1
|
Wang RY, Huang JS, Tan WW, Lu R, Yang T. Crystalline Liquiritigenin and Liquiritin: Structural Characterization, Molecular Docking Studies, and Anti-Amyloid-β Evaluation in Caenorhabditis elegans. ACS OMEGA 2025; 10:7112-7119. [PMID: 40028075 PMCID: PMC11866007 DOI: 10.1021/acsomega.4c10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 03/05/2025]
Abstract
Two new crystalline compounds, named [LG·H2O] n (1; LG = liquiritigenin) and [LQ·C2H5OH·H2O] n (2; LQ = liquiritin), have been synthesized and structurally characterized by single-crystal and powder X-ray diffraction, thermogravimetric analyses (TGA), nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), and infrared spectra (IR). 1 and 2 crystallize in space groups Pna21 and P212121, respectively. In the structure of 1, liquiritigenin and water molecules are connected by hydrogen bonds for the construction of a novel 3,5-connected network topology with a point symbol of (63)(67·83), in which each liquiritigenin and water molecule acts as a 5-connected and 3-connected node, respectively. Both 1 and 2 reduce amyloid-β-induced toxicity in Caenorhabditis elegans (CL4176 strain) by improving the expression level of SOD. Gene expression studies by RT-qPCR indicate upregulation of skn-1 and sod-3 expression while downregulation of daf-16 and hsf-1 expression in C. elegans. Molecular docking studies indicate that LG and LQ combine well with vascular endothelial growth factor A (VEGFA), with free binding energies calculated to be -6.7 and -7.9 kcal·mol-1, respectively. Moreover, the anti-amyloid-β ability of crystalline and amorphous LG or LQ has been studied.
Collapse
Affiliation(s)
- Ruo-Yi Wang
- School
of Pharmaceutical Sciences, Guangxi University
of Chinese Medicine, Nanning 530200, P. R. China
| | - Jin-Shuang Huang
- School
of Pharmaceutical Sciences, Guangxi University
of Chinese Medicine, Nanning 530200, P. R. China
| | - Wen-Wu Tan
- School
of Pharmaceutical Sciences, Guangxi University
of Chinese Medicine, Nanning 530200, P. R. China
| | - Rumei Lu
- School
of Pharmaceutical Sciences, Guangxi University
of Chinese Medicine, Nanning 530200, P. R. China
| | - Tao Yang
- School
of Pharmaceutical Sciences, Guangxi University
of Chinese Medicine, Nanning 530200, P. R. China
- Guangxi
Key Laboratory of Marine Drugs, Nanning 530200, P. R. China
- University
Engineering Research Center of Characteristic Traditional Chinese
Medicine and Ethnomedicine, Guangxi, Nanning 530200, P. R. China
| |
Collapse
|
2
|
Rivi V, Rigillo G, Batabyal A, Lukowiak K, Pani L, Tascedda F, Benatti C, Blom JMC. Different stressors uniquely affect the expression of endocannabinoid-metabolizing enzymes in the central ring ganglia of Lymnaea stagnalis. J Neurochem 2024; 168:2848-2867. [PMID: 38922726 DOI: 10.1111/jnc.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
The endocannabinoid system (ECS) plays an important role in neuroprotection, neuroplasticity, energy balance, modulation of stress, and inflammatory responses, acting as a critical link between the brain and the body's peripheral regions, while also offering promising potential for novel therapeutic strategies. Unfortunately, in humans, pharmacological inhibitors of different ECS enzymes have led to mixed results in both preclinical and clinical studies. As the ECS has been highly conserved throughout the eukaryotic lineage, the use of invertebrate model organisms like the pond snail Lymnaea stagnalis may provide a flexible tool to unravel unexplored functions of the ECS at the cellular, synaptic, and behavioral levels. In this study, starting from the available genome and transcriptome of L. stagnalis, we first identified putative transcripts of all ECS enzymes containing an open reading frame. Each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate organisms. Sequences were confirmed by qualitative PCR and sequencing. Then, we investigated the transcriptional effects induced by different stress conditions (i.e., bacterial LPS injection, predator scent, food deprivation, and acute heat shock) on the expression levels of the enzymes of the ECS in Lymnaea's central ring ganglia. Our results suggest that in Lymnaea as in rodents, the ECS is involved in mediating inflammatory and anxiety-like responses, promoting energy balance, and responding to acute stressors. To our knowledge, this study offers the most comprehensive analysis so far of the ECS in an invertebrate model organism.