1
|
Pan S, Xu A, Chen B, Lu X, Zou J, Hua Y. Sodium tanshinone IIA sulfonate alleviates fetal growth restriction by mediating aquaporin-3 expression in placental trophoblast cells. FASEB J 2025; 39:e70314. [PMID: 39825721 DOI: 10.1096/fj.202402346rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence. The case-control study compared AQP3 expression in placental trophoblast cells of pregnant women with FGR and those with normal pregnancies. Then mouse FGR models were induced via cadmium exposure, and placental trophoblast cells (JEG-3) were similarly treated. The study assessed the effects of Sodium tanshinone IIA sulfonate (STS) and the role of the PI3K/Akt pathway in improving AQP3 expression and trophoblast cell function. Placental trophoblast cells in FGR cases exhibited significantly reduced AQP3 expression. AQP3-knockdown cells displayed dysfunction. Cadmium exposure in mice and JEG-3 cells led to decreased AQP3 expression and trophoblast cell dysfunction, both of which were ameliorated by STS. Fetal mouse weight increased with STS treatment. STS upregulated AQP3 expression and improved trophoblast cell function in AQP3-knockdown cells. Inhibiting the PI3K/Akt pathway diminished STS's beneficial effects. ThereforeSTS may enhance AQP3 expression in placental trophoblast cells affected by FGR through the activation of the PI3K/Akt pathway, ultimately bolstering placental trophoblast cell function and alleviating FGR. As above, STS appears to be a potential therapeutic agent for alleviating FGR.
Collapse
Affiliation(s)
- Shuangjia Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anjian Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baoyi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyue Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieni Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Dabbaghi MM, Soleimani Roudi H, Safaei R, Baradaran Rahimi V, Fadaei MR, Askari VR. Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review. Cardiovasc Toxicol 2024; 24:1467-1509. [PMID: 39306819 DOI: 10.1007/s12012-024-09921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 11/15/2024]
Abstract
Tanshinone, a natural compound found in the roots of Salvia miltiorrhiza, has been shown to possess various pharmacological properties, including anti-inflammatory, antioxidant, and cardiovascular protective effects. This article aims to review the literature on the cardiovascular protective effects of tanshinone and its underlying mechanisms. Tanshinone has been demonstrated to improve cardiac function, reduce oxidative stress, and inhibit inflammation in various animal models of cardiovascular diseases. Additionally, it has been shown to regulate multiple signaling pathways involved in the pathogenesis of cardiovascular diseases, such as the PI3K/AKT, MAPK, and NF-κB pathways. Clinical studies have also suggested that tanshinone may have therapeutic potential for treating cardiovascular diseases. In conclusion, tanshinone has emerged as a promising natural compound with significant cardiovascular protective effects, and further research is warranted to explore its potential clinical applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Dabbaghi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Hesan Soleimani Roudi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Rozhan Safaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
| |
Collapse
|
3
|
Ma L, Zhang T, Wang R, Li C, Yu J, Wang G, Cai H, Li T, Zhang Y, Li Y, Xie P. Sodium Tanshinone IIA Sulfonate Protects Primary Cardiomyocytes Against Radiation-Induced Myocardial Injury via the p38 Pathway. Int Heart J 2024; 65:730-737. [PMID: 39085112 DOI: 10.1536/ihj.23-533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Sodium tanshinone IIA sulfonate (STS), which is extracted from a Chinese medicinal herb, possesses many pharmacologic functions, such as coronary dilation, anti-inflammatory properties, and antiapoptotic and antioxidant effects. It remains unknown whether STS can protect cardiomyocytes injured after radiation therapy. An in vitro Sprague-Dawley (SD) rat neonatal cardiomyocyte system was established. Primary cardiomyocytes (PCMs) from neonatal SD rats were isolated under sterile conditions. PCM cells were divided into a control group (0 Gy/hour) and 5 experimental radiation therapy groups (0.25 Gy/hour, 0.5 Gy/hour, 1 Gy/hour, 2 Gy/hour, and 4 Gy/hour). Cell