1
|
Yuan C, Xu Y, Lu G, Hu Y, Mao W, Ke L, Tong Z, Xia Y, Ma S, Dong X, Xian X, Wu X, Liu G, Li B, Li W. AAV-mediated hepatic LPL expression ameliorates severe hypertriglyceridemia and acute pancreatitis in Gpihbp1 deficient mice and rats. Mol Ther 2024; 32:59-73. [PMID: 37974401 PMCID: PMC10787151 DOI: 10.1016/j.ymthe.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.
Collapse
Affiliation(s)
- Chenchen Yuan
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yao Xu
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Guotao Lu
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuepeng Hu
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Wenjian Mao
- Department of Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210008, China
| | - Lu Ke
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yan Xia
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - Sisi Ma
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - Xiaoyan Dong
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaobing Wu
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - George Liu
- GeneCradle Therapeutics Inc, Beijing 100176, China.
| | - Baiqiang Li
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Xu Y, Shen H, Shi Y, Zhao Y, Zhen X, Sun J, Li X, Zhou D, Yang C, Wang J, Huang X, Wei J, Huang J, Meng H, Yu W, Tong H, Jin J, Xie W. Dyslipidemia in diffuse large B-cell lymphoma based on the genetic subtypes: a single-center study of 259 Chinese patients. Front Oncol 2023; 13:1172623. [PMID: 37384286 PMCID: PMC10299728 DOI: 10.3389/fonc.2023.1172623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a kind of highly heterogeneous non-Hodgkin lymphoma, both in clinical and genetic terms. DLBCL is admittedly categorized into six subtypes by genetics, which contain MCD, BN2, EZB, N1, ST2, and A53. Dyslipidemia is relevant to a multitude of solid tumors and has recently been reported to be associated with hematologic malignancies. We aim to present a retrospective study investigating dyslipidemia in DLBCL based on the molecular subtypes. Results This study concluded that 259 patients with newly diagnosed DLBCL and their biopsy specimens were available for molecular typing. Results show that the incidence of dyslipidemia (87.0%, p <0.001) is higher in the EZB subtype than in others, especially hypertriglyceridemia (78.3%, p = 0.001) in the EZB subtype. Based on the pathological gene-sequencing, patients with BCL2 gene fusion mutation are significantly correlative with hyperlipidemia (76.5%, p = 0.006) and hypertriglyceridemia (88.2%, p = 0.002). Nevertheless, the occurrence of dyslipidemia has no remarkable influence on prognosis. Conclusion In summary, dyslipidemia correlates with genetic heterogeneity in DLBCL without having a significant influence on survival. This research first connects lipids and genetic subtypes in DLBCL.
Collapse
|
3
|
Brinck J, Hagström E, Nåtman J, Franzén S, Eeg-Olofsson K, Nathanson D, Eliasson B. Cardiovascular Outcomes in Patients With Both Diabetes and Phenotypic Familial Hypercholesterolemia: A Nationwide Register-Based Cohort Study. Diabetes Care 2022; 45:3040-3049. [PMID: 36326759 PMCID: PMC9862487 DOI: 10.2337/dc22-1025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients with diabetes or familial hypercholesterolemia (FH) have an increased incidence of cardiovascular diseases compared with the population, but whether this risk is exacerbated in patients with combined traits is unknown. RESEARCH DESIGN AND METHODS In this Swedish nationwide, register-based cohort study, patients with diabetes were included between 2002 and 2020. Adjusted Cox proportional hazards models were used to assess the risk of cardiovascular events in patients with or without phenotypic FH (≥6 points for phenotypic FH according to Dutch Lipid Clinic Network criteria) compared with general population control subjects without diabetes as reference. RESULTS A total of 45,585 patients with type 1 diabetes (227,923 control subjects) and 655,250 patients with type 2 diabetes (655,250 control subjects) were followed for a median of 14.1 and 7.9 years, respectively. Of those, 153 and 7,197, respectively, had phenotypic FH. Compared with control subjects, patients with diabetes and phenotypic FH had higher risk of cardiovascular mortality (type 1: hazard ratio 21.3 [95% CI 14.6-31.0]; type 2: 2.40 [2.19-2.63]) and of a cardiovascular event (type 1: 15.1 [11.1-20.5]; type 2: 2.73 [2.58-2.89]). Further, patients with diabetes and phenotypic FH had higher LDL-cholesterol levels during observation (P < 0.05) and increased risk of all major cardiovascular outcomes (P < 0.0001) than patients with diabetes but without FH. The proportion receiving lipid-lowering treatment was higher in patients with phenotypic FH (P < 0.0001). CONCLUSIONS Patients with both diabetes and phenotypic FH are more at risk for adverse cardiovascular outcomes and have higher LDL-cholesterol levels despite receiving intensified lipid-lowering therapy.
