1
|
Yang Y, Yang J, Fu W, Zhou P, He Y, Fang M, Wan H, Zhou H. Pharmacokinetic Comparison of Nine Bioactive Compounds of Guanxinshutong Capsule in Normal and Acute Myocardial Infarction Rats. Eur J Drug Metab Pharmacokinet 2022; 47:653-665. [PMID: 35751765 DOI: 10.1007/s13318-022-00777-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Guanxinshutong capsules (GXST) are usually used to treat acute myocardial infarction (AMI), and the clinical effect of GXST is significant. However, there have been only a few studies on the pharmacokinetics of GXST against AMI injury. The objective of this study was to investigate the pharmacokinetics of nine bioactive compounds of GXST in normal and AMI rats. METHODS In this work, a rat model of AMI was established by ligating the left anterior descending coronary artery. The pharmacokinetic parameters of nine bioactive compounds (gallic acid, danshensu, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B and salvianolic acid A, dihydrotanshinone I, cryptotanshinone, and tanshinone IIA) in the plasma of AMI and normal rats were compared under the same dose of GXST by a LC-MS/MS method. Then, we selected P-glycoprotein (P-gp) and some representative cytochrome P450 enzymes (CYPs) for molecular docking to further analyze the interaction between these compounds. RESULTS The pharmacokinetic studies showed that the area under the concentration-time curve (AUC) and maximum concentration (Cmax) of phenolic acids were relatively large, while the half-life (T½) of tanshinones was longer. Among the nine components, salvianolic acid B in AMI rats had the maximum area under the concentration-time curve (AUC0-∞ = 1961.8 ng·h/mL), which showed a significant difference compared with normal rats (P < 0.05). Tanshinone IIA in AMI rats had the longest half-life (T½ = 10.1 h), and it was markedly longer than that in normal rats (P < 0.01). In addition, compared with the normal group, the AUC, Cmax, T½ , and time to reach Cmax (Tmax) of gallic acid increased significantly in AMI rats (P < 0.05 or P < 0.01). For the molecular docking results, it was found that gallic acid may interact with CYP1A2, CYP2D6, and CYP2C9, while danshensu may interact with CYP2C9. Tanshinones may interact with CYP1A2, CYP2D6, CYP2C9, and P-gp. CONCLUSIONS The results suggest that the pathological injury caused by AMI has a significant impact on the pharmacokinetic characteristics of some active compounds in GXST, which are conducive to providing a reference and promoting rational clinical drug use.
Collapse
Affiliation(s)
- Yuting Yang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Wei Fu
- Buchang Pharmaceutical Co., Ltd., Xi'an, 710075, People's Republic of China
| | - Peng Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yu He
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Mingsun Fang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Haitong Wan
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Zhang Z, Li S, Yu T, Jia Z. Therapeutic Effects of Traditional Chinese Medicine on Cardiovascular Diseases: the Central Role of Calcium Signaling. Front Pharmacol 2021; 12:682273. [PMID: 34305595 PMCID: PMC8299363 DOI: 10.3389/fphar.2021.682273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Calcium, as a second messenger, plays an important role in the pathogenesis of cardiovascular diseases (CVDs). The malfunction of calcium signaling in endothelial cells and vascular smooth muscle cells promotes hypertension. In cardiomyocytes, calcium overload induces apoptosis, leading to myocardial infarction and arrhythmias. Moreover, the calcium–calcineurin–nuclear factor of activated T cells (NFAT) pathway is essential for expressing the cardiac pro-hypertrophic gene. Heart failure is also characterized by reduced calcium transient amplitude and enhanced sarcoplasmic reticulum (SR) calcium leakage. Traditional Chinese medicine (TCM) has been used to treat CVDs for thousands of years in China. Because of its multicomponent and multitarget characteristics, TCM's unique advantages in CVD treatment are closely related to the modulation of multiple calcium handling proteins and calcium signaling pathways in different types of cells involved in distinct CVDs. Thus, we systematically review the diverse mechanisms of TCM in regulating calcium pathways to treat various types of CVDs, ranging from hypertrophic cardiomyopathy to diabetic heart disease.
