1
|
Huang FC. Therapeutic Potential of Nutritional Aryl Hydrocarbon Receptor Ligands in Gut-Related Inflammation and Diseases. Biomedicines 2024; 12:2912. [PMID: 39767818 PMCID: PMC11673835 DOI: 10.3390/biomedicines12122912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
A solid scientific foundation is required to build the concept of personalized nutrition developed to promote health and a vision of disease prevention. Growing evidence indicates that nutrition can modulate the immune system through metabolites, which are either generated via microbiota metabolism or host digestion. The aryl hydrocarbon receptor (AhR) plays a crucial role in regulating immune responses, particularly in the gut, and has emerged as a key modulator of gut-mediated inflammation and related diseases. AhR is a ligand-activated transcription factor that responds to environmental, dietary, and microbial-derived signals, influencing immune balance and maintaining intestinal homeostasis. Nutritional AhR ligands play a significant role in modulating intestinal immunity and the function of mucosal immune cells, thereby exerting clinical effects on colitis and innate immunity. Additionally, they have the capacity to orchestrate autophagy, phagocytic cell function, and intestinal epithelial tight junctions. Therapeutic strategies aimed at enhancing AhR activity, restoring gut integrity, and optimizing immune responses hold promise as avenues for future research and potential treatments for critically ill patients.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| |
Collapse
|
2
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
3
|
Singh S, Sharma S, Sharma H. Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update. Curr Pharm Biotechnol 2024; 25:1719-1746. [PMID: 38173061 DOI: 10.2174/0113892010276859231125165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Shiwangi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University, Uttar Pradesh-281406, India
| |
Collapse
|
4
|
Hou JJ, Ma AH, Qin YH. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: insights from gut microbiota. Front Cell Infect Microbiol 2023; 13:1279172. [PMID: 37942478 PMCID: PMC10628454 DOI: 10.3389/fcimb.2023.1279172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects more than 3.5 million people, with rising prevalence. It deeply affects patients' daily life, increasing the burden on patients, families, and society. Presently, the etiology of IBD remains incompletely clarified, while emerging evidence has demonstrated that altered gut microbiota and decreased aryl hydrocarbon receptor (AHR) activity are closely associated with IBD. Furthermore, microbial metabolites are capable of AHR activation as AHR ligands, while the AHR, in turn, affects the microbiota through various pathways. In light of the complex connection among gut microbiota, the AHR, and IBD, it is urgent to review the latest research progress in this field. In this review, we describe the role of gut microbiota and AHR activation in IBD and discussed the crosstalk between gut microbiota and the AHR in the context of IBD. Taken as a whole, we propose new therapeutic strategies targeting the AHR-microbiota axis for IBD, even for other related diseases caused by AHR-microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
5
|
Lin L, Liu Y, Chen L, Dai Y, Xia Y. Discovery of Norisoboldine Analogue III 11 as a Novel and Potent Aryl Hydrocarbon Receptor Agonist for the Treatment of Ulcerative Colitis. J Med Chem 2023; 66:6869-6888. [PMID: 37154394 DOI: 10.1021/acs.jmedchem.3c00287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcript factor, belonging to the basic helix-loop-helix-Per-ARNT-SIM family, is closely associated with health and diseases. Targeting AhR is an emerging therapeutic strategy for various diseases. Norisoboldine (NOR), which is the main alkaloid of Linderae Radix, has been known to activate AhR. Unfortunately, the oral bioavailability (F) of NOR is only 2.49%. To improve the chemical efficacy and bioavailability, we designed and synthesized NOR analogues. Using various in vitro assays, 2-methoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-9-ol (III11) was discovered as a potent AhR agonist. Compound III11 enhanced the expression of AhR downstream target genes, triggered AhR nuclear translocation, and promoted differentiation of regulatory T cells. More importantly, III11 exhibited good bioavailability (F = 87.40%) and remarkable therapeutic effects in a mouse model of ulcerative colitis at a dosage of 10 mg/kg. These findings may serve as a reference for the design of novel AhR agonists against immune and inflammatory diseases.