Collapse
Affiliation(s)
- Jonas Brinck
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.,Unit of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Emil Hagström
- Department of Medical Sciences and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Jonatan Nåtman
- Centre of Registers Västra Götaland, National Diabetes Register, Gothenburg, Sweden
| | - Stefan Franzén
- Health Metrics, Department of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Eeg-Olofsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Specialist Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Nathanson
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.,Unit of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Björn Eliasson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Specialist Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
4
|
Abstract
Lipid disorders involving derangements in serum cholesterol, triglycerides, or both are commonly encountered in clinical practice and often have implications for cardiovascular risk and overall health. Recent advances in knowledge, recommendations, and treatment options have necessitated an updated approach to these disorders. Older classification schemes have outlived their usefulness, yielding to an approach based on the primary lipid disturbance identified on a routine lipid panel as a practical starting point. Although monogenic dyslipidemias exist and are important to identify, most individuals with lipid disorders have polygenic predisposition, often in the context of secondary factors such as obesity and type 2 diabetes. With regard to cardiovascular disease, elevated low-density lipoprotein cholesterol is essentially causal, and clinical practice guidelines worldwide have recommended treatment thresholds and targets for this variable. Furthermore, recent studies have established elevated triglycerides as a cardiovascular risk factor, whereas depressed high-density lipoprotein cholesterol now appears less contributory than was previously believed. An updated approach to diagnosis and risk assessment may include measurement of secondary lipid variables such as apolipoprotein B and lipoprotein(a), together with selective use of genetic testing to diagnose rare monogenic dyslipidemias such as familial hypercholesterolemia or familial chylomicronemia syndrome. The ongoing development of new agents-especially antisense RNA and monoclonal antibodies-targeting dyslipidemias will provide additional management options, which in turn motivates discussion on how best to incorporate them into current treatment algorithms.
Collapse
Affiliation(s)
- Amanda J Berberich
- Department of Medicine; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5B7
| | - Robert A Hegele
- Department of Medicine; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5B7
| |
Collapse
|
5
|
Aguilar-Salinas CA, Gómez-Díaz RA, Corral P. New Therapies for Primary Hyperlipidemia. J Clin Endocrinol Metab 2022; 107:1216-1224. [PMID: 34888679 DOI: 10.1210/clinem/dgab876] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Indexed: 11/19/2022]
Abstract
Primary hyperlipidemias include a heterogeneous set of monogenic and polygenic conditions characterized by a strong family aggregation, severe forms of hypercholesterolemia and/or hypertriglyceridemia, appearance early on life, and a high risk of cardiovascular events and/or recurrent pancreatitis. In real life, a small proportion of the primary hyperlipidemia cases is recognized and treated properly. Our goal is to present an update of current and upcoming therapies for patients with primary hyperlipidemia. Recently, new lipid-lowering medications have obtained authorization from the U.S. Food and Drug Administration and the European Medicines Agency. These drugs target metabolic pathways, including (adenosine 5'-triphosphates)-citrate lyase (bempedoic acid), proprotein convertase subtilisin/kexin 9 (inclisiran), apolipoprotein CIII (volanesorsen), and angiopoietin-like 3 (volanesorsen), that have additive effects with the actions of the currently available therapies (i.e., statins, ezetimibe or fibrates). We discuss the potential clinical indications for the novel medications. To conclude, the addition of these new medications to the therapeutic options for primary hyperlipidemia patients may increase the likelihood of achieving the treatment targets. Also, it could be a safer alternative for patients with side effects for the currently available drugs.