viability, the content of malondialdehyde (MDA), the lactate dehydrogenase (LDH) leakage rate, and superoxide dismutase (SOD) and glutathione (GSH) activities were recorded separately in each group after 7 days of culture. Western blot was used to detect the levels of p38, caspase-3 protein, and X protein (BAX) associated with B-cell lymphoma 2 (Bcl-2) in PCMs. X-rays inhibited cell growth, decreased cell viability, and induced an oxidative stress response in PCMs. STS and SB203580 (the inhibitor of P38 mitogen-activated protein kinase pathway) alleviated X-ray-induced damage to PCMs. An enzyme-linked immunosorbent assay showed that X-rays increased the cTnT level. STS and SB203580 ameliorated the X-ray-induced increase in cTnT leakage. X-rays enhanced the expression of p38/p-p38 and caspase-3 while reducing the expression of Bcl-2/BAX in PCMs, as demonstrated by western blotting. STS and SB203580 mitigated the changes in protein expression triggered by X-ray radiation. In conclusions, STS was shown to exert significant cardioprotective, anti-inflammatory, and antioxidant effects in PCMs by inhibiting the p38 mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Li Ma
- Department of gerontology, Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital)
| | - Tiancheng Zhang
- The First Department of Cardiology, Gansu Provincial People's Hospital
| | - Ruxin Wang
- The First Affiliated Hospital of Jinan University
| | - Chongwei Li
- The First Department of Cardiology, Gansu Provincial People's Hospital
| | - Jie Yu
- Department of Anesthesiology, Second Clinical Hospital of Lanzhou University
| | - Gang Wang
- The First School of Clinical Medicine, Lanzhou University
| | - Hongyi Cai
- The First Department of Radiotherapy, Gansu Provincial People's Hospital
| | - Tiangang Li
- Department of gerontology, Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital)
| | - Yifan Zhang
- The First Department of Cardiology, Gansu Provincial People's Hospital
| | - Yi Li
- School of Stomatology, Lanzhou University
| | - Ping Xie
- The First Department of Cardiology, Gansu Provincial People's Hospital
| |
Collapse
|
4
|
Xuan Y, Yu C, Ni K, Congcong L, Lixin Q, Qingxian L. Protective effects of tanshinone IIA on Porphyromonas gingivalis-induced atherosclerosis via the downregulation of the NOX2/NOX4-ROS mediation of NF-κB signaling pathway. Microbes Infect 2023; 25:105177. [PMID: 37392987 DOI: 10.1016/j.micinf.2023.105177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/07/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Tanshinone IIA (TSA), an active component isolated from Danshen, possess high medicinal values against atherosclerosis by reducing vascular oxidative stress, inhibiting platelet aggregation, and protecting the endothelium from damage. The periodontal pathogen Porphyromonas gingivalis (P. gingivalis) has been proven to accelerate the development of atherosclerosis. We aim to determine the effects of TSA on P. gingivalis-induced atherosclerosis in ApoE-knockout (ApoE-/-) mice. After feeding with a high-lipid diet and infected with P. gingivalis three times per week for four weeks, TSA-treated (60 mg/kg/d) mice greatly inhibited atherosclerotic lesions both morphologically and biochemically and exhibited significantly reduction ROS, 8-OHdG, and ox-LDL levels in serum compared with P. gingivalis-infected mice. Additionally, TSA-treated mice were observed a marked reduction of ROS, 8-OHdG and ox-LDL in the serum, mRNA levels of COX-2, LOX-1, NOX2 and NOX4 in the aorta, as well as the levels of NOX2, NOX4, and NF-κB. These results suggest that TSA attenuates oxidative stress by decreasing NOX2 and NOX4 and downregulating NF-κB signaling pathway, which might be contributed to the amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Yan Xuan
- Department of the Fourth Division, Peking University, School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Cai Yu
- Department of Periodontology, Peking University, School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Kang Ni
- Department of Periodontology, Peking University, School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Lou Congcong
- Department of Periodontology, Peking University, School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Qiu Lixin
- Department of the Fourth Division, Peking University, School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China.