Collapse
Affiliation(s)
- Li Lin
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongmin Liu
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li Chen
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Lv Y, Zou Y, Zhang X, Liu B, Peng X, Chu C. A review on the chemical constituents and pharmacological efficacies of Lindera aggregata (Sims) Kosterm. Front Nutr 2023; 9:1071276. [PMID: 36726818 PMCID: PMC9884700 DOI: 10.3389/fnut.2022.1071276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Lindera aggregata (Sims) Kosterm. (L. aggregata), which belongs to the genus Lindera in the family Lauraceae, is widely distributed in Asia and the temperate, tropical regions of North America. Its roots and leaves have been used for thousands of years as traditional Chinese medicine and/or functional food. To further explore its underlying nutritional value, this review provided a comprehensive insight into chemical constituents and pharmacological effects on L. aggregata. The phytochemical investigation of different parts of L. aggregata led to the identification of up to 349 components belonging to sesquiterpenoids, alkaloids, flavonoids, essential oils, and other compounds. Among them, sesquiterpenoids, flavonoids, and alkaloids are assessed as representative active ingredients of L. aggregata. A wide variety of pharmacological effects of L. aggregata, such as anti-hyperlipidemic, anti-tumor, anti-inflammatory, analgesic, and anti-oxidant, have been proved in vitro and in vivo. In summary, this review aims to provide a scientific basis and reference for further research and utilization of L. aggregata and lay the foundation for developing functional foods with potential active ingredients for the prevention and management of related diseases.
Collapse
Affiliation(s)
- Yangbin Lv
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yanfang Zou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xindan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bingrui Liu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xin Peng
- Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China,*Correspondence: Xin Peng,
| | - Chu Chu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China,Chu Chu,
| |
Collapse
|
7
|
Xu Q, Sun W, Zhang J, Mei Y, Bao J, Hou S, Zhou X, Mao L. Inflammasome-targeting natural compounds in inflammatory bowel disease: Mechanisms and therapeutic potential. Front Immunol 2022; 13:963291. [PMID: 36090968 PMCID: PMC9451542 DOI: 10.3389/fimmu.2022.963291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly including Crohn’s disease and ulcerative colitis, seriously affects human health and causes substantial social and economic burden. The pathogenesis of IBD is still not fully elucidated, whereas recent studies have demonstrated that its development is associated with the dysfunction of intestinal immune system. Accumulating evidence have proven that inflammasomes such as NLRP3 and NLRP6 play a prominent role in the pathogenesis of IBD. Thus, regulating the activation of inflammasomes have been considered to be a promising strategy in IBD treatment. A number of recent studies have provided evidence that blocking inflammasome related cytokine IL-1β can benefit a group of IBD patients with overactivation of NLRP3 inflammasome. However, therapies for targeting inflammasomes with high efficacy and safety are rare. Traditional medical practice provides numerous medical compounds that may have a role in treatment of various human diseases including IBD. Recent studies demonstrated that numerous medicinal herb derived compounds can efficiently prevent colon inflammation in animal models by targeting inflammasomes. Herein, we summarize the main findings of these studies focusing on the effects of traditional medicine derived compounds on colitis treatment and the underlying mechanisms in regulating the inflammasomes. On this basis, we provide a perspective for future studies regarding strategies to improve the efficacy, specificity and safety of available herbal compounds, and to discover new compounds using the emerging new technologies, which will improve our understanding about the roles and mechanisms of herbal compounds in the regulation of inflammasomes and treatment of IBD.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Weichen Sun
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Youmin Mei
- Department of Periodontology, Nantong Stomatological Hospital, Nantong, China
| | - Jingyin Bao
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- *Correspondence: Liming Mao, ; Xiaorong Zhou, ; Shengping Hou,
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- *Correspondence: Liming Mao, ; Xiaorong Zhou, ; Shengping Hou,
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
- *Correspondence: Liming Mao, ; Xiaorong Zhou, ; Shengping Hou,
| |
Collapse
|
8
|
Xing D, Li Q, Lin G, Lin H, Kang W, Zhang M, Ding R, Li N. The protective effects of propofol against renal ischemia-reperfusion injury are potentiated by norisoboldine treatment via inhibition of oxidative stress pathways. J Biochem Mol Toxicol 2021; 36:e22937. [PMID: 34719823 DOI: 10.1002/jbt.22937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 09/12/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is a significant worldwide health problem. The protective effects of norisoboldine (NOR) against ischemia/reperfusion (I/R) induced renal injury in a rat model were evaluated. AKI was induced in rats by I/R. Animals were treated with 20 mg/kg/h propofol, intraperitoneally administered and 10 mg/kg NOR 30 min before inducing renal ischemia. Biomarkers of kidney function, including cytokines and oxidative stress parameters, were measured in serum. The serum levels of creatinine and blood urea nitrogen in propofol- and NOR-treated rats were lower compared to the untreated I/R group. Moreover, treatment with propofol or NOR, alone and in combination, decreased the levels of cytokines and oxidative stress in rats with kidney injury. In conclusion, this study suggested that treatment with NOR potentiated the nephroprotective effects of propofol in rats with I/R-induced renal injury by ameliorating oxidative stress and apoptosis pathway.