Collapse
Affiliation(s)
- Carlos A Aguilar-Salinas
- Direction of Nutrition Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| | - Rita A Gómez-Díaz
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Pablo Corral
- Pharmacology Department, School of Medicine, FASTA University, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
6
|
Tong HF, Kwan MTF, Chan KW, Chong YK. Vicious cycle of hypertriglyceridaemia and hyperglycaemia in an atypical case of lipoprotein lipase deficiency. Pathology 2021; 54:503-505. [PMID: 34635320 DOI: 10.1016/j.pathol.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Hok-Fung Tong
- Department of Pathology, Princess Margaret Hospital, Hong Kong
| | | | - Kin-Wah Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong
| | - Yeow-Kuan Chong
- Department of Pathology, Princess Margaret Hospital, Hong Kong.
| |
Collapse
|
7
|
Shu HY, Zhang W, Zheng CC, Gao MY, Li YC, Wang YG. Identification and Functional Characterization of a Low-Density Lipoprotein Receptor Gene Pathogenic Variant in Familial Hypercholesterolemia. Front Genet 2021; 12:650077. [PMID: 34497632 PMCID: PMC8419346 DOI: 10.3389/fgene.2021.650077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
We report a single-point variant of low-density lipoprotein receptor (LDLR) in a Chinese proband with a clinical diagnosis of familial hypercholesterolemia (FH) with a comprehensive functional analysis. Target exome capture-based next-generation sequencing was used for sequencing and identification of genomic variants in the LDLR gene. The expression, cellular location, and function of the mutant LDLR were analyzed. Sequencing of LDLR in FH patients indicated a point variant of single-base substitution (G < A) at a position of 2389 in the 16th exon, which led to a loss of the 16th exon in the LDLR messenger RNA. This genomic variant was found to cause exon 16 deletion in the mutant LDLR protein. Subsequent functional analyses showed that the mutant LDLR was retained in the Golgi apparatus and rarely expressed in the cellular membranes of HepG2 cells. Accordingly, the intake ability of HepG2 cells with the mutant LDLR was significantly reduced (P < 0.05). In conclusion, our results suggest that a mutant with a single-base substitution (c. 2389G > A) in the 16th exon of the LDLR gene was associated with miscleavage of messenger RNA and the retention of mutant LDLR in the Golgi apparatus, which revealed a pathogenic variant in LDLR underlying the pathogenesis of FH.
Collapse
Affiliation(s)
- Hong-Yan Shu
- Department of Endocrinology and Metabolic Diseases, Zibo Municipal Hospital, Zibo, China
| | - Wei Zhang
- Department of Endocrinology and Metabolic Diseases, Zibo Municipal Hospital, Zibo, China
| | - Cong-Cong Zheng
- Department of Endocrinology and Metabolic Diseases, Zibo Municipal Hospital, Zibo, China
| | - Man-Yun Gao
- Department of Endocrinology and Metabolic Diseases, Zibo Municipal Hospital, Zibo, China
| | - Yong-Cun Li
- Department of Endocrinology and Metabolic Diseases, Zibo Municipal Hospital, Zibo, China
| | - Yan-Gang Wang
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Wang M, Zhou Y, He X, Deng C, Liu X, Li J, Zhou L, Li Y, Zhang Y, Liu H, Li L. Two novel mutations of the LPL gene in two Chinese family cases with familial chylomicronemia syndrome. Clin Chim Acta 2021; 521:264-271. [PMID: 34324844 DOI: 10.1016/j.cca.2021.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to investigate the clinical features and genetic causes of two family cases with familial chylomicronemia syndrome (FCS). Clinical manifestations of proband 1 and her families, and also proband 2 showed severe hypertriglyceridemia, especially the triglycerides levels of two probands were extremely high. Gene sequencing results showed that the LPL genes in each of the two probands had a new mutation site. For the proband 1, a compound heterozygous mutation at c.429 (c.429 + 1G > T) was detected in the LPL gene, which was splicing mutation and inherited from her mother. Homozygous mutation was detected in the LPL gene of proband 2, the nucleotide mutation at c.802 (c.802C > T) exhibited missense mutation, his parents and brother had a heterozygous mutation at the same site. It was confirmed that the conservative lipoprotein lipase superfamily domain changed an amino acid from histidine to tyrosine at p. 268 (p. His268Tyr). Flow cytometry confirmed the deficient expression of LPL protein in two families. These results indicated that the mutation in LPL gene might be the cause of familial chylomicronemia syndrome.