| | - Luan Qingxian
- Department of Periodontology, Peking University, School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
5
|
Lv XF, Wen RQ, Liu K, Zhao XK, Pan CL, Gao X, Wu X, Zhi XD, Ren CZ, Chen QL, Lu WJ, Bai TY, Li YD. Role and molecular mechanism of traditional Chinese medicine in preventing cardiotoxicity associated with chemoradiotherapy. Front Cardiovasc Med 2022; 9:1047700. [PMID: 36419486 PMCID: PMC9678083 DOI: 10.3389/fcvm.2022.1047700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 08/12/2023] Open
Abstract
Cardiotoxicity is a serious complication of cancer therapy. It is the second leading cause of morbidity and mortality in cancer survivors and is associated with a variety of factors, including oxidative stress, inflammation, apoptosis, autophagy, endoplasmic reticulum stress, and abnormal myocardial energy metabolism. A number of studies have shown that traditional Chinese medicine (TCM) can mitigate chemoradiotherapy-associated cardiotoxicity via these pathways. Therefore, this study reviews the effects and molecular mechanisms of TCM on chemoradiotherapy-related cardiotoxicity. In this study, we searched PubMed for basic studies on the anti-cardiotoxicity of TCM in the past 5 years and summarized their results. Angelica Sinensis, Astragalus membranaceus Bunge, Danshinone IIA sulfonate sodium (STS), Astragaloside (AS), Resveratrol, Ginsenoside, Quercetin, Danggui Buxue Decoction (DBD), Shengxian decoction (SXT), Compound Danshen Dripping Pill (CDDP), Qishen Huanwu Capsule (QSHWC), Angelica Sinensis and Astragalus membranaceus Bunge Ultrafiltration Extract (AS-AM),Shenmai injection (SMI), Xinmailong (XML), and nearly 60 other herbs, herbal monomers, herbal soups and herbal compound preparations were found to be effective as complementary or alternative treatments. These preparations reduced chemoradiotherapy-induced cardiotoxicity through various pathways such as anti-oxidative stress, anti-inflammation, alleviating endoplasmic reticulum stress, regulation of apoptosis and autophagy, and improvement of myocardial energy metabolism. However, few clinical trials have been conducted on these therapies, and these trials can provide stronger evidence-based support for TCM.
Collapse
Affiliation(s)
- Xin-Fang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Ruo-Qing Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin-Ke Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chen-Liang Pan
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao-Dong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chun-Zhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Qi-Lin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Wei-Jie Lu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ting-Yan Bai
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ying-Dong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
6
|
Tanshinone IIA Accomplished Protection against Radiation-Induced Cardiomyocyte Injury by Regulating the p38/p53 Pathway. Mediators Inflamm 2022; 2022:1478181. [PMID: 36046762 PMCID: PMC9424041 DOI: 10.1155/2022/1478181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Radiotherapy is one of the major strategies for treating tumors, and it inevitably causes damage to relevant tissues and organs during treatment. Radiation-induced heart disease (RIHD) refers to radiation-induced cardiovascular adverse effects caused by thoracic radiotherapy. Currently, there is no uniform standard in the treatment of RIHD. Methods In our group study, by administering a dose of 4 Gy radiation, we established a radiation injured cardiomyocyte model and explored the regulatory relationship between tanshinone IIA and p38 MAPK in cardiomyocyte injury. We assessed cell damage and proliferation using clonogenic assay and lactate dehydrogenase (LDH) release assay. The measures of antioxidant activity and oxidative stress were conducted using superoxide dismutase (SOD) and reactive oxygen species (ROS). The apoptosis rate and the relative expression of apoptotic proteins were conducted using flow cytometry and western blot. To assess p38 and p53 expressions and phosphorylation levels, western blot was performed. Results Experimental results suggested that tanshinone IIA restored cell proliferation in radiation-induced cardiomyocyte injury (∗∗P < 0.01), and the level of LDH release decreased (∗P < 0.05). Meanwhile, tanshinone IIA could decrease the ROS generation induced by radiation (∗∗P < 0.01) and upregulate the SOD level (∗∗P < 0.01). Again, tanshinone IIA reduced radiation-induced cardiomyocyte apoptosis (∗∗P < 0.01). Finally, tanshinone IIA downregulated radiation-induced p38/p53 overexpression (∗∗∗P < 0.001). Conclusions The treatment effects of tanshinone IIA against radiation-induced myocardial injury may be through the regulation of the p38/p53 pathway.
Collapse
|