Collapse
Affiliation(s)
- Dandan Xing
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - QiuChang Li
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Guanwen Lin
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hui Lin
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wenyue Kang
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Min Zhang
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Ding
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Na Li
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
9
|
Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY, Lee KH. Biologically active isoquinoline alkaloids covering 2014-2018. Med Res Rev 2020; 40:2212-2289. [PMID: 32729169 PMCID: PMC7554109 DOI: 10.1002/med.21703] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide since the early 19th century. Over the past 200 years, many compounds from this class were isolated, and most of them and their analogs possess various bioactivities. In this review, we survey the updated literature on bioactive alkaloids and highlight research achievements of this alkaloid class during the period of 2014-2018. We reviewed over 400 molecules with a broad range of bioactivities, including antitumor, antidiabetic and its complications, antibacterial, antifungal, antiviral, antiparasitic, insecticidal, anti-inflammatory, antioxidant, neuroprotective, and other activities. This review should provide new indications or directions for the discovery of new and better drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, 251 Ningda Road, Xining 810016, P.R. China
| | - Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
10
|
GDF11 inhibits cardiomyocyte pyroptosis and exerts cardioprotection in acute myocardial infarction mice by upregulation of transcription factor HOXA3. Cell Death Dis 2020; 11:917. [PMID: 33100331 PMCID: PMC7585938 DOI: 10.1038/s41419-020-03120-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
NLRP3 (Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3) inflammasome-mediated cardiomyocytes pyroptosis plays a crucial part in progression of acute myocardial infarction (MI). GDF11 (Growth Differentiation Factor 11) has been reported to generate cytoprotective effects in phylogenesis and multiple diseases, but the mechanism that GDF11 contributes to cardioprotection of MI and cardiomyocytes pyroptosis remains poorly understood. In our study, we first determined that GDF11 was abnormally downregulated in the heart tissue of MI mice and hypoxic cardiomyocytes. Moreover, AAV9-GDF11 markedly alleviated heart function in MI mice. Meanwhile, GDF11 overexpression also decreased the pyroptosis of hypoxic cardiomyocytes. PROMO and JASPAR prediction software found that transcription factor HOXA3 was predicted as an important regulator of NLRP3, and was confirmed by ChIP assay. Further analysis identifying GDF11 promoted the Smad2/3 pathway resulted in HOXA3 overexpression. Taken together, our study implies that GDF11 prevents cardiomyocytes pyroptosis via HOXA3/NLRP3 signaling pathway in MI mice.
