bark of Eucommia ulmoides is a well-known Chinese herbal medicine that is used to regulate blood pressure and reduce blood sugar and fats, as well as an antioxidant and antimicrobial agent. Here we describe the development of a sensitive ultrahigh performance liquid chromatography-tandem mass spectrum method for the simultaneous determination of five major active ingredients of E. ulmoides bark extract, namely, geniposidic acid (GA), protocatechuic acid (PCA), chlorogenic acid (CA), (+)-pinoresinol di-O-β-D-glucopyranoside (PDG) and (+)-pinoresinol 4'-O-β-D-glucopyranoside (PG), in rat plasma. The preliminary steps in the plasma analysis were the addition of an internal standard and acidification (0.1 % formic acid), followed by protein precipitation with methanol. Separation of the active ingredients was performed on an ACQUITY UPLC® BEH C18 column (2.1 × 50 mm; internal diameter 1.7 µm) at a flow rate of 0.35 mL/min, with acetonitrile/water containing 0.1 % formic acid as the mobile phase. Detection was performed on a triple quadrupole tandem mass spectrometer via electrospray ionization source with positive and negative ionization modes. All calibration curves showed good linearity (r ≥ 0.997) over the concentration range with the low limit of quantification between 4.45 and 54.9 ng/mL. Precision was evaluated by intra- and inter-day assays, and the percentages of the relative standard deviation were all within 15 %. Extraction efficiency and matrix effect were 84.3-102.4 % and 98.1-112.2 %, respectively. The validated method was successfully applied to the pharmacokinetic study in rats after oral administration of E. ulmoides extract. The results indicate that the pharmacokinetic properties of GA differ from those of PCA, CA, PDG and PG, respectively.
Collapse
Affiliation(s)
- Yongjun Li
- School of Pharmacy, Guiyang Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China
| | - Zipeng Gong
- School of Pharmacy, Guiyang Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China.,Guizhou Provincial Key Laboratory of Pharmaceutics in Province, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China
| | - Xu Cao
- School of Pharmacy, Guiyang Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China.,Guizhou Provincial Key Laboratory of Pharmaceutics in Province, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China
| | - Yonglin Wang
- School of Pharmacy, Guiyang Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China.,Guizhou Provincial Key Laboratory of Pharmaceutics in Province, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China
| | - Aimin Wang
- School of Pharmacy, Guiyang Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China
| | - Lin Zheng
- School of Pharmacy, Guiyang Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China.,Guizhou Provincial Key Laboratory of Pharmaceutics in Province, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China
| | - Yong Huang
- School of Pharmacy, Guiyang Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China. .,Guizhou Provincial Key Laboratory of Pharmaceutics in Province, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China.
| | - Yanyu Lan
- School of Pharmacy, Guiyang Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China. .,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, People's Republic of China.
| |
Collapse
|