1
|
Narusawa H, Ogawa T, Yagasaki H, Nagasaki K, Urakawa T, Saito T, Soneda S, Kinjo S, Sano S, Mamada M, Terashita S, Dateki S, Narumi S, Naiki Y, Horikawa R, Ogata T, Fukami M, Kagami M. Comprehensive Study on Central Precocious Puberty: Molecular and Clinical Analyses in 90 Patients. J Clin Endocrinol Metab 2025; 110:1023-1036. [PMID: 39324648 DOI: 10.1210/clinem/dgae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
CONTEXT Defects in MKRN3, DLK1, KISS1, and KISS1R and some disorders, such as Temple syndrome (TS14), cause central precocious puberty (CPP). Recently, pathogenic variants (PVs) in MECP2 have been reported to be associated with CPP. OBJECTIVE We aimed to clarify the contribution of (epi)genetic abnormalities to CPP and clinical and hormonal features in each etiology. METHODS We conducted targeted sequencing for MKRN3, DLK1, MECP2, KISS1, and KISS1R and methylation analysis for screening of imprinting disorders such as TS14 associated with CPP in 90 patients with CPP (no history of brain injuries and negative brain magnetic resonance imaging) and collected their clinical and laboratory data. We measured serum DLK1 levels in 3 patients with TS14 and serum MKRN3 levels in 2 patients with MKRN3 genetic defects, together with some etiology-unknown patients with CPP and controls. RESULTS We detected 8 patients with TS14 (6, epimutation; 1, mosaic maternal uniparental disomy chromosome 14; 1, microdeletion) and 3 patients with MKRN3 genetic defects (1, PV; 1, 13-bp deletion in the 5'-untranslated region [5'-UTR]; 1, microdeletion) with family histories of paternal early puberty. There were no patients with PVs identified in MECP2, KISS1, or KISS1R. We confirmed low serum MKRN3 level in the patient with a deletion in 5'-UTR. The median height at initial evaluation of TS14 patients was lower than that of all patients. Six patients with TS14 were born small for gestational age (SGA). CONCLUSION (Epi)genetic causes were identified in 12.2% of patients with CPP at our center. For patients with CPP born SGA or together with family histories of paternal early puberty, (epi)genetic testing for TS14 and MKRN3 genetic defects should be considered.
Collapse
Affiliation(s)
- Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Tomoe Ogawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hideaki Yagasaki
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan
| | - Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tomohiro Saito
- Department of Pediatrics, Yamanashi Prefectural Central Hospital, Kofu 400-0027, Japan
| | - Shun Soneda
- Tanaka Growth Clinic, Tokyo 158-0097, Japan
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-0015, Japan
| | - Saori Kinjo
- Department of Pediatrics, Okinawa Chubu Hospital, Uruma 904-2293, Japan
| | - Shinichiro Sano
- Department of Pediatric Endocrinology and Metabolism, Shizuoka Children's Hospital, Shizuoka 420-0953, Japan
| | - Mitsukazu Mamada
- Department of Pediatrics, Japanese Red Cross Wakayama Medical Center, Wakayama 640-8558, Japan
| | - Shintaro Terashita
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Yasuhiro Naiki
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu 432-8580, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
2
|
Malave-Ortiz S, Grant C, Shaw ND. Environmental factors trigger pubertal development. Curr Opin Pediatr 2025:00008480-990000000-00256. [PMID: 40013893 DOI: 10.1097/mop.0000000000001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
PURPOSE OF REVIEW We provide an overview of the secular trend of earlier pubertal development, why there is a growing concern that environmental factors may be to blame, and how these factors may influence the developing reproductive axis. RECENT FINDINGS We highlight recent work suggesting that, in addition to activating sex steroid receptors, environmental compounds may influence neuropeptide receptors and/or epigenetic regulators. We describe recent studies linking air pollution, metals, endocrine disrupting compounds (EDCs), short sleep duration, early life adversity, and stress to pubertal timing. SUMMARY Pubertal timing is tightly controlled by genetic, epigenetic, and environmental factors. While animal and epidemiological studies have pointed to several potential environmental factors, additional work is necessary to identify the critical levels and developmental windows of exposure as well as the mechanistic underpinnings.
