1
|
Wu Z, Qian J, Feng C, Chen Z, Gao X, Liu Y, Gao Y. A review of Aconiti Lateralis Radix Praeparata (Fuzi) for kidney disease: phytochemistry, toxicology, herbal processing, and pharmacology. Front Pharmacol 2024; 15:1427333. [PMID: 39021829 PMCID: PMC11251978 DOI: 10.3389/fphar.2024.1427333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Aconiti Lateralis Radix Praeparata, commonly known as Fuzi in. traditional Chinese medicine (TCM), is widely utilized in clinical practice despite its inherent toxicity. Since ancient times, TCM practitioners have explored various processing techniques to broaden its clinical applications and enhance its safety profile. This review aims to summarize the effects of processing on the chemical composition, toxicity, and pharmacological properties of Fuzi, as well as investigate potential underlying mechanisms. Methods Data on phytochemistry, toxicology, pharmacology, and processing methods of Fuzi were gathered from the literature of electronic databases, including Web of Science, PubMed, and CNKI. Results Fuzi contains over 100 kinds of chemical compounds, including alkaloids, flavonoids, and polysaccharides, among which alkaloids are the main active compounds. Diester-diterpenoid alkaloids are the main contributors to Fuzi's toxicity and have side effects on some organs, such as the heart, liver, kidneys, nervous system, and reproductive system. The chemical composition of aconite, particularly its alkaloid content, was changed by hydrolysis or substitution reaction during processing to enhance its efficacy and reduce its toxicity. Salted aconite could enhance the therapeutic efficacy of Fuzi in treating kidney diseases and influence its pharmacokinetics. Conclusion Processing plays an important role in increasing the efficiency and decreasing toxicity of aconite. Further studies are needed to elucidate the changes of aconite before and after processing and the underlying mechanisms of these changes, thereby providing evidence for the clinical safety of drug use.
Collapse
Affiliation(s)
- Ziyang Wu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jiawen Qian
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chenhang Feng
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouqi Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiangfu Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yuancheng Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
2
|
Chen X, Chen Y, Xie S, Wang X, Wu Y, Zhang H, Zhao Y, Jia J, Wang B, Li W, Tang J, Xiao X. The mechanism of Renshen-Fuzi herb pair for treating heart failure-Integrating a cardiovascular pharmacological assessment with serum metabolomics. Front Pharmacol 2022; 13:995796. [PMID: 36545315 PMCID: PMC9760753 DOI: 10.3389/fphar.2022.995796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Renshen-Fuzi herb pair (RS-FZ) is often used in the clinical treatment of heart failure (HF) and has a remarkable therapeutic effect. However, the mechanism of RS-FZ for treating HF remains unclear. In our study, we explored the mechanism of RS-FZ for treating HF. Methods: Evaluation of RS-FZ efficacy by cardiovascular pharmacology. Moreover, Global metabolomics profiling of the serum was detected by UPLC-QTOF/MS. Multivariate statistics analyzed the specific serum metabolites and corresponding metabolic pathways. Combining serum metabolomics with network pharmacology, animal experiments screened and validated the critical targets of RS-FZ intervention in HF. Results: RS-FZ significantly ameliorated myocardial fibrosis, enhanced cardiac function, and reduced the serum HF marker (brain natriuretic peptide) level in rats with HF. Through topological analysis of the "Metabolite-Target-Component" interaction network, we found that 79 compounds of RS-FZ directly regulated the downstream specific serum metabolites by acting on four critical target proteins (CYP2D6, EPHX2, MAOB, and ENPP2). The immunohistochemistry results showed that RS-FZ observably improved the expression of CYP2D6 and ENPP2 proteins while decreasing the expression of EPHX2 and MAOB proteins dramatically. Conclusion: The integrated cardiovascular pharmacological assessment with serum metabolomics revealed that RS-FZ plays a crucial role in the treatment of HF by intervening in CYP2D6, EPHX2, MAOB, and ENPP2 target proteins. It provides a theoretical basis for RS-FZ for treating HF.
