1
|
Zhou J, Luo J, Gan R, Zhi L, Zhou H, Lv M, Huang Y, Liang G. SSPH I, A Novel Anti-cancer Saponin, Inhibits EMT and Invasion and Migration of NSCLC by Suppressing MAPK/ERK1/2 and PI3K/AKT/ mTOR Signaling Pathways. Recent Pat Anticancer Drug Discov 2024; 19:543-555. [PMID: 38305308 DOI: 10.2174/0115748928283132240103073039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Saponin of Schizocapsa plantaginea Hance I (SSPH I).a bioactive saponin found in Schizocapsa plantaginea, exhibits significant anti-proliferation and antimetastasis in lung cancer. OBJECTIVE To explore the anti-metastatic effects of SSPH I on non-small cell lung cancer (NSCLC) with emphasis on epithelial-mesenchymal transition (EMT) both in vitro and in vivo. METHODS The effects of SSPH I at the concentrations of 0, 0.875,1.75, and 3.5 μM on A549 and PC9 lung cancer cells were evaluated using colony formation assay, CCK-8 assay, transwell assay and wound-healing assay. The actin cytoskeleton reorganization of PC9 and A549 cells was detected using the FITC-phalloidin fluorescence staining assay. The proteins related to EMT (N-cadherin, E-cadherin and vimentin), p- PI3K, p- AKT, p- mTOR and p- ERK1/2 were detected by Western blotting. A mouse model of lung cancer metastasis was established by utilizing 95-D cells, and the mice were treated with SSPH I by gavage. RESULTS The results suggested that SSPH I significantly inhibited the migration and invasion of NSCLC cells under a non-cytotoxic concentration. Furthermore, SSPH I at a non-toxic concentration of 0.875 μM inhibited F-actin cytoskeleton organization. Importantly, attenuation of EMT was observed in A549 cells with upregulation in the expression of epithelial cell marker E-cadherin and downregulation of the mesenchymal cell markers vimentin as well as Ncadherin. Mechanistic studies revealed that SSPH I inhibited MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways. CONCLUSION SSPH I inhibited EMT, migration, and invasion of NSCLC cells by suppressing MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways, suggesting that the natural compound SSPH I could be used for inhibiting metastasis of NSCLC.
Collapse
Affiliation(s)
- Jinling Zhou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jian Luo
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rizhi Gan
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Limin Zhi
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Huan Zhou
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meixian Lv
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yinmei Huang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Gang Liang
- College of Pharmacy, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
2
|
Huang D, Dong X, Li J, Chen Y, Zhou Y, Chen Q, Sun Y. Steroidal saponin SSPH I induces ferroptosis in HepG2 cells via regulating iron metabolism. Med Oncol 2023; 40:132. [PMID: 36977862 DOI: 10.1007/s12032-023-02000-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common type of solid liver carcinoma. Regulating ferroptosis is important for the treatment of HCC. SSPH I is an anti-HCC steroidal saponin isolated from Schizocapsa plantaginea Hance. In this study, we found that SSPH I exerted significant anti-proliferation and anti-migration effects on HepG2 cell, ferroptosis inhibitor ferrostatin-1 or iron chelator ciclopirox partly attenuated the effect of SSPH I. SSPH I also induced apoptosis and G2/M phase cell cycle arrest. ROS accumulation, glutathione depletion and malondialdehyde accumulation were detected after SSPH I treatment, which leads to lipid peroxidation. Ferrostatin-1 or ciclopirox showed a significant antagonist effect towards SSPH I induced lipid peroxidation. Furthermore, typical morphologic changes of ferroptosis, such as increasing density of mitochondrial membrane and reduction of mitochondrial cristae were observed in HepG2 cells after SSPH I treatment. SSPH I does not regulate the xCT protein. Interestingly, SSPH I elevated the expression levels of SLC7A5, which is the negative regulator of ferroptosis. In contrast, SSPH I upregulated the expression of TFR and Fpn proteins, leading to the accumulation of Fe2+. Ferrostatin-1 and ciclopirox presented a similar antagonist effect on SSPH I. In conclusion, our research first reveals that SSPH I induced ferroptosis in HepG2 cells. In addition, our results suggest that SSPH I induces ferroptosis by causing iron overload in HepG2 cells.