Collapse
Affiliation(s)
- Sofia Malave-Ortiz
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Durham, North Carolina, USA
| | | | | |
Collapse
|
3
|
Kaiser UB. Genetic and Epigenetic Contributions to Central Precocious Puberty. J Clin Endocrinol Metab 2025:dgaf130. [PMID: 40036249 DOI: 10.1210/clinem/dgaf130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Affiliation(s)
- Ursula B Kaiser
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Canton APM, Macedo DB, Abreu AP, Latronico AC. Genetics and Epigenetics of Human Pubertal Timing: The Contribution of Genes Associated With Central Precocious Puberty. J Endocr Soc 2025; 9:bvae228. [PMID: 39839367 PMCID: PMC11746960 DOI: 10.1210/jendso/bvae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Indexed: 01/23/2025] Open
Abstract
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH. In the past decade, the identification of genetic causes of CPP has largely expanded, revealing hypothalamic regulatory factors of pubertal timing. Among them, 3 genes associated with CPP are linked to mechanisms involving DNA methylation, reinforcing the strong role of epigenetics underlying this disorder. Loss-of-function mutations in Makorin Ring-Finger Protein 3 (MKRN3) and Delta-Like Non-Canonical Notch Ligand 1 (DLK1), 2 autosomal maternally imprinted genes, have been described as relevant monogenic causes of CPP with the phenotype exclusively associated with paternal transmission. MKRN3 has proven to be a key component of the hypothalamic inhibitory input on GnRH neurons through different mechanisms. Additionally, rare heterozygous variants in the Methyl-CpG-Binding Protein 2 (MECP2), an X-linked gene that is a key factor of DNA methylation machinery, were identified in girls with sporadic CPP with or without neurodevelopmental disorders. In this mini-review, we focus on how the identification of genetic causes of CPP has revealed epigenetic regulators of human pubertal timing, summarizing the latest knowledge on the associations of puberty with MKRN3, DLK1, and MECP2.
Collapse
Affiliation(s)
- Ana Pinheiro Machado Canton
- Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Delanie Bulcao Macedo
- Integrated Medical Care Center, Center for Health Sciences, University of Fortaleza (Unifor), Fortaleza 60811-905, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Claudia Latronico
- Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
- Discipline of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Sao Paulo, 05403-000, Sao Paulo, Brazil
| |
Collapse
|
5
|
Singh J, Santosh P. The Newborn Screening Programme Revisited: An Expert Opinion on the Challenges of Rett Syndrome. Genes (Basel) 2024; 15:1570. [PMID: 39766837 PMCID: PMC11675257 DOI: 10.3390/genes15121570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Genomic sequencing has the potential to revolutionise newborn screening (NBS) programmes. In 2024, Genomics England began to recruit for the Generation Study (GS), which uses whole genome sequencing (WGS) to detect genetic changes in 500 genes in more than 200 rare conditions. Ultimately, its purpose is to facilitate the earlier identification of rare conditions and thereby improve health-related outcomes for individuals. The adoption of rare conditions into the GS was guided by four criteria: (1) the gene causing the condition can be reliably detected; (2) if undiagnosed, the rare condition would have a serious impact; (3) early or presymptomatic testing would substantially improve outcomes; and (4) interventions for conditions screened are accessible to all. Rett syndrome (RTT, OMIM 312750), a paediatric neurodevelopment disorder, was not included in the list of rare conditions in the GS. In this opinion article, we revisit the GS and discuss RTT from the perspective of these four criteria. We begin with an introduction to the GS and then summarise key points about the four principles, presenting challenges and opportunities for individuals with RTT. We provide insight into how data could be collected during the presymptomatic phase, which could facilitate early diagnosis and improve our understanding of the prodromal stage of RTT. Although many features of RTT present a departure from criteria adopted by the GS, advances in RTT research, combined with advocacy from parent-based organisations, could facilitate its entry into future newborn screening programmes.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
6
|
Giannakopoulos A, Chrysis D. Reversibility of disturbed pituitary function in pediatric conditions with psychological stressors: implications for clinical practice. Hormones (Athens) 2024; 23:709-716. [PMID: 38421589 DOI: 10.1007/s42000-024-00536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The complex communication network between the central nervous system and the hypothalamic-pituitary axis forms the basis of endocrine functional plasticity, which facilitates adaptation to changing internal and external conditions, but also makes it vulnerable to the negative effects of stressful psychological factors. Herein, clinical conditions such as functional hypothalamic amenorrhea, eating disorders, growth faltering, post-traumatic stress disorder, and pubertal disorders that may emerge during childhood or adolescence, their origin possibly including psychological stressors, are analyzed regarding their genetic susceptibility and reversibility of endocrine function. A discussion on the optimization of therapeutic management defined by managing stress and maximizing the degree and rate of reversibility follows.