Collapse
Affiliation(s)
- Mingying Wang
- Department of Gastroenterology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Yuantao Zhou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Xiaoli He
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Chengjun Deng
- Department of Gastroenterology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Xiaoning Liu
- Department of Pharmacy, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Juan Li
- Department of Gastroenterology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Lin Zhou
- Department of Nutrition, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Ying Li
- Department of Gastroenterology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Yu Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Haifeng Liu
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, Yunnan, China.
| |
Collapse
|
9
|
Okazaki H, Gotoda T, Ogura M, Ishibashi S, Inagaki K, Daida H, Hayashi T, Hori M, Masuda D, Matsuki K, Yokoyama S, Harada-Shiba M. Current Diagnosis and Management of Primary Chylomicronemia. J Atheroscler Thromb 2021; 28:883-904. [PMID: 33980761 PMCID: PMC8532063 DOI: 10.5551/jat.rv17054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Primary chylomicronemia (PCM) is a rare and intractable disease characterized by marked accumulation of chylomicrons in plasma. The levels of plasma triglycerides (TGs) typically range from 1,000 - 15,000 mg/dL or higher.
PCM is caused by defects in the lipoprotein lipase (LPL) pathway due to genetic mutations, autoantibodies, or unidentified causes. The monogenic type is typically inherited as an autosomal recessive trait with loss-of-function mutations in LPL pathway genes (
LPL
,
LMF1
,
GPIHBP1
,
APOC2
, and
APOA5
). Secondary/environmental factors (diabetes, alcohol intake, pregnancy, etc.) often exacerbate hypertriglyceridemia (HTG).
The signs, symptoms, and complications of chylomicronemia include eruptive xanthomas, lipemia retinalis, hepatosplenomegaly, and acute pancreatitis with onset as early as in infancy. Acute pancreatitis can be fatal and recurrent episodes of abdominal pain may lead to dietary fat intolerance and failure to thrive. The main goal of treatment is to prevent acute pancreatitis by reducing plasma TG levels to at least less than 500-1,000 mg/dL. However, current TG-lowering medications are generally ineffective for PCM. The only other treatment options are modulation of secondary/environmental factors. Most patients need strict dietary fat restriction, which is often difficult to maintain and likely affects their quality of life. Timely diagnosis is critical for the best prognosis with currently available management, but PCM is often misdiagnosed and undertreated. The aim of this review is firstly to summarize the pathogenesis, signs, symptoms, diagnosis, and management of PCM, and secondly to propose simple diagnostic criteria that can be readily translated into general clinical practice to improve the diagnostic rate of PCM. In fact, these criteria are currently used to define eligibility to receive social support from the Japanese government for PCM as a rare and intractable disease. Nevertheless, further research to unravel the molecular pathogenesis and develop effective therapeutic modalities is warranted. Nationwide registry research on PCM is currently ongoing in Japan with the aim of better understanding the disease burden as well as the unmet needs of this life-threatening disease with poor therapeutic options.