Collapse
Affiliation(s)
- Yuxin Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoqi Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Zhang J, Zhao J, Ma Y, Wang W, Huang S, Guo C, Wang K, Zhang X, Zhang W, Wen A, Shi M, Ding Y. Investigation of the Multi-Target Mechanism of Guanxin-Shutong Capsule in Cerebrovascular Diseases: A Systems Pharmacology and Experimental Assessment. Front Pharmacol 2021; 12:650770. [PMID: 34054530 PMCID: PMC8155632 DOI: 10.3389/fphar.2021.650770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Guanxin-Shutong capsule (GXSTC), a combination of Mongolian medicines and traditional herbs, has been clinically proven to be effective in treating cerebrovascular diseases (CBVDs). However, the underlying pharmacological mechanisms of GXSTC in CBVDs remain largely unknown. In this study, a combination of systems pharmacology and experimental assessment approach was used to investigate the bioactive components, core targets, and possible mechanisms of GXSTC in the treatment of CBVDs. A total of 15 main components within GXSTC were identified using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD) and a literature research. Fifty-five common genes were obtained by matching 252 potential genes of GXSTC with 462 CBVD-related genes. Seven core components in GXSTC and 12 core genes of GXSTC on CBVDs were further determined using the protein-protein interaction (PPI) and component-target-pathway (C-T-P) network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis results predicted that the molecular mechanisms of GXSTC on CBVDs were mainly associated with the regulation of the vascular endothelial function, inflammatory response, and neuronal apoptosis. Molecular docking results suggested that almost all of core component-targets have an excellent binding activity (affinity < −5 kcal/mol). More importantly, in middle cerebral artery occlusion (MCAO) -injured rats, GXSTC significantly improved the neurological function, reduced the infarct volume, and decreased the percentage of impaired neurons in a dose-dependent manner. Western blotting results indicated that GXSTC markedly upregulated the expression of vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS), while downregulating the expression of cyclooxygenase-2 (COX-2) and transcription factor AP-1 (c-Jun) in MCAO-injured rats. These findings confirmed our prediction that GXSTC exerts a multi-target synergetic mechanism in CBVDs by maintaining vascular endothelial function, inhibiting neuronal apoptosis and inflammatory processes. The results of this study may provide a theoretical basis for GXSTC research and the clinical application of GXSTC in CBVDs.
Collapse
Affiliation(s)
- Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaxin Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaojie Huang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaomei Zhang
- Basic Medical School, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Qian X, Chen Z, Chen SS, Liu LM, Zhang AQ. Integrated Analyses Identify Immune-Related Signature Associated with Qingyihuaji Formula for Treatment of Pancreatic Ductal Adenocarcinoma Using Network Pharmacology and Weighted Gene Co-Expression Network. J Immunol Res 2020; 2020:7503605. [PMID: 32537471 PMCID: PMC7256764 DOI: 10.1155/2020/7503605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
The study aimed to clarify the potential immune-related targets and mechanisms of Qingyihuaji Formula (QYHJ) against pancreatic cancer (PC) through network pharmacology and weighted gene co-expression network analysis (WGCNA). Active ingredients of herbs in QYHJ were identified by the TCMSP database. Then, the putative targets of active ingredients were predicted with SwissTargetPrediction and the STITCH databases. The expression profiles of GSE32676 were downloaded from the GEO database. WGCNA was used to identify the co-expression modules. Besides, the putative targets, immune-related targets, and the critical module genes were mapped with the specific disease to select the overlapped genes (OGEs). Functional enrichment analysis of putative targets and OGEs was conducted. The overall survival (OS) analysis of OGEs was investigated using the Kaplan-Meier plotter. The relative expression and methylation levels of OGEs were detected in UALCAN, human protein atlas (HPA), Oncomine, DiseaseMeth version 2.0 and, MEXPRESS database, respectively. Gene set enrichment analysis (GSEA) was conducted to elucidate the key pathways of highly-expressed OGEs further. OS analyses found that 12 up-regulated OGEs, including CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 that could be utilized as potential diagnostic indicators for PC. Further, methylation analyses suggested that the abnormal up-regulation of these OGEs probably resulted from hypomethylation, and GSEA revealed the genes markedly related to cell cycle and proliferation of PC. This study identified CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 might be used as reliable immune-related biomarkers for prognosis of PC, which may be essential immunotherapies targets of QYHJ.
