1
|
Scully EP, Aga E, Tsibris A, Archin N, Starr K, Ma Q, Morse GD, Squires KE, Howell BJ, Wu G, Hosey L, Sieg SF, Ehui L, Giguel F, Coxen K, Dobrowolski C, Gandhi M, Deeks S, Chomont N, Connick E, Godfrey C, Karn J, Kuritzkes DR, Bosch RJ, Gandhi RT. Impact of Tamoxifen on Vorinostat-Induced Human Immunodeficiency Virus Expression in Women on Antiretroviral Therapy: AIDS Clinical Trials Group A5366, The MOXIE Trial. Clin Infect Dis 2022; 75:1389-1396. [PMID: 35176755 PMCID: PMC9555843 DOI: 10.1093/cid/ciac136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biological sex and the estrogen receptor alpha (ESR1) modulate human immunodeficiency virus (HIV) activity. Few women have enrolled in clinical trials of latency reversal agents (LRAs); their effectiveness in women is unknown. We hypothesized that ESR1 antagonism would augment induction of HIV expression by the LRA vorinostat. METHODS AIDS Clinical Trials Group A5366 enrolled 31 virologically suppressed, postmenopausal women on antiretroviral therapy. Participants were randomized 2:1 to receive tamoxifen (arm A, TAMOX/VOR) or observation (arm B, VOR) for 5 weeks followed by 2 doses of vorinostat. Primary end points were safety and the difference between arms in HIV RNA induction after vorinostat. Secondary analyses included histone 4 acetylation, HIV DNA, and plasma viremia by single copy assay (SCA). RESULTS No significant adverse events were attributed to study treatments. Tamoxifen did not enhance vorinostat-induced HIV transcription (between-arm ratio, 0.8; 95% confidence interval [CI], .2-2.4). Vorinostat-induced HIV transcription was higher in participants with increases in H4Ac (fold increase, 2.78; 95% CI, 1.34-5.79) vs those 9 who did not (fold increase, 1.04; 95% CI, .25-4.29). HIV DNA and SCA plasma viremia did not substantially change. CONCLUSIONS Tamoxifen did not augment vorinostat-induced HIV RNA expression in postmenopausal women. The modest latency reversal activity of vorinostat, postmenopausal status, and low level of HIV RNA expression near the limits of quantification limited assessment of the impact of tamoxifen. This study is the first HIV cure trial done exclusively in women and establishes both the feasibility and necessity of investigating novel HIV cure strategies in women living with HIV. CLINICAL TRIALS REGISTRATION NCT03382834.
Collapse
Affiliation(s)
- Eileen P Scully
- Departement of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Evgenia Aga
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Athe Tsibris
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nancie Archin
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kate Starr
- ACTG Clinical Research Site, Ohio State University, Hilliard, Ohio, USA
| | - Qing Ma
- Translational Pharmacology Research Core, University at Buffalo, Buffalo, New York, USA
| | - Gene D Morse
- Translational Pharmacology Research Core, University at Buffalo, Buffalo, New York, USA
| | | | - Bonnie J Howell
- Department of Infectious Disease and Vaccines, Merck and Co, West Point, Pennsylvania, USA
| | - Guoxin Wu
- Department of Infectious Disease and Vaccines, Merck and Co, West Point, Pennsylvania, USA
| | - Lara Hosey
- ACTG Network Coordinating Center, Silver Spring, Maryland, USA
| | - Scott F Sieg
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lynsay Ehui
- Whitman-Walker Health, Washington, D.C., USA
| | - Francoise Giguel
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kendyll Coxen
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Monica Gandhi
- Department of Medicine, University of California, San Francisco, California, USA
| | - Steve Deeks
- Department of Medicine, University of California, San Francisco, California, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Canada
| | | | - Catherine Godfrey
- Office of the Global AIDS Coordinator, Department of State, Washington D.C., USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniel R Kuritzkes
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ronald J Bosch
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rajesh T Gandhi