Collapse
Affiliation(s)
- Hiroaki Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Takanari Gotoda
- Department of Metabolic Biochemistry, Faculty of Medicine, Kyorin University
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University
| | - Kyoko Inagaki
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Nippon Medical School
| | - Hiroyuki Daida
- Faculty of Health Science, Juntendo University, Juntendo University Graduate School of Medicine
| | - Toshio Hayashi
- School of Health Sciences, Nagoya University Graduate School of Medicine
| | - Mika Hori
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University
| | - Daisaku Masuda
- Department of Cardiology, Health Care Center, Rinku Innovation Center for Wellness Care and Activities (RICWA), Rinku General Medical Center
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | | | - Mariko Harada-Shiba
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | | |
Collapse
|
10
|
D'Erasmo L, Commodari D, Di Costanzo A, Minicocci I, Polito L, Ceci F, Montali A, Maranghi M, Arca M. Evolving trend in the management of heterozygous familial hypercholesterolemia in Italy: A retrospective, single center, observational study. Nutr Metab Cardiovasc Dis 2020; 30:2027-2035. [PMID: 32830020 DOI: 10.1016/j.numecd.2020.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/12/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The effective reduction of LDL-C in patients with heterozygous familial hypercholesterolemia (HeFH) is crucial to reduce their increased cardiovascular risk. Diagnostic and therapeutic (PCSK9 inhibitors) tools to manage HeFH improved in recent years. However, the impact of these progresses in ameliorating the contemporary real-world care of these patients remains to be determined. Aim of this study was to assess the evolution of treatments and LDL-C control in a cohort of HeFH patients in Italy. METHODS AND RESULTS Four hundred six clinically diagnosed HeFH followed in a single, tertiary lipid centre were included in this survey. Data on lipid levels and medications were collected at baseline and during a median 3-year follow-up. At baseline, 19.8% of patients were receiving conventional high-potency lipid lowering therapies (LLT) and this percentage increased up to 50.8% at last visit. The knowledge of results of molecular diagnosis was associated with a significant increase in treatment intensity and LDL-C lowering. Nevertheless, the new LDL-C target (<70 mg/dl) was achieved only in 3.6% of HeFH patients under conventional LLTs and this proportion remained low (2.9%) also in those exposed to maximal conventional LLT. In 51 patients prescribed with PCSK9 inhibitors, 64.6% and 62.1% reached LDL-C<70 mg/dl at 3- and 12-month follow-up, respectively. CONCLUSIONS Although treatments of HeFH improved over time, LDL-C target achievement with conventional LLT remains poor, mainly among women. The use of molecular diagnosis and even more the prescription of PCSK9i may improve LDL-C control in these patients.
Collapse
Affiliation(s)
- Laura D'Erasmo
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy; Cardiovascular Prevention Unit, Department of Endocrinology and Metabolism, Pitié-Salpêtrière University Hospital, Paris, France.
| | - Daniela Commodari
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Luca Polito
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Fabrizio Ceci
- Department of Experimental Medicine, Università degli Studi di Roma, Sapienza, Rome, Italy
| | - Anna Montali
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Marianna Maranghi
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| |
Collapse
|
11
|
Rieck L, Bardey F, Grenkowitz T, Bertram L, Helmuth J, Mischung C, Spranger J, Steinhagen-Thiessen E, Bobbert T, Kassner U, Demuth I. Mutation spectrum and polygenic score in German patients with familial hypercholesterolemia. Clin Genet 2020; 98:457-467. [PMID: 32770674 DOI: 10.1111/cge.13826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Autosomal-dominant familial hypercholesterolemia (FH) is characterized by increased plasma concentrations of low-density lipoprotein cholesterol (LDL-C) and a substantial risk to develop cardiovascular disease. Causative mutations in three major genes are known: the LDL receptor gene (LDLR), the apolipoprotein B gene (APOB) and the proprotein convertase subtilisin/kexin 9 gene (PCSK9). We clinically characterized 336 patients suspected to have FH and screened them for disease causing mutations in LDLR, APOB, and PCSK9. We genotyped six single nucleotide polymorphisms (SNPs) to calculate a polygenic risk score for the patients and 1985 controls. The 117 patients had a causative variant in one of the analyzed genes. Most variants were found in the LDLR gene (84.9%) with 11 novel mutations. The mean polygenic risk score was significantly higher in FH mutation negative subjects than in FH mutation positive patients (P < .05) and healthy controls (P < .001), whereas the score of the two latter groups did not differ significantly. However, the score explained only about 3% of the baseline LDL-C variance. We verified the previously described clinical and genetic variability of FH for German hypercholesterolemic patients. Evaluation of a six-SNP polygenic score recently proposed for clinical use suggests that it is not a reliable tool to classify hypercholesterolemic patients.