Collapse
|
11
|
Ruiz Castro PA, Kogel U, Lo Sasso G, Phillips BW, Sewer A, Titz B, Garcia L, Kondylis A, Guedj E, Peric D, Bornand D, Dulize R, Merg C, Corciulo M, Ivanov NV, Peitsch MC, Hoeng J. Anatabine ameliorates intestinal inflammation and reduces the production of pro-inflammatory factors in a dextran sulfate sodium mouse model of colitis. JOURNAL OF INFLAMMATION-LONDON 2020; 17:29. [PMID: 32855621 PMCID: PMC7446176 DOI: 10.1186/s12950-020-00260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Background Inflammatory bowel disease (IBD) is the collective term for chronic immune-mediated diseases of unknown, multifactorial etiology, arising from the interplay between genetic and environmental factors and including two main disease manifestations: ulcerative colitis (UC) and Crohn’s disease. In the last few decades, naturally occurring alkaloids have gained interest because of their substantial anti-inflammatory effects in several animal models of disease. Studies on mouse models of IBD have demonstrated the anti-inflammatory action of the main tobacco alkaloid, nicotine. In addition, anatabine, a minor tobacco alkaloid also present in peppers, tomato, and eggplant presents anti-inflammatory properties in vivo and in vitro. In this study, we aimed to evaluate the anti-inflammatory properties of nicotine and anatabine in a dextran sulfate sodium (DSS) mouse model of UC. Results Oral administration of anatabine, but not nicotine, reduced the clinical symptoms of DSS-induced colitis. The result of gene expression analysis suggested that anatabine had a restorative effect on global DSS-induced gene expression profiles, while nicotine only had limited effects. Accordingly, MAP findings revealed that anatabine reduced the colonic abundance of DSS-associated cytokines and increased IL-10 abundance. Conclusions Our results support the amelioration of inflammatory effects by anatabine in the DSS mouse model of UC, and suggest that anatabine constitutes a promising therapeutic agent for IBD treatment.
Collapse
Affiliation(s)
- Pedro A Ruiz Castro
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ulrike Kogel
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Giuseppe Lo Sasso
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Blaine W Phillips
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, The Kendall #02-07, Science Park II, Singapore, 117406 Singapore
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Bjorn Titz
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Llenalia Garcia
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Dariusz Peric
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - David Bornand
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Remi Dulize
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Celine Merg
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Maica Corciulo
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
12
|
Hui W, Dai Y. Therapeutic potential of aryl hydrocarbon receptor ligands derived from natural products in rheumatoid arthritis. Basic Clin Pharmacol Toxicol 2020. [DOI: 10.1111/bcpt.13372
expr 834489098 + 843621703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Wenyu Hui
- Department of Pharmacology of Chinese Materia Medica School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| |
Collapse
|
13
|
Does NLRP3 Inflammasome and Aryl Hydrocarbon Receptor Play an Interlinked Role in Bowel Inflammation and Colitis-Associated Colorectal Cancer? Molecules 2020; 25:molecules25102427. [PMID: 32456012 PMCID: PMC7287590 DOI: 10.3390/molecules25102427] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a hallmark in many forms of cancer; with colitis-associated colorectal cancer (CAC) being a progressive intestinal inflammation due to inflammatory bowel disease (IBD). While this is an exemplification of the negatives of inflammation, it is just as crucial to have some degree of the inflammatory process to maintain a healthy immune system. A pivotal component in the maintenance of such intestinal homeostasis is the innate immunity component, inflammasomes. Inflammasomes are large, cytosolic protein complexes formed following stimulation of microbial and stress signals that lead to the expression of pro-inflammatory cytokines. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome has been extensively studied in part due to its strong association with colitis and CAC. The aryl hydrocarbon receptor (AhR) has recently been acknowledged for its connection to the immune system aside from its role as an environmental sensor. AhR has been described to play a role in the inhibition of the NLRP3 inflammasome activation pathway. This review will summarise the signalling pathways of both the NLRP3 inflammasome and AhR; as well as new-found links between these two signalling pathways in intestinal immunity and some potential therapeutic agents that have been found to take advantage of this link in the treatment of colitis and CAC.
