1
|
Abdullah CN, Liu M, Chen Q, Gao S, Zhang C, Liu S, Zhou J. Efficient production of astaxanthin in Yarrowia lipolytica through metabolic and enzyme engineering. Synth Syst Biotechnol 2025; 10:737-750. [PMID: 40248487 PMCID: PMC12002715 DOI: 10.1016/j.synbio.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/19/2025] Open
Abstract
Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica.
Collapse
Affiliation(s)
- Chalak Najat Abdullah
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Department of Biology, College of Science, University of Sulaimani, 46001, Sulaimaniyah, Kurdistan region, Iraq
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Mengsu Liu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Qihang Chen
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Gao
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Changtai Zhang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shike Liu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Zhang J, Liu M, Han T, Luo L, Zhang Y, Yuan G, Fang X, Han F, Chen X, Wang Y. Advance toward function, production, and delivery of natural astaxanthin: A promising candidate for food ingredients with future perspectives. Food Chem 2025; 463:141428. [PMID: 39353306 DOI: 10.1016/j.foodchem.2024.141428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Astaxanthin (AST) exhibits potent antioxidant activity, effectively preventing neurological diseases and cancer. Presently, producing AST from microorganisms like Haematococcus pluvialis and Phaffia rhodozyma is a growing trend. This review summarizes the main research topics on AST in the past five years. AST plays a crucial role in cancer and diabetes prevention, as well as neuroprotection, however, the presence of both free and esterified forms of AST results in differences in their functionality and applications. The primary challenges in industrial production of natural AST lie in breeding high-yield natural producers and developing methods to enhance yield. The use of high-quality food matrix materials and preparation methods is crucial for the delivery system of loaded AST. This study elucidates the bottlenecks and future development directions encountered by natural AST during industrialization, aiming to promote the healthy and rapid growth of the food industry.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Meizhen Liu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tiantian Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Lu Luo
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
| | - Ying Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gaofeng Yuan
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xubo Fang
- Zhejiang International Maritime College, Zhoushan, China
| | - Fangrui Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
3
|
Naik B, Kumar V, Rizwanuddin S, Mishra S, Kumar V, Saris PEJ, Khanduri N, Kumar A, Pandey P, Gupta AK, Khan JM, Rustagi S. Biofortification as a solution for addressing nutrient deficiencies and malnutrition. Heliyon 2024; 10:e30595. [PMID: 38726166 PMCID: PMC11079288 DOI: 10.1016/j.heliyon.2024.e30595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Malnutrition, defined as both undernutrition and overnutrition, is a major global health concern affecting millions of people. One possible way to address nutrient deficiency and combat malnutrition is through biofortification. A comprehensive review of the literature was conducted to explore the current state of biofortification research, including techniques, applications, effectiveness and challenges. Biofortification is a promising strategy for enhancing the nutritional condition of at-risk populations. Biofortified varieties of basic crops, including rice, wheat, maize and beans, with elevated amounts of vital micronutrients, such as iron, zinc, vitamin A and vitamin C, have been successfully developed using conventional and advanced technologies. Additionally, the ability to specifically modify crop genomes to improve their nutritional profiles has been made possible by recent developments in genetic engineering, such as CRISPR-Cas9 technology. The health conditions of people have been shown to improve and nutrient deficiencies were reduced when biofortified crops were grown. Particularly in environments with limited resources, biofortification showed considerable promise as a long-term and economical solution to nutrient shortages and malnutrition. To fully exploit the potential of biofortified crops to enhance public health and global nutrition, issues such as consumer acceptance, regulatory permitting and production and distribution scaling up need to be resolved. Collaboration among governments, researchers, non-governmental organizations and the private sector is essential to overcome these challenges and promote the widespread adoption of biofortification as a key part of global food security and nutrition strategies.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
- School of Agriculture, Graphic Hill University, Clement Town, Dehradun, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100, Helsinki, Finland
| | - Naresh Khanduri
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Akhilesh Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Piyush Pandey