Collapse
Affiliation(s)
- Xiaofei Chen
- College of Medicine, Chengdu University of Chinese Medicine, Chengdu, China,Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yulong Chen
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiyang Xie
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Wang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yali Wu
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya Zhao
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinhao Jia
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bin Wang
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weixia Li
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| | - Jinfa Tang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| | - Xiaohe Xiao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| |
Collapse
|
3
|
Ye X, Wu J, Zhang D, Lan Z, Yang S, Zhu J, Yang M, Gong Q, Zhong L. How Aconiti Radix Cocta can Treat Gouty Arthritis Based on Systematic Pharmacology and UPLC-QTOF-MS/MS. Front Pharmacol 2021; 12:618844. [PMID: 33995019 PMCID: PMC8121251 DOI: 10.3389/fphar.2021.618844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/13/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Gouty arthritis (GA) is a common metabolic disease caused by a long-term disorder of purine metabolism and increased serum levels of uric acid. The processed product of dried root of Aconitum carmichaeli Debeaux (Aconiti Radix cocta, ARC) is used often in traditional Chinese medicine (TCM) to treat GA, but its specific active components and mechanism of action are not clear. Methods: First, we used ultra-performance liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry to identify the chemical spectrum of ARC. Based on this result, we explored the active components of ARC in GA treatment and their potential targets and pathways. Simultaneously, we used computer simulations, in vitro cell experiments and animal experiments to verify the prediction results of systems pharmacology. In vitro, we used aurantiamide acetate (AA) to treat monosodium urate (MSU)-stimulated THP-1 cells and demonstrated the reliability of the prediction by western blotting and real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). ELISAs kit were used to measure changes in levels of proinflammatory factors in rats with GA induced by MSU to demonstrate the efficacy of ARC in GA treatment. Results: Forty-three chemical constituents in ARC were identified. ARC could regulate 65 targets through 29 active components, and then treat GA, which involved 1427 Gene Ontology (GO) terms and 146 signaling pathways. Signaling pathways such as proteoglycans in cancer, C-type lectin receptor signaling pathway, and TNF signaling pathway may have an important role in GA treatment with ARC. In silico results showed that the active components songoramine and ignavine had high binding to mitogen-activated protein kinase p38 alpha (MAPK14) and matrix metallopeptidase (MMP)9, indicating that ARC treatment of GA was through multiple components and multiple targets. In vitro experiments showed that AA in ARC could effectively reduce expression of MAPK14, MMP9, and cyclooxygenase2 (PTGS2) in THP-1 cells stimulated by MSU, whereas it could significantly inhibit the mRNA expression of Caspase-1, spleen tyrosine kinase (SYK), and PTGS2. Animal experiments showed that a ARC aqueous extract could significantly reduce expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and intereleukin (IL)-18 in the serum of GA rats stimulated by MSU. Hence, ARC may inhibit inflammation by regulating the proteoglycans in cancer-associated signaling pathways. Conclusion: ARC treatment of GA may have the following mechanisms, ARC can reduce MSU crystal-induced joint swelling, reduce synovial tissue damage, and reduce the expression of inflammatory factors in serum. AA in ARC may inhibit inflammation by regulating the protein expression of MAPK14, MMP9, and PTGS2 and the mRNA expression of caspase-1, SYK, and PTGS2.
Collapse
Affiliation(s)
- Xietao Ye
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianxiong Wu
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dayong Zhang
- Sichuan New Lotus Chinese Herbal Medicine, Chengdu, China
| | - Zelun Lan
- Sichuan New Lotus Chinese Herbal Medicine, Chengdu, China
| | - Songhong Yang
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jing Zhu
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qianfeng Gong
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lingyun Zhong
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
4
|
Wei XC, Cao B, Luo CH, Huang HZ, Tan P, Xu XR, Xu RC, Yang M, Zhang Y, Han L, Zhang DK. Recent advances of novel technologies for quality consistency assessment of natural herbal medicines and preparations. Chin Med 2020; 15:56. [PMID: 32514289 PMCID: PMC7268247 DOI: 10.1186/s13020-020-00335-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
Quality consistency is one of the basic attributes of medicines, but it is also a difficult problem that natural medicines and their preparations must face. The complex chemical composition and comprehensive pharmacological action of natural medicines make it difficult to simply apply the commonly used evaluation methods in chemical drugs. It is thus urgent to explore the novel evaluation methods suitable for the characteristics of natural medicines. With the rapid development of analytical techniques and the deepening understanding of the quality of natural herbs, increasing numbers of researchers have proposed many new ideas and technologies. This review mainly focuses on the basic principles, technical characteristics and application examples of the chemical evaluation, biological evaluation methods and their combination in quality consistency evaluation of natural herbs. On the bases of chemical evaluation and clinical efficacy, new methods reflecting their pharmacodynamic mechanism and safety characteristics will be developed, and gradually towards accurate quality control, to achieve the goal of quality consistency. We hope that this manuscript can provide new ideas and technical references for the quality consistency of natural drugs and their preparations, thus better guarantee their clinical efficacy and safety, and better promote industrial development.