Collapse
Affiliation(s)
- Xiang Qian
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhuo Chen
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Sha Sha Chen
- Department of Traditional Chinese Medicine, Taizhou Cancer Hospital, Zhejiang, China
| | - Lu Ming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, China
| | - Ai Qin Zhang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
5
|
Wang Y, Li Z, Liu B, Wu R, Gong H, Su Z, Zhang S. Isoborneol Attenuates Low-Density Lipoprotein Accumulation and Foam Cell Formation in Macrophages. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:167-173. [PMID: 32021101 PMCID: PMC6970257 DOI: 10.2147/dddt.s233013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022]
Abstract
Purpose Isoborneol has been used in the treatment of cardiovascular disease for several years in China. However, the mechanism is still unclear. The aim of this study was to identify the novel mechanism of isoborneol for its application in atherosclerotic disease. Materials and Methods The whole-genome gene expression profiles of MCF-7 cells treated with/or without isoborneol were detected by mRNA microarray analysis. The degree of similarity between the gene expression profiles was compared with the Connectivity Map (CMAP) database. An MTT assay was used to assess the toxicity of isoborneol on RAW 264.7 cells. Oil red O staining and a Dil-ox-LDL uptake assay in RAW 264.7 cells were also used to detect the accumulation of lipids in the macrophages and the uptake of oxidized low-density lipoprotein (ox-LDL). Results Isoborneol was proved to have mRNA expression profiles similar to that of ikarugamycin which can inhibit the uptake of ox-LDL. This process has proved to be an important cause of foam cell formation and early atherosclerotic lesions. It is speculated, therefore, that isoborneol may show similar activity to that shown by ikarugamycin. Subsequently, it was shown that RAW 264.7 cells reduced the absorption of ox-LDL and the accumulation of intracellular lipids after treatment with different concentrations of isoborneol. Conclusion The results indicate that isoborneol inhibits macrophage consumption of ox-LDL, thereby preventing the accumulation of lipids in the macrophages. These results provide evidence for the application of isoborneol in atherosclerotic disease.
Collapse
Affiliation(s)
- Yunfei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, People's Republic of China.,Medical College of Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Zhengrong Li
- Medical College of Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Boxue Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, People's Republic of China.,Medical College of Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Rumeng Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, People's Republic of China.,Medical College of Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Haifeng Gong
- Medical College of Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Zhanhai Su
- Medical College of Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, People's Republic of China.,Medical College of Qinghai University, Xining, Qinghai 810016, People's Republic of China
| |
Collapse
|
6
|
Li Y, Zhang L, Lv S, Wang X, Zhang J, Tian X, Zhang Y, Chen B, Liu D, Yang J, Dong P, Xu Y, Song Y, Shi J, Li L, Wang X, Han Y. Efficacy and safety of oral Guanxinshutong capsules in patients with stable angina pectoris in China: a prospective, multicenter, double-blind, placebo-controlled, randomized clinical trial. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:363. [PMID: 31829173 PMCID: PMC6907120 DOI: 10.1186/s12906-019-2778-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/28/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND To assess the efficacy and safety of oral Guanxinshutong (GXST) capsules in Chinese patients with stable angina pectoris (SAP) in a prospective, multicenter, double-Blind, placebo-controlled, randomized clinical trial (clinicaltrials.gov Identifier: NCT02280850). METHODS Eligible patients were randomized 1:1 to the GXST or placebo group. Current standard antianginal treatment except for nitrate drugs was continued in both groups, who received an additional 4-week treatment of GXST capsule or placebo. Primary endpoint was the change from baseline in angina attack frequency after the 4-week treatment. Secondary endpoints included the reduction of nitroglycerin dose, score of Seatntle Agina Questionnaire, exercise tolerance test defined as time to onset of chest pain and ST-segment depression at least 1 mm greater than the resting one. RESULTS A total of 300 SAP patients from 12 centers in China were enrolled between January 2013 and October 2015, and they were randomly divided into the GXST group and the placebo group (150 patients in each group). Of whom, 287 patients completed the study (143 patients in the GXST group, 144 patients in the placebo group). The baseline characteristics of the two groups were comparable. After 4-week treatment with GXST capsules, the number of angina attacks and the consumption of short-acting nitrates were significantly reduced. In addition, the quality of life of patients were also substantially improved in the GXST group. No significant differences in the time of onset of angina and 1-mm ST segment depression were noted between the two groups. 7 patients (4.1%) in the GXST group and 3 patients (2.1%) in the placebo group reported at least one adverse event, respectively. CONCLUSIONS GXST capsules are beneficial for the treatment of SAP patients.