- Department of Medicine, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Uldrick TS, Adams SV, Fromentin R, Roche M, Fling SP, Gonçalves PH, Lurain K, Ramaswami R, Jackie Wang CC, Gorelick RJ, Welker JL, O’Donoghue L, Choudhary H, Lifson JD, Rasmussen TA, Rhodes A, Tumpach C, Yarchoan R, Maldarelli F, Cheever MA, Sékaly R, Chomont N, Deeks SG, Lewin SR. Pembrolizumab induces HIV latency reversal in people living with HIV and cancer on antiretroviral therapy. Sci Transl Med 2022; 14:eabl3836. [PMID: 35080914 PMCID: PMC9014398 DOI: 10.1126/scitranslmed.abl3836] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In people living with HIV (PLWH) on antiretroviral therapy (ART), virus persists in a latent form where there is minimal transcription or protein expression. Latently infected cells are a major barrier to curing HIV. Increasing HIV transcription and viral production in latently infected cells could facilitate immune recognition and reduce the pool of infected cells that persist on ART. Given that programmed cell death protein 1 (PD-1) expressing CD4+ T cells are preferentially infected with HIV in PLWH on ART, we aimed to determine whether administration of antibodies targeting PD-1 would reverse HIV latency in vivo. We therefore evaluated the impact of intravenous administration of pembrolizumab every 3 weeks on HIV latency in 32 PLWH and cancer on ART. After the first infusion of anti-PD-1, we observed a median 1.32-fold increase in unspliced HIV RNA and 1.61-fold increase in unspliced RNA:DNA ratio in sorted blood CD4+ T cells compared to baseline. We also observed a 1.65-fold increase in plasma HIV RNA. The frequency of CD4+ T cells with inducible virus evaluated using the tat/rev limiting dilution assay was higher after 6 cycles compared to baseline. Phylogenetic analyses of HIV env sequences in a participant who developed low concentrations of HIV viremia after 6 cycles of pembrolizumab did not demonstrate clonal expansion of HIV-infected cells. These data are consistent with anti-PD-1 being able to reverse HIV latency in vivo and support the rationale for combining anti-PD-1 with other interventions to reduce the HIV reservoir.
Collapse
Affiliation(s)
- Thomas S. Uldrick
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- University of Washington, Seattle, WA 98109, USA
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Scott V. Adams
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Remi Fromentin
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal and Centre de Recherche du CHUM, Montréal H2X0A9, Canada
| | - Michael Roche
- RMIT University, Melbourne, VIC 3083, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Steven P. Fling
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jorden L. Welker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Liz O’Donoghue
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Thomas A. Rasmussen
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Ajantha Rhodes
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Frank Maldarelli
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | - Nicolas Chomont
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal and Centre de Recherche du CHUM, Montréal H2X0A9, Canada
| | - Steven G. Deeks
- University of California, San Francisco, San Francisco, CA 94110, USA
| | - Sharon R. Lewin
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
3
|
Stern J, Solomon A, Dantanarayana A, Pascoe R, Reynaldi A, Davenport MP, Milush J, Deeks SG, Hartogensis W, Hecht FM, Cockerham L, Roche M, Lewin SR. Cell-associated HIV RNA has a Circadian Cycle in Males Living with HIV on Antiretroviral Therapy. J Infect Dis 2021; 225:1721-1730. [PMID: 34655216 DOI: 10.1093/infdis/jiab533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Circadian transcription factors that regulate cell-autonomous circadian clocks can also increase HIV transcription in vitro. We aimed to determine if circadian variation in HIV transcription exists in people living with HIV (PLHIV) on antiretroviral therapy (ART). METHODS We performed a prospective observational study of male PLHIV on ART, sampling blood every four hours for 24 hours. Using qPCR, we quantified expression of circadian associated genes, HIV DNA and cell-associated unspliced (CA-US) RNA in peripheral blood CD4+ T-cells. Plasma sex hormones were quantified alongside plasma and salivary cortisol. The primary outcome was to identify temporal variations in CA-US HIV RNA using a linear mixed effect regression framework and maximum likelihood estimation. RESULTS Salivary and plasma cortisol, and circadian genes including Clock, Bmal1, and Per3 varied with a circadian rhythm. CA-US HIV RNA and the ratio of CA-US HIV RNA-to-DNA in CD4+ T-cells also demonstrated circadian variations, with no variation in HIV DNA. Circulating oestradiol was highly predictive of CA-US HIV RNA variation in vivo. CONCLUSION CA-US HIV RNA in PLHIV on ART varies temporally with a circadian rhythm. These findings have implications for the design of clinical trials and biomarkers to assess HIV cure interventions.