Collapse
|
14
|
Hui W, Dai Y. Therapeutic potential of aryl hydrocarbon receptor ligands derived from natural products in rheumatoid arthritis. Basic Clin Pharmacol Toxicol 2019; 126:469-474. [DOI: 10.1111/bcpt.13372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Wenyu Hui
- Department of Pharmacology of Chinese Materia Medica School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| |
Collapse
|
15
|
Sun S, Du Y, Yin C, Suo X, Wang R, Xia R, Zhang X. Water-separated part of Chloranthus serratus alleviates lipopolysaccharide- induced RAW264.7 cell injury mainly by regulating the MAPK and Nrf2/HO-1 inflammatory pathways. Altern Ther Health Med 2019; 19:343. [PMID: 31791318 PMCID: PMC6888926 DOI: 10.1186/s12906-019-2755-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Background Chloranthus serratus (Chloranthaceae) has been used to treat bruises, rheumatoid and bone pain. However, the anti-inflammatory mechanisms of C. serratus in vitro have not been fully elucidated. The present study aimed to explore the anti-inflammatory activity and potential mechanisms of C. serratus’s separated part of water (CSSPW) in lipopolysaccharide (LPS)-induced RAW264.7 cells. Methods The concentrations of CSSPW were optimized by CCK-8 method. Nitric oxide (NO) content was detected by one-step method. The levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA). Gene expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was detected by real-time quantitative PCR (qPCR). Immunofluorescence and DCFH-DA fluorescent probes were used to detect p65 nuclear translocation and reactive oxygen species (ROS) content, respectively. Western blotting was used to assay the protein expression of mitogen-activated protein kinases (MAPK), nuclear factor-kappa B (NF-κB) and nuclear transcription factor E2 related factor 2/haem oxygenase-1 (Nrf2/HO-1) pathways. Results The final concentrations of 15 ng/mL, 1.5 μg/mL and 150 μg/mL were selected as low, medium and high doses of CSSPW, respectively. CSSPW treatment significantly reduced the generation of NO, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandinE2 (PGE2), iNOS mRNA and COX-2 mRNA in response to LPS stimulation. Furthermore, the protein expression of the MAPK and NF-κB pathways was suppressed by CSSPW treatment, as well as p65 nuclear translocation and ROS production. In contrast, the protein expression of the Nrf2/HO-1 pathway was markedly upregulated. Conclusions CSSPW exerts its anti-inflammatory effect via downregulating the production of pro-inflammatory mediators, inhibiting the activation of NF-κB and MAPK pathways, as well as activating Nrf2/HO-1 pathway in LPS-induced RAW264.7 cells.
Collapse
|
16
|
Huang M, Su J, Lou Z, Xie F, Pan W, Yang Z, Gu L, Xie F, Xu Z, Zhang L, Liu F, Lai H, Zhang L, Lin N. Application of a DSS colitis model in toxicologically assessing norisoboldine. Toxicol Mech Methods 2019; 30:107-114. [PMID: 31532267 DOI: 10.1080/15376516.2019.1669242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In standard nonclinical drug safety evaluation studies, limitations exist in predicting the clinical risk of a drug based only on data from healthy animals. To obtain more comprehensive toxicological information on norisoboldine (NOR), we conducted an exploratory study using C57BL/6 mice in addition to healthy mice as models of dextran sodium sulfate (DSS) colitis to evaluate the safety of NOR. The healthy mice and DSS colitis mice were exposed to 30 or 90 mg NOR/kg body weight or water for 15 days. Compared with the model control group, 90 mg/kg of NOR aggravated the symptoms and colonic lesions of the DSS colitis mice and even caused death in two animals. No significant adverse effects were observed in the healthy mice. These different toxic reactions to NOR in the healthy and DSS colitis mice indicate that NOR toxicity varies by status among animals and suggests that the DSS colitis mouse model may be more susceptible, accurate and comprehensive in evaluating the safety of NOR. In conclusion, 90 mg/kg of NOR may be safe for healthy mice but not for DSS colitis mice. The DSS colitis mouse model, with many features similar to those of human colitis patients, may be a novel choice to counteract the deficiencies of using healthy mice to evaluate the safety of anti-inflammatory bowel disease (IBD) drugs, and further research is required.
Collapse
Affiliation(s)
- Mincong Huang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Jie Su
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaohuan Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Xie
- State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Wei Pan
- State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Zhengbiao Yang
- State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Liqiang Gu
- State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Fang Xie
- State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Zhiwei Xu
- State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Lili Zhang
- State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Fang Liu
- State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Huimin Lai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Lijiang Zhang
- State Key Laboratory of Safety Evaluation for New Drugs, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Nengming Lin
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Shao BZ, Wang SL, Pan P, Yao J, Wu K, Li ZS, Bai Y, Linghu EQ. Targeting NLRP3 Inflammasome in Inflammatory Bowel Disease: Putting out the Fire of Inflammation. Inflammation 2019; 42:1147-1159. [PMID: 30937839 DOI: 10.1007/s10753-019-01008-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the colon and small intestine, comprised of ulcerative colitis and Crohn's disease. Among the complicated pathogenic factors of IBD, the overaction of inflammatory and immune reaction serves as an important factor. Inflammasome is a form of innate immunity as well as inflammation. Among all kinds of inflammasomes, the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is the most studied one, and has been revealed to be involved in the pathogenesis and progression of IBD. Here, in this review, the association between the NLRP3 inflammasome and IBD will be discussed. Furthermore, several NLRP3 inflammasome inhibitors which have been demonstrated to be effective in the alleviation of IBD will be described in this review.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Gastroenterology, General Hospital of the Chinese People's Liberation Army, Beijing, China.