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Navarro-Hortal MD, Romero-Márquez JM, Osta S, Jiménez-Trigo V, Muñoz-Ollero P, Varela-López A. Natural Bioactive Products and Alzheimer’s Disease Pathology: Lessons from Caenorhabditis elegans Transgenic Models. Diseases 2022; 10:diseases10020028. [PMID: 35645249 PMCID: PMC9149938 DOI: 10.3390/diseases10020028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-dependent, progressive disorder affecting millions of people. Currently, the therapeutics for AD only treat the symptoms. Although they have been used to discover new products of interest for this disease, mammalian models used to investigate the molecular determinants of this disease are often prohibitively expensive, time-consuming and very complex. On the other hand, cell cultures lack the organism complexity involved in AD. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for the investigation of the pathophysiology of human AD. Numerous models of both Tau- and Aβ-induced toxicity, the two prime components observed to correlate with AD pathology and the ease of performing RNA interference for any gene in the C. elegans genome, allow for the identification of multiple therapeutic targets. The effects of many natural products in main AD hallmarks using these models suggest promising health-promoting effects. However, the way in which they exert such effects is not entirely clear. One of the reasons is that various possible therapeutic targets have not been evaluated in many studies. The present review aims to explore shared therapeutical targets and the potential of each of them for AD treatment or prevention.
Collapse
|
4
|
Zhu Z, Yang L, Li Z, Liu Q. Cyanidin-3-O-glucoside, cyanidin, and oxidation products of cyanidin protect neuronal function through alleviating inflammation and oxidative damage. J Food Sci 2022; 87:2159-2172. [PMID: 35340035 DOI: 10.1111/1750-3841.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/28/2022]
Abstract
Neurotoxicity seriously affects the normal function of the nervous system. Cyanidin-3-O-glucoside (C3G) is the most abundant anthocyanin widely distributed in plants. Using β-amyloid (Aβ) transgenic Caenorhabditis elegans and cell models, the neuroprotective effect of C3G was examined. The results showed that C3G remarkably suppressed Aβ aggregation, enhanced antioxidant capacity, improved the sensitive capacity towards chemical compounds, and boosted the memory ability of C. elegans. There was no significant difference between preventive and long-term treatment groups at the same dosage of C3G. Given the rapid metabolism and oxidation of C3G in vivo, the antioxidative and anti-inflammatory activities of C3G, the metabolite cyanidin (Cy), oxidation products of Cy (OP), as well as protocatechuic acid (PCA) at the corresponding level in OP were compared by using lipopolysaccharide (LPS)-stimulated BV2 microglia cell model. The results indicated that C3G, Cy, and OP could prevent BV2 cells against LPS-induced inflammation and oxidative damage. There was no significant difference on antioxidative and anti-inflammatory activities among C3G, Cy, and OP at the same level. Notably, PCA at the corresponding concentration in OP exhibited limited antioxidative and anti-inflammatory activities. The results suggested that C3G could exert neuroprotective function through the metabolite Cy and its oxidation products by inhibiting inflammation and oxidative damage, and PCA was not the primary bioactive species in OP. PRACTICAL APPLICATION: This study confirmed the neuroprotection of cyanidin-3-O-glucoside (C3G) in transgenic Caenorhabditis elegans. C3G, its metabolite cyanidin (Cy), and oxidation products of Cy (OP) alleviated both neuroinflammation and oxidative damage. It highlighted that C3G-rich foods could exert neuroprotective potential through their oxidation products, the constitution, and existence of OP in vivo need further study.