Collapse
Affiliation(s)
- Jared Stern
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ajantha Solomon
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ashanti Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Rachel Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Arnold Reynaldi
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Miles P Davenport
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, USA
| | - Wendy Hartogensis
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, USA
| | - Frederick M Hecht
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, USA
| | - Leslie Cockerham
- Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, USA
| | - Michael Roche
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Replicate Aptima Assay for Quantifying Residual Plasma Viremia in Individuals on Antiretroviral Therapy. J Clin Microbiol 2020; 58:JCM.01400-20. [PMID: 32967900 PMCID: PMC7685884 DOI: 10.1128/jcm.01400-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Detection of residual plasma viremia in antiretroviral therapy (ART)-suppressed HIV-infected individuals is critical for characterizing the latent reservoir and evaluating the impact of cure interventions. Ultracentrifugation-based single-copy assays are sensitive but labor intensive. Fully automated replicate testing using a standard clinical viral load assay was evaluated as a high-throughput alternative for the quantification of low-level viremia. Four plasma samples from blood donors with acute HIV-1 infection and one viral culture supernatant were serially diluted into 25-ml samples to nominal viral loads ranging from 39 to <0. Detection of residual plasma viremia in antiretroviral therapy (ART)-suppressed HIV-infected individuals is critical for characterizing the latent reservoir and evaluating the impact of cure interventions. Ultracentrifugation-based single-copy assays are sensitive but labor intensive. Fully automated replicate testing using a standard clinical viral load assay was evaluated as a high-throughput alternative for the quantification of low-level viremia. Four plasma samples from blood donors with acute HIV-1 infection and one viral culture supernatant were serially diluted into 25-ml samples to nominal viral loads ranging from 39 to <0.5 copies (cp)/ml. Each dilution was tested with 45 replicates (reps) using 0.5 ml/rep with the Aptima HIV-1 Quant assay. The nominal and estimated viral loads based on the single-hit Poisson model were compared, and a hybrid Poisson digital model for calibrated viral load estimation was derived. Testing performed using 45 reps on longitudinal plasma samples from 50 ART-suppressed individuals in the Reservoir Assay Validation and Evaluation Network (RAVEN) study cohort (range of 1 to 19 years of continuous ART suppression) showed a median viral load of 0.54 cp/ml (interquartile range [IQR], 0.22 to 1.46 cp/ml) and a 14% (95% confidence interval [CI], 9% to 19%) decline in viral load for each additional year in duration suppressed. Within the RAVEN cohort, the expected false-negative rate for detection at lower rep numbers using 9 and 18 reps was 26% and 14%, respectively. Residual plasma viremia levels positively correlated with cell-associated HIV RNA and DNA. The performance characteristics of the replicate Aptima assay support its use for quantifying residual plasma viremia to study the latent HIV reservoir and cure interventions.
Collapse
|
5
|
Peluso MJ, Bacchetti P, Ritter KD, Beg S, Lai J, Martin JN, Hunt PW, Henrich TJ, Siliciano JD, Siliciano RF, Laird GM, Deeks SG. Differential decay of intact and defective proviral DNA in HIV-1-infected individuals on suppressive antiretroviral therapy. JCI Insight 2020; 5:132997. [PMID: 32045386 PMCID: PMC7101154 DOI: 10.1172/jci.insight.132997] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUNDThe relative stabilities of the intact and defective HIV genomes over time during effective antiretroviral therapy (ART) have not been fully characterized.METHODSWe used the intact proviral DNA assay (IPDA) to estimate the rate of change of intact and defective proviruses in HIV-infected adults on ART. We used linear spline models with a knot at seven years and a random intercept and slope up to the knot. We estimated the influence of covariates on rates of change.RESULTSWe studied 81 individuals for a median of 7.3 (IQR 5.9-9.6) years. Intact genomes declined more rapidly from initial suppression through seven years (15.7% per year decline; 95% CI -22.8%, -8.0%) and more slowly after seven years (3.6% per year; 95% CI -8.1%, +1.1%). The estimated half-life of the reservoir was 4.0 years (95% CI 2.7-8.3) until year seven and 18.7 years (95% CI 8.2-infinite) thereafter. There was substantial variability between individuals in the rate of decline until year seven. Intact provirus declined more rapidly than defective provirus (P < 0.001) and showed a faster decline in individuals with higher CD4+ T cell nadirs.CONCLUSIONThe biology of the replication-competent (intact) reservoir differs from that of the replication-incompetent (non-intact) pool of proviruses. The IPDA will likely be informative when investigating the impact of interventions targeting the reservoir.FUNDINGDelaney AIDS Research Enterprise, UCSF/Gladstone Institute of Virology & Immunology CFAR, CFAR Network of Integrated Systems, amfAR Institute for HIV Cure Research, I4C and Beat-HIV Collaboratories, Howard Hughes Medical Institute, Gilead Sciences, Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, and
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | | | - Subul Beg
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Peter W. Hunt
- Division of Experimental Medicine, Department of Medicine, UCSF, San Francisco, California, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Robert F. Siliciano
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, and
| |
Collapse
|