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Peng Pan
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jun Yao
- Department of Gastroenterology, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Kai Wu
- Department of Gastroenterology, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People's Liberation Army, Beijing, China.
| |
Collapse
|
18
|
Peng J, Zheng TT, Li X, Liang Y, Wang LJ, Huang YC, Xiao HT. Plant-Derived Alkaloids: The Promising Disease-Modifying Agents for Inflammatory Bowel Disease. Front Pharmacol 2019; 10:351. [PMID: 31031622 PMCID: PMC6473079 DOI: 10.3389/fphar.2019.00351] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of intestinal disorders with self-destructive and chronic inflammation in the digestive tract, requiring long-term medications. However, as many side effects and drug resistance are frequently encountered, safer and more effective agents for IBD treatment are urgently needed. Over the past few decades, a variety of natural alkaloids made of plants or medicinal herbs have attracted considerable interest because of the excellent antioxidant and anti-inflammatory properties; additionally, these alkaloids have been reported to reduce the colonic inflammation and damage in a range of colitic models. In this review paper, we summarize the recent findings regarding the anti-colitis activity of plant-derived alkaloids and emphasize their therapeutic potential for the treatment of IBD; obvious improvement of the colonic oxidative and pro-inflammatory status, significant preservation of the epithelial barrier function and positive modulation of the gut microbiota are the underlying mechanisms for the plant-derived alkaloids to treat IBD. Further clinical trials and preclinical studies to unravel the molecular mechanism are essential to promote the clinical translation of plant-derived alkaloids for IBD.
Collapse
Affiliation(s)
- Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
- The Key Laboratory of Pharmacology and Druggability for Natural Medicines, Department of Education, Guizhou Medical University, Guiyang, China
| | - Ting-Ting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Ultrasound Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yue Liang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Li-Jun Wang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hai-Tao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
- The Key Laboratory of Pharmacology and Druggability for Natural Medicines, Department of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Neavin DR, Liu D, Ray B, Weinshilboum RM. The Role of the Aryl Hydrocarbon Receptor (AHR) in Immune and Inflammatory Diseases. Int J Mol Sci 2018; 19:ijms19123851. [PMID: 30513921 PMCID: PMC6321643 DOI: 10.3390/ijms19123851] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a nuclear receptor that modulates the response to environmental stimuli. It was recognized historically for its role in toxicology but, in recent decades, it has been increasingly recognized as an important modulator of disease—especially for its role in modulating immune and inflammatory responses. AHR has been implicated in many diseases that are driven by immune/inflammatory processes, including major depressive disorder, multiple sclerosis, rheumatoid arthritis, asthma, and allergic responses, among others. The mechanisms by which AHR has been suggested to impact immune/inflammatory diseases include targeted gene expression and altered immune differentiation. It has been suggested that single nucleotide polymorphisms (SNPs) that are near AHR-regulated genes may contribute to AHR-dependent disease mechanisms/pathways. Further, we have found that SNPs that are outside of nuclear receptor binding sites (i.e., outside of AHR response elements (AHREs)) may contribute to AHR-dependent gene regulation in a SNP- and ligand-dependent manner. This review will discuss the evidence and mechanisms of AHR contributions to immune/inflammatory diseases and will consider the possibility that SNPs that are outside of AHR binding sites might contribute to AHR ligand-dependent inter-individual variation in disease pathophysiology and response to pharmacotherapeutics.
Collapse
Affiliation(s)
- Drew R Neavin
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Balmiki Ray
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|