Collapse
Affiliation(s)
- Dan Huang
- Guangxi Vocational University of Agriculture, Nanning, China
| | - Xin Dong
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Jianzhe Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Yudan Chen
- Guangxi Vocational University of Agriculture, Nanning, China
| | - Ying Zhou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qingjie Chen
- Guangxi University of Chinese Medicine, Nanning, China
| | - Yuewen Sun
- Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
3
|
Kim DB, Lee DK, Cheon C, Ribeiro RIMA, Kim B. Natural Products for Liver Cancer Treatment: From Traditional Medicine to Modern Drug Discovery. Nutrients 2022; 14:nu14204252. [PMID: 36296934 PMCID: PMC9610711 DOI: 10.3390/nu14204252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Primary liver cancer was the seventh most diagnosed cancer and the second leading cause of cancer death with about 906,000 cases and 830,000 deaths, respectively, in 2020. Conventional treatment for liver cancer, such as transarterial chemoembolization (TACE) or sorafenib, has limitations in that there is the recurrence of cancer, drug inefficacy, and adverse effects. Traditional medicine and natural products of several regions including Korea, China, Europe, North America, India, and the Middle East have attracted a lot of attention since they have been reported to have anticancer effects with low adverse effects. In this review, several in vivo studies on the effects of natural compounds on liver cancer and clinical trials approving their therapeutic benefits were selected and discussed. As a result of the analysis of these studies, the effects of natural compounds were classified into a few mechanisms: apoptosis, anti-metastasis, and antiangiogenesis. In addition, medications including natural products in clinical trials were observed to exhibit improvements in various liver cancer symptoms and patients’ survival rates. This study presents findings suggestive of the anticancer potential of natural products and their properties in relieving related symptoms.
Collapse
Affiliation(s)
- Da Bin Kim
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro 26 Dongdaemun-gu, Seoul 02447, Korea
| | - Do Kyeong Lee
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro 26 Dongdaemun-gu, Seoul 02447, Korea
| | - Chunhoo Cheon
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro 26 Dongdaemun-gu, Seoul 02447, Korea
| | - Rosy Iara Maciel A. Ribeiro
- Laboratory of Experimental Pathology, Federal University of São João del Rei—CCO/UFSJ, Divinópolis 35501-296, Brazil
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro 26 Dongdaemun-gu, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
4
|
Zhou JL, Huang XY, Qiu HC, Gan RZ, Zhou H, Zhu HQ, Zhang XX, Lu GD, Liang G. SSPH I, a Novel Anti-Cancer Saponin, Inhibits Autophagy and Induces Apoptosis via ROS Accumulation and ERK1/2 Signaling Pathway in Hepatocellular Carcinoma Cells. Onco Targets Ther 2020; 13:5979-5991. [PMID: 32606806 PMCID: PMC7320904 DOI: 10.2147/ott.s253234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction Saponin of Schizocapsa plantaginea Hance I (SSPH I), a novel bioactive phytochemical isolated from the rhizomes of Schizocapsa plantaginea, has been demonstrated to exhibit anti-cancer activity against various tumors in preclinical studies. However, the molecular mechanisms involved in the suppression of hepatocellular carcinoma (HCC) are poorly understood. The present study aimed at analyzing the effects of SSPH I on autophagy and apoptosis in vitro. Methods MTT and colony forming assays were used to detect cell viability and cell proliferation. Hoechst 33,258 staining and flow cytometry were used to determine apoptosis and ROS production. The apoptosis and autophagy-related protein expression levels were evaluated via Western blot assay. Characteristics of autophagy and apoptosis were observed by transmission electron microscopy. Lysosomal activity was stained with Lyso-Tracker Red and Magic Red Cathepsin B. Results The results showed that SSPH I exhibited potent anti-cancer activity and proliferation in HepG2 and BEL-7402 cells and inhibited HepG2 cells through inhibiting autophagy and promoting apoptosis. The mechanistic study indicated that the inhibition of autophagy of SSPH I was mediated by blocking autophagosome–lysosome fusion. Additionally, we found that SSPH I could mediate the activation of MAPK/ERK1/2 signaling pathway, and the use of NAC (ROS inhibitor) and U0126 (MEK1/2 inhibitor) converted the effect of SSPH I on apoptosis and autophagy in HepG2 cells. Conclusion These data suggest that SSPH I induces tumor cells apoptosis and reduces autophagy in vitro by inducing ROS and activating MAPK/ERK1/2 signaling pathway, indicating that SSPH I might be a novel agent for the treatment of HCC.