Collapse
Affiliation(s)
- Yang Li
- Department of Cardiology, General Hospital of Northern Theater Command, 83 Wenhua Rd, Shenyang, 110016, Liaoning Province, China
| | - Lei Zhang
- Department of Cardiology, General Hospital of Northern Theater Command, 83 Wenhua Rd, Shenyang, 110016, Liaoning Province, China
| | - Shuzheng Lv
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Rd, Beijing, 100029, China
| | - Xiaozeng Wang
- Department of Cardiology, General Hospital of Northern Theater Command, 83 Wenhua Rd, Shenyang, 110016, Liaoning Province, China
| | - Jian Zhang
- Department of Cardiology, General Hospital of Northern Theater Command, 83 Wenhua Rd, Shenyang, 110016, Liaoning Province, China
| | - Xiaoxiang Tian
- Department of Cardiology, General Hospital of Northern Theater Command, 83 Wenhua Rd, Shenyang, 110016, Liaoning Province, China
| | - Yan Zhang
- Affiliated Hospital of Liaoning Traditional Chinese Medicine University, 33 Beiling St, Shenyang, 110032, Liaoning Province, China
| | - Bojun Chen
- Guangdong Traditional Chinese Medicine Hospital, 111 Dade Rd, Guangzhou, 510120, Guangdong Province, China
| | - Dayue Liu
- Xuzhou Center Hospital, 199 Jiefang Rd, Xuzhou, 221009, Jiangsu Province, China
| | - Jie Yang
- Huanggang Center Hospital, 16 Kaopeng St, Huanggang, 438000, Hubei Province, China
| | - Peikang Dong
- Affiliated Hospital of Weifang Medical University, 2428 Yuhe Rd, Weifang, 261031, Shandong Province, China
| | - Yunzhong Xu
- Second Affiliated Hospital of Shandong Traditional Chinese Medicine University, 1 Jingba Rd, Jinan, 250001, Shandong Province, China
| | - Yingmin Song
- Luohe Hospital of Chinese Medicine, 649 Jiaotong Rd, Luohe, 462000, Henan Province, China
| | - Junling Shi
- Tangshan Hospital of Chinese Medicine, 6 Kangzhuang Rd, Tangshan, Hebei Province, China
| | - Lian Li
- Shijiazhuang First Hospital, 36 Fanxi Rd, Shijiazhuang, 050011, Heibei Province, China
| | - Xuechang Wang
- Yunnan Third Hospital, 292 Beijing Rd, Kunming, 650011, Yunnan Province, China
| | - Yaling Han
- Department of Cardiology, General Hospital of Northern Theater Command, 83 Wenhua Rd, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
7
|
Network Pharmacology-Based Prediction of the Active Compounds, Potential Targets, and Signaling Pathways Involved in Danshiliuhao Granule for Treatment of Liver Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2630357. [PMID: 31354851 PMCID: PMC6636523 DOI: 10.1155/2019/2630357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
This study aims to predict the active ingredients, potential targets, signaling pathways and investigate the “ingredient-target-pathway” mechanisms involved in the pharmacological action of Danshiliuhao Granule (DSLHG) on liver fibrosis. Pharmacodynamics studies on rats with liver fibrosis showed that DSLHG generated an obvious anti-liver fibrosis action. On this basis, we explored the possible mechanisms underlying its antifibrosis effect using network pharmacology approach. Information about compounds of herbs in DSLHG was collected from TCMSP public database and literature. Furthermore, the oral bioavailability (OB) and drug-likeness (DL) were screened according to ADME features. Compounds with OB≥30% and DL≥0.18 were selected as active ingredients. Then, the potential targets of the active compounds were predicted by pharmacophore mapping approach and mapped with the target genes of the specific disease. The compound-target network and Protein-Protein Interaction (PPI) network were built by Cytoscape software. The core targets were selected by degree values. Furthermore, GO biological process analysis and KEGG pathway enrichment analysis were carried out to investigate the possible mechanisms involved in the anti-hepatic fibrosis effect of DSLHG. The predicted results showed that there were 108 main active components in the DSLHG formula. Moreover, there were 192 potential targets regulated by DSLHG, of which 86 were related to liver fibrosis, including AKT1, EGFR, and IGF1R. Mechanistically, the anti-liver fibrosis effect of DSLHG was exerted by interfering with 47 signaling pathways, such as PI3K-Akt, FoxO signaling pathway, and Ras signaling pathway. Network analysis showed that DSLHG could generate the antifibrosis action by affecting multiple targets and multiple pathways, which reflects the multicomponent, multitarget, and multichannel characteristics of traditional Chinese medicine and provides novel basis to clarify the mechanisms of anti-liver fibrosis of DSLHG.
Collapse
|