Collapse
Affiliation(s)
- Lorenz Rieck
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frieda Bardey
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Grenkowitz
- Department of Cardiology, Charité - University Medicine Berlin (Campus Benjamin Franklin), Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany.,Center for Lifespan Changes in Brain and Cognition (LCBC), Dept of Psychology, University of Oslo, Oslo, Norway
| | - Johannes Helmuth
- Department Molecular Diagnostics, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Claudia Mischung
- Department Molecular Diagnostics, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Bobbert
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ursula Kassner
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The aim of this study was to evaluate the potential role of genetic testing, particularly next-generation DNA sequencing, in diagnosing and managing dyslipidaemias, particularly monogenic dyslipidaemias. RECENT FINDINGS Targeted DNA sequencing of the genes causing monogenic dyslipidaemias is becoming more accessible. Some societies' position statements advise selective utilization of DNA testing in combination with clinical and biochemical assessment. However, high-quality peer-reviewed evidence showing that a DNA-based diagnosis impacts upon long-term patient outcomes is currently lacking. Nonetheless, we show anecdotal examples of tangible clinical actions following from a genetic diagnosis. In any event, care must be taken when interpreting genetic reports. We strongly feel that expertise in both genetics and dyslipidaemias is required to adequately interpret and report results to patients, as well as to make informed treatment decisions that can have a potential lifelong impact. SUMMARY There are some examples of monogenic dyslipidaemias for which having a molecular diagnosis might beneficially affect patient outcomes, for example certain cases of suspected familial hypercholesterolemia, familial chylomicronemia syndrome, sitosterolemia or lysosomal acid lipase deficiency. In general, we recommend limiting genetic testing to selected cases of monogenic dyslipidaemias. Finally, we advise that there is currently no proven clinical benefit in testing for polygenic dyslipidaemias.
Collapse
Affiliation(s)
- Julieta Lazarte
- Departments of Biochemistry and Medicine, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | |
Collapse
|
13
|
Brown EE, Sturm AC, Cuchel M, Braun LT, Duell PB, Underberg JA, Jacobson TA, Hegele RA. Genetic testing in dyslipidemia: A scientific statement from the National Lipid Association. J Clin Lipidol 2020; 14:398-413. [DOI: 10.1016/j.jacl.2020.04.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
|
14
|
Pinilla-Monsalve GD, Lores J, Pachajoa H, López-Ponce de León JD, López A, Rodríguez-Rojas LX, Nastasi-Catanese JA. A Novel APOC2 Mutation in a Colombian Patient with Recurrent Hypertriglyceridemic Pancreatitis. Appl Clin Genet 2020; 13:63-69. [PMID: 32280258 PMCID: PMC7125404 DOI: 10.2147/tacg.s243148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 11/26/2022] Open
Abstract
Hypertriglyceridemia is a common disease with only 2% of cases exhibiting monogenic mutations. Familial chylomicronemia syndrome (FCS) is a rare genetic condition associated with recurrent and severe episodes of pancreatitis and is mainly caused by mutations in the LPL gene, with few cases related to abnormal function of apolipoprotein C-II. This is a 50-year-old female with a past medical history of arterial hypertension, miscarriage and recurrent pancreatitis. In the last four years, her triglycerides and lipase concentration reached >3000 mg/dL and >700 U/L, respectively. The patient was not responsive to statins, fibrates, or tetrahydrolipstatin. A novel homozygous frameshift mutation on exon 3 of the APOC2 gene was detected, c.133_134delTC. Subsequent Sanger sequencing confirmed that three first-degree relatives were carriers of the same mutation. To the best of our knowledge, we are reporting the first Colombian patient with FCS due to an APOC2 mutation. We propose that this mutation caused recurrent hypertriglyceridemic pancreatitis.