Collapse
Affiliation(s)
- Zhenzhu Zhu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing, China
| | - Lipin Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhong Li
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Qin Liu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
5
|
Navarro-Hortal MD, Romero-Márquez JM, Esteban-Muñoz A, Sánchez-González C, Rivas-García L, Llopis J, Cianciosi D, Giampieri F, Sumalla-Cano S, Battino M, Quiles JL. Strawberry (Fragaria × ananassa cv. Romina) methanolic extract attenuates Alzheimer's beta amyloid production and oxidative stress by SKN-1/NRF and DAF-16/FOXO mediated mechanisms in C. elegans. Food Chem 2022; 372:131272. [PMID: 34628121 DOI: 10.1016/j.foodchem.2021.131272] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Bioactive compounds from strawberries have been associated with multiple healthy benefits. The present study aimed to assess chemical characterization of a methanolic extract of the Romina strawberry variety in terms of antioxidant capacity, polyphenols profile and chemical elements content. Additionally, potential toxicity, the effect on amyloid-β production and oxidative stress of the extract was in vivo evaluated in the experimental model Caenorhabditis elegans. Results revealed an important content in phenolic compounds (mainly ellagic acid and pelargonidin-3-glucoside) and minerals (K, Mg, P and Ca). The treatment with 100, 500 or 1000 μg/mL of strawberry extract did not show toxicity. On the contrary, the extract was able to delay amyloid β-protein induced paralysis, reduced amyloid-β aggregation and prevented oxidative stress. The potential molecular mechanisms present behind the observed results explored by RNAi technology revealed that DAF-16/FOXO and SKN-1/NRF2 signaling pathways were, at least partially, involved.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - Jose M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | | | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32. 18016, Armilla, Granada, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32. 18016, Armilla, Granada, Spain
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32. 18016, Armilla, Granada, Spain
| | - Danila Cianciosi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Sandra Sumalla-Cano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain.
| |
Collapse
|
6
|
Gan J, Zhang X, Ma C, Sun L, Feng Y, He Z, Zhang H. Purification of polyphenols from Phyllanthus emblica L. pomace using macroporous resins: Antioxidant activity and potential anti-Alzheimer's effects. J Food Sci 2022; 87:1244-1256. [PMID: 35122250 DOI: 10.1111/1750-3841.16028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
Phyllanthus emblica L. pomace is a waste residue obtained following juicing that contains many polyphenols. In this study, NKA-II resin was selected as the optimal macroporous resin for separation and employed to separate the crude polyphenol extract of P. emblica pomace. The separation conditions were optimized, and the polyphenol content, polyphenol components, antioxidant activity, and potential anti-Alzheimer's effects of the extract were measured before and after purification. Results showed that the polyphenol content of the purified extract was 656.85 mg/g, which was 2.1 times higher than that of the nonpurified form. Further, the polyphenol components of the pomace, which was like that of the fruit, did not vary after purification. The antioxidant activity of the purified extract was also significantly improved. Moreover, purified extract significantly reduced the paralysis rate of the transgenic Caenorhabditis elegans model of Alzheimer's disease, and the mechanism was related to maintenance of redox homeostasis. PRACTICAL APPLICATION: The polyphenol content and antioxidant activity of purified polyphenol from Phyllanthus emblica L. pomace extracts were significantly improved using optimal separation methods with NKA-II macroporous resin and 70% aqueous ethanol as the eluent in this study. Moreover, purified polyphenols showed potential effects in alleviating Alzheimer's disease. These results suggest that polyphenols separated from P. emblica pomace are valuable for further research and development, and the utilization rate of P. emblica fruit is improved due to the further development of P. emblica pomace.
Collapse
Affiliation(s)
- Jin Gan
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Xin Zhang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Chenjing Ma
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Long Sun
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Ying Feng
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Zhao He
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Hong Zhang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| |
Collapse
|
7
|
Vahapoglu B, Erskine E, Gultekin Subasi B, Capanoglu E. Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules 2021; 27:108. [PMID: 35011338 PMCID: PMC8747047 DOI: 10.3390/molecules27010108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Along with the increased knowledge about the positive health effects of food bioactives, the eating habits of many individuals have changed to obtain higher nutritional benefits from foods. Fruits are among the most preferred food materials in this regard. In particular, berry fruits are important sources in the diet in terms of their high nutritional content including vitamins, minerals, and phenolic compounds. Berry fruits have remedial effects on several diseases and these health-promoting impacts are associated with their phenolic compounds which may vary depending on the type and variety of the fruit coupled with other factors including climate, agricultural conditions, etc. Most of the berries have outstanding beneficial roles in many body systems of humans such as gastrointestinal, cardiovascular, immune, and nervous systems. Furthermore, they are effective on some metabolic disorders and several types of cancer. In this review, the health-promoting effects of bioactive compounds in berry fruits are presented and the most recent in vivo, in vitro, and clinical studies are discussed from a food science and nutrition point of view.
Collapse
Affiliation(s)
- Beyza Vahapoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| | - Ezgi Erskine
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| | - Busra Gultekin Subasi
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
- Hafik Kamer Ornek Vocational School, Cumhuriyet University, Sivas 58140, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| |
Collapse
|