Collapse
Affiliation(s)
- Xi-Chuan Wei
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Bo Cao
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Chuan-Hong Luo
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Hao-Zhou Huang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu, 610041 China
| | - Xiao-Rong Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Run-Chun Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Yi Zhang
- Chengdu Food and Drug Control, Chengdu, 610000 China
| | - Li Han
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Ding-Kun Zhang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| |
Collapse
|
5
|
He YN, Zhang DK, Lin JZ, Han X, Zhang YM, Zhang HZ, Pei J, Yang M, Wang JB. Cardiac function evaluation for a novel one-step detoxification product of Aconiti Lateralis Radix Praeparata. Chin Med 2018; 13:62. [PMID: 30568725 PMCID: PMC6297959 DOI: 10.1186/s13020-018-0219-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background Aconiti Lateralis Radix Praeparata has been used as the first cardiac drug over a 1000 years in Asian countries. Although most detoxification products are confirmed to be safe, the effect is not potent as desired. In previous study, we designed a one-step detoxification product by fresh cutting and continuously dried, which preserved more water-soluble alkaloids while eliminating toxicity. It is thus necessary to find more in vivo evidence to support its industrial development. Methods Initially, network pharmacology was applied to analyze the related pathways of candidate components acting on heart failure diseases. Then, two heart failure models that were induced by propafenone hydrochloride and nimodipine (v/v, 1:1) and were given doxorubicin were carried out to test the cardiac activity. Moreover, the effect on mitochondrial energy metabolism was further assessed. Results Network pharmacology results indicated that Aconiti Lateralis Radix Praeparata treated heart failure through cAMP signaling pathway, calcium signaling pathway, adrenergic signaling in cardiomyocytes and so on. These pathways were highly correlated with myocardial contractility and mitochondrial energy metabolism. Trials on heart failure rats demonstrated that the novel processed-product could produce a stronger positive inotropic action and increase more Na+–K+–ATPase and Ca2+–Mg2+–ATPase than Heishunpian. Pathological results also revealed the novel one could better restore the morphology of cardiomyocytes and reduce vacuolar lesions. It also could inspire more energy with a lower concentration. Conclusions This study provides scientific evidence for the clinical application of new products. It is of great benefit to innovate the industrial detoxification process of Aconitum. Electronic supplementary material The online version of this article (10.1186/s13020-018-0219-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Nan He
- 1State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Ding-Kun Zhang
- 1State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,Sichuan Good Doctor Panxi Pharmaceutical Co., LTD, Xichang, China
| | - Jun-Zhi Lin
- 3Central Laboratory, Teaching Hospital of Chengdu University of TCM, Chengdu, People's Republic of China
| | - Xue Han
- 1State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Ya-Ming Zhang
- 4China Military Institute of Chinese Medicine, 302 Military Hospital, No. 100 Xisihuan, Beijing, 100039 People's Republic of China
| | - Hai-Zhu Zhang
- 5Department of Pharmacy and Chemistry, Dali University, Dali, People's Republic of China
| | - Jin Pei
- 1State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,Sichuan Good Doctor Panxi Pharmaceutical Co., LTD, Xichang, China
| | - Ming Yang
- 6Jiangxi University of Traditional Chinese Medicine, No. 18 Yunwan Avenue, Nanchang, 330004 People's Republic of China
| | - Jia-Bo Wang
- 4China Military Institute of Chinese Medicine, 302 Military Hospital, No. 100 Xisihuan, Beijing, 100039 People's Republic of China
| |
Collapse
|