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchur, 788011, Assam, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
4
|
Wang YZ, Jing HY, Li X, Zhang F, Sun XM. Rapid construction of Escherichia coli chassis with genome multi-position integration of isopentenol utilization pathway for efficient and stable terpenoid accumulation. Biotechnol J 2023; 18:e2300283. [PMID: 37478165 DOI: 10.1002/biot.202300283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
The isopentenol utilization pathway (IUP) is potential in terpenoids synthesis. This study aimed to construct IUP-employed Escherichia coli chassis for stably synthesizing terpenoids. As to effectiveness, promotor engineering strategy was employed to regulate IUP expression level, while ribosome-binding site (RBS) library of the key enzyme was constructed for screening the optimal RBS, followed by optimization of concentration of inducer and substrates, the titer of reporting production, lycopene, from 0.087 to 8.67 mg OD600 -1 . As about stability, the IUP expression cassette was integrated into the genome through transposition tool based on CRISPR-associated transposases. Results showed that the strain with 13 copies produced 1.78-fold lycopene titer that of the controlled strain with IUP-harbored plasmid, and it exhibited stable expression after ten successions while the plasmid loss was observed in the controlled strain in the 3rd succession. This strategy provides valuable information for rapid construction of highly effective and stable chassis employing IUP for terpenoids production.
Collapse
Affiliation(s)
- Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Hong-Yan Jing
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Xin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Feng Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Chen J, Zhang R, Zhang G, Liu Z, Jiang H, Mao X. Heterologous Expression of the Plant-Derived Astaxanthin Biosynthesis Pathway in Yarrowia lipolytica for Glycosylated Astaxanthin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2943-2951. [PMID: 36629355 DOI: 10.1021/acs.jafc.2c08153] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Astaxanthin is a high-value red pigment and antioxidant widely used in the pharmaceutical, cosmetic, and food industries. However, the hydrophobicity of astaxanthin causes its low bioavailability. Glycosylation can substantially increase the water solubility of astaxanthin, thus enhancing its bioavailability, photostability, and biological activities. In this study, we report for the first time the heterologous production of glycosylated astaxanthin in Yarrowia lipolytica. By appropriate removal of the chloroplast transit peptide, carotenoid 4-hydroxy-β-ring 4-dehydrogenase (HBFD) and carotenoid β-ring 4-dehydrogenase (CBFD) from Adonis aestivalis were expressed in a β-carotene-producing Y. lipolytica strain, resulting in astaxanthin production with a yield of 0.59 mg/L, 0.05 mg/g DCW. This is the first time to successfully construct a plant-derived astaxanthin synthesis pathway in yeast. Modularized assembly of CBFD and HBFD, replacement of the promoter upstream CBFD, increasing the precursor β-carotene supply, and regulating the expressions of CBFD and HBFD led to a 4.9-fold increase in astaxanthin production (3.46 mg/L). Finally, introduction of crtX from Pantoea ananatis ATCC 19321 into the astaxanthin-producing strain enabled glycosylated astaxanthin production, and the yield reached 1.47 mg/L, which is the highest yield of microbially produced glycosylated astaxanthin reported to date.
Collapse
Affiliation(s)
- Jing Chen
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| | - Ruiling Zhang
- Shandong Analysis and Test, Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Guilin Zhang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| | - Zhen Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| | - Hong Jiang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| |
Collapse
|
6
|
Li M, Zhou P, Chen M, Yu H, Ye L. Spatiotemporal Regulation of Astaxanthin Synthesis in S. cerevisiae. ACS Synth Biol 2022; 11:2636-2649. [PMID: 35914247 DOI: 10.1021/acssynbio.2c00044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a high-valued antioxidant, astaxanthin biosynthesis using microbial cell factories has attracted increasing attention. However, its lipophilic nature conflicts with the limited storage capacity for lipophilic substances of model microorganisms such as Saccharomyces cerevisiae. Expansion of lipid droplets by enhancing lipid synthesis provides more storage room while diverting the metabolic flux from the target pathway. Therefore, proper spatial regulation is required. In this study, a library of genes related to lipid metabolism were screened using the trifunctional CRISPR system, identifying opi3 and hrd1 as new engineering targets to promote astaxanthin synthesis by moderately rather than excessively upregulating lipid synthesis. The astaxanthin yield reached 9.79 mg/g DCW after lipid engineering and was further improved to 10.21 mg/g DCW by balancing the expression of β-carotene hydroxylase and ketolase. Finally, by combining spatial regulation through lipid droplet engineering and temporal regulation via temperature-responsive pathway expression, 446.4 mg/L astaxanthin was produced in fed-batch fermentation.