Collapse
Affiliation(s)
| | - Juliana Lores
- Faculty of Health Sciences, Universidad Icesi, Cali 760032, Colombia.,Department of Genetics, Fundación Valle del Lili, Cali 760032, Colombia
| | - Harry Pachajoa
- Faculty of Health Sciences, Universidad Icesi, Cali 760032, Colombia.,Department of Genetics, Fundación Valle del Lili, Cali 760032, Colombia
| | - Juan D López-Ponce de León
- Faculty of Health Sciences, Universidad Icesi, Cali 760032, Colombia.,Department of Cardiology, Fundación Valle del Lili, Cali 760032, Colombia
| | - Alejandro López
- Faculty of Health Sciences, Universidad Icesi, Cali 760032, Colombia.,Department of Endocrinology, Fundación Valle del Lili, Cali 760032, Colombia
| | - Lisa X Rodríguez-Rojas
- Faculty of Health Sciences, Universidad Icesi, Cali 760032, Colombia.,Department of Genetics, Fundación Valle del Lili, Cali 760032, Colombia
| | - José A Nastasi-Catanese
- Faculty of Health Sciences, Universidad Icesi, Cali 760032, Colombia.,Department of Genetics, Fundación Valle del Lili, Cali 760032, Colombia
| |
Collapse
|
15
|
Familial hypercholesterolaemia: evolving knowledge for designing adaptive models of care. Nat Rev Cardiol 2020; 17:360-377. [DOI: 10.1038/s41569-019-0325-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2019] [Indexed: 01/05/2023]
|
16
|
Shi XL, Yang Q, Pu N, Li XY, Chen WW, Zhou J, Li G, Tong ZH, Férec C, Cooper DN, Chen JM, Li WQ. Identification and functional characterization of a novel heterozygous missense variant in the LPL associated with recurrent hypertriglyceridemia-induced acute pancreatitis in pregnancy. Mol Genet Genomic Med 2020; 8:e1048. [PMID: 31962008 PMCID: PMC7057096 DOI: 10.1002/mgg3.1048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/25/2023] Open
Abstract
Background Acute pancreatitis in pregnancy (APIP) is a life‐threatening disease for both mother and fetus. To date, only three patients with recurrent hypertriglyceridemia‐induced APIP (HTG‐APIP) have been reported to carry rare variants in the lipoprotein lipase (LPL) gene, which encodes the key enzyme responsible for triglyceride (TG) metabolism. Coincidently, all three patients harbored LPL variants on both alleles and presented with complete or severe LPL deficiency. Methods The entire coding regions and splice junctions of LPL and four other TG metabolism genes (APOC2, APOA5, GPIHBP1, and LMF1) were analyzed by Sanger sequencing in a Han Chinese patient who had experienced two episodes of HTG‐APIP. The impact of a novel LPL missense variant on LPL protein expression and activity was analyzed by transient expression in HEK293T cells. Results A novel heterozygous LPL missense variant, p.His210Leu (c.629A > T), was identified in our patient. This variant did not affect protein synthesis but significantly impaired LPL secretion and completely abolished the enzymatic activity of the mutant protein. Conclusion This report describes the first identification and functional characterization of a heterozygous variant in the LPL that predisposed to recurrent HTG‐APIP. Our findings confirm a major genetic contribution to the etiology of individual predisposition to HTG‐APIP.
Collapse
Affiliation(s)
- Xiao-Lei Shi
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Yang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Pu
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiao-Yao Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei-Wei Chen
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jing Zhou
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gang Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Hui Tong
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Claude Férec
- Inserm, EFS, Univ Brest, UMR 1078, GGB, Brest, France.,Service de Génétique, CHU Brest, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Jian-Min Chen
- Inserm, EFS, Univ Brest, UMR 1078, GGB, Brest, France
| | - Wei-Qin Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|