Collapse
Affiliation(s)
- Jin-Ling Zhou
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Xiu-Ying Huang
- Liuzhou Employment Service Centre for the Disabled, Liuzhou, People's Republic of China
| | - Han-Chen Qiu
- Department of Pharmacy, The People's Hospital of Hezhou, Hezhou, People's Republic of China
| | - Ri-Zhi Gan
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Huan Zhou
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Hong-Qing Zhu
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Xuan-Xuan Zhang
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Guo-Dong Lu
- School of Public Health, Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Liang
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
5
|
A Network Pharmacology Approach to Uncover the Potential Mechanism of Yinchensini Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2178610. [PMID: 30671125 PMCID: PMC6317126 DOI: 10.1155/2018/2178610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/26/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023]
Abstract
Objective To predict and explore the potential mechanism of Yinchensini decoction (YCSND) based on systemic pharmacology. Method TCMSP database was searched for the active constituents and related target proteins of YCSND. Cytoscape 3.5.1 was used to construct the active ingredient-target interaction of YCSND and network topology analysis, with STRING online database for protein-protein interaction (PPI) network construction and analysis; and collection from the UniProt database of target protein gene name, with the DAVID database for the gene ontology (GO) functional analysis, KEGG pathway enrichment analysis mechanism and targets of YCSND. Results The results indicate the core compounds of YCSND, namely, kaempferol, 7-Methoxy-2-methyl isoflavone, and formononetin. And its core targets are prostaglandin G/H synthase 2, estrogen receptor, Calmodulin, heat shock protein HSP 90, etc. PPI network analysis shows that the key components of the active ingredients of YCSND are JUN, TP53, MARK1, RELA, MYC, and so on. The results of the GO analysis demonstrate that extracellular space, cytosol, and plasma membrane are the main cellular components of YCSND. Its molecular functions are mainly acting on enzyme binding, protein heterodimerization activity, and drug binding. The biological process of YCSND is focused on response to drug, positive regulation of transcription from RNA polymerase II promoter, the response to ethanol, etc. KEGG results suggest that the pathways, including pathways in cancer, hepatitis B, and pancreatic cancer, play a key role in YCSND. Conclusion YCSND exerts its drug effect through various signaling pathways and acts on kinds of targets. By system pharmacology, the potential role of drugs and the mechanism of action can be well predicted.
Collapse
|
6
|
Lv T, Zhang W, Han X. Zerumbone suppresses the potential of growth and metastasis in hepatoma HepG2 cells via the MAPK signaling pathway. Oncol Lett 2018; 15:7603-7610. [PMID: 29849796 PMCID: PMC5962844 DOI: 10.3892/ol.2018.8335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Zerumbone is an active component of Zingiber zerumbet (L.) Smith and can perform a diverse range of antitumor activities. However, the underlying molecular mechanisms of zerumbone action have not yet been elucidated. The aim of the present study was to investigate the antitumor effects, and the associated molecular mechanisms, of zerumbone in hepatoma HepG2 cells. Treatment with zerumbone markedly induced apoptosis in hepatoma HepG2 cells and suppressed their invasion and metastasis in a dose-dependent manner. Further investigation revealed that treatment with zerumbone led to the dose-dependent induction of apoptosis and cell cycle arrest at G2/M phase in cancer cells. Zerumbone treatment led to the increased expression of p27, cytochrome c, caspase-3 and-9, and Bcl-2-associated X expression, but the decreased expression of cyclin-dependent kinase 1, cyclin B1, B-cell lymphoma-2, focal adhesion kinase, Ras homolog gene family, member A, Rho-associated protein kinase-1, and matrix metalloproteinase-2 and-9 in HepG2 cells. In addition, the phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2, but not C-Jun N-terminal kinase 1/2, was regulated in a dose-dependent manner in response to zerumbone treatment. The results of the current study indicate that zerumbone could be used as potential anticancer agent in for the treatment of hepatoma in the future.
Collapse
Affiliation(s)
- Tao Lv
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| | - Wenjing Zhang
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| | - Xiaoli Han
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| |
Collapse
|