Collapse
Affiliation(s)
- Aristeidis Giannakopoulos
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, 26504, Patras, Greece.
| | - Dionisios Chrysis
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, 26504, Patras, Greece
| |
Collapse
|
7
|
Lorenzon B, Burlo F, Barbi L, Tamaro G, Tornese G. Fifteen-minute consultation: The approach to the child with precocious puberty. Arch Dis Child Educ Pract Ed 2024; 109:271-275. [PMID: 38514136 DOI: 10.1136/archdischild-2023-326217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Precocious puberty has traditionally been defined as the onset of secondary sexual characteristics occurring before age 8 years in girls and 9 years in boys. This earlier onset of puberty may have significant physical and psychological consequences if left untreated. Moreover, it should be excluded that pubertal signs are not secondary to malignancies, other organic aetiologies or associated syndromic phenotypes. Initial assessment involves a thorough medical history and physical examination; a hand and wrist X-ray to determine bone age, and hormonal tests might be indicated to confirm the diagnosis and to determine the origin of hormonal production. Treatment options depend on the underlying cause. Given the complexity of the differential diagnosis, this article aims to familiarise clinicians with the different steps that can be taken when precocious puberty is suspected.
Collapse
Affiliation(s)
- Beatrice Lorenzon
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesca Burlo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Ludovica Barbi
- FHML, Maastricht University, Maastricht, The Netherlands
| | | | - Gianluca Tornese
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| |
Collapse
|
8
|
Read JE, Vasile‐Tudorache A, Newsome A, Lorente MJ, Agustín‐Pavón C, Howard SR. Disorders of puberty and neurodevelopment: A shared etiology? Ann N Y Acad Sci 2024; 1541:83-99. [PMID: 39431640 PMCID: PMC11580780 DOI: 10.1111/nyas.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The neuroendocrine control of puberty and reproduction is fascinatingly complex, with up- and down-regulation of key reproductive hormones during fetal, infantile, and later childhood periods that determine the correct function of the hypothalamic-pituitary-gonadal axis and the timing of puberty. Neuronal development is a vital element of these processes, and multiple conditions of disordered puberty and reproduction have their etiology in abnormal neuronal migration or function. Although there are numerous documented cases across multiple conditions wherein patients have both neurodevelopmental disorders and pubertal abnormalities, this has mostly been described ad hoc and the associations are not clearly documented. In this review, we aim to describe the overlap between these two groups of conditions and to increase awareness to ensure that puberty and reproductive function are carefully monitored in patients with neurodevelopmental conditions, and vice versa. Moreover, this commonality can be explored for clues about the disease mechanisms in these patient groups and provide new avenues for therapeutic interventions for affected individuals.
Collapse
Affiliation(s)
- Jordan E. Read
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Alexandru Vasile‐Tudorache
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Angel Newsome
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - María José Lorente
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Carmen Agustín‐Pavón
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
- Department of Paediatric EndocrinologyBarts Health NHS TrustLondonUK
| |
Collapse
|
9
|
Pepe G, Coco R, Corica D, Luppino G, Morabito LA, Lugarà C, Abbate T, Zirilli G, Aversa T, Stagi S, Wasniewska M. Endocrine disorders in Rett syndrome: a systematic review of the literature. Front Endocrinol (Lausanne) 2024; 15:1477227. [PMID: 39544232 PMCID: PMC11560452 DOI: 10.3389/fendo.2024.1477227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Background Rett syndrome (RTT) is an X-linked progressive neurodevelopmental disorder that involves mainly girls and is the second most frequent cause of genetic intellectual disability. RTT leads to neurological regression between 6 and 18 months of life and could be associated with a variable neurological impairment. However, RTT affects not only neurological function but also wide aspects of non-neurological organs. Recent data showed that the endocrine system is often involved in RTT patients, including disorders of growth, bone health, thyroid, puberty onset, and weight abnormalities However, systematic data on endocrinopathies in RTT are scarce and limited. Objective This review aims to analyze the prevalence and type of endocrine comorbidities in RTT population, to allow a precocious diagnosis and appropriate endocrinological management. Methods Systematic research was carried out from January 2000 to March 2024 through MEDLINE via PubMed, Scopus, and the Cochrane Library. Results After the selection phase, a total of 22 studies (1090 screened) met the inclusion criteria and were reported in the present review. Five studies were observational-retrospective, four were cross-sectional and case report or series, three were survey, prospective, and case-control, and finally one study for descriptive-transversal and longitudinal population-based study. The sample population consisted of multiethnic groups or single ethnic groups. The main endocrinopathies reported were malnutrition, bone alterations, and alterations of puberty onset. Conclusions Our analysis shows that endocrinopathies are not rare in RTT patients. Therefore, in the context of a multidisciplinary approach, accurate screening and monitoring for endocrinopathies should be recommended in all RTT patients, to improve clinical practice, healthcare management, and, finally, patients' quality of life.
Collapse
Affiliation(s)
- Giorgia Pepe
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Roberto Coco
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Domenico Corica
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Giovanni Luppino
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Letteria Anna Morabito
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Cecilia Lugarà
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Tiziana