Collapse
Affiliation(s)
- Min Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Mingkai Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
7
|
Zhu HZ, Jiang S, Wu JJ, Zhou XR, Liu PY, Huang FH, Wan X. Production of High Levels of 3 S,3' S-Astaxanthin in Yarrowia lipolytica via Iterative Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2673-2683. [PMID: 35191700 DOI: 10.1021/acs.jafc.1c08072] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Astaxanthin is a highly value-added keto-carotenoid compound. The astaxanthin 3S,3'S-isomer is more desirable for food additives, cosmetics, and pharmaceuticals due to health concerns about chemically synthesized counterparts with a mixture of three isomers. Biosynthesis of 3S,3'S-astaxanthin suffers from limited content and productivity. We engineered Yarrowia lipolytica to produce high levels of 3S,3'S-astaxanthin. We first assessed various β-carotene ketolases (CrtW) and β-carotene hydroxylases (CrtZ) from two algae and a plant. HpCrtW and HpCrtZ from Haematococcus pluvialis exhibited the strongest activity in converting β-carotene into astaxanthin in Y. lipolytica. We then fine-tuned the HpCrtW and HpCrtZ transcriptional expression by increasing the rounds of gene integration into the genome and applied a modular enzyme assembly of HpCrtW and HpCrtZ simultaneously. Next, we rescued leucine biosynthesis in the engineered Y. lipolytica, leading to a five-fold increase in biomass. The astaxanthin production achieved from these strategies was 3.3 g/L or 41.3 mg/g dry cell weight under fed-batch conditions, which is the highest level reported in microbial chassis to date. This study provides the potential for industrial production of 3S,3'S-astaxanthin, and this strategy empowers us to build a sustainable biorefinery platform for generating other value-added carotenoids in the future.
Collapse
Affiliation(s)
- Hang-Zhi Zhu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shan Jiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun-Jie Wu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | - Peng-Yang Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng-Hong Huang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Xia Wan
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
8
|
Gong Z, Wang H, Tang J, Bi C, Li Q, Zhang X. Coordinated Expression of Astaxanthin Biosynthesis Genes for Improved Astaxanthin Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14917-14927. [PMID: 33289384 DOI: 10.1021/acs.jafc.0c05379] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Astaxanthin has great potential commercial value in the feed, cosmetics, and nutraceutical industries due to its strong antioxidant capacity. In this study, the Escherichia coli strain CAR026 with completely balanced metabolic flow was selected as the starting strain for the production of astaxanthin. The expression of β-carotene ketolase (CrtW) and β-carotene hydroxylase (CrtZ), which catalyze the conversion of β-carotene to astaxanthin, was coordinated, and a bottleneck was eliminated by increasing the copy number of crtY in CAR026. The resulting strain Ast007 produced 21.36 mg/L and 4.6 mg/g DCW of astaxanthin in shake flasks. In addition, the molecular chaperone genes groES-groEL were regulated to further improve the astaxanthin yield. The best strain Gro-46 produced 26 mg/L astaxanthin with a yield of 6.17 mg/g DCW in shake flasks and 1.18 g/L astaxanthin after 60 h of fermentation under fed-batch conditions. To the best of our knowledge, this is the highest astaxanthin obtained using engineered E. coli to date.
Collapse
Affiliation(s)
- Zhongkuo Gong
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
| | - Honglei Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Jinlei Tang
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100071, China
| | - Qingyan Li
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100071, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100071, China
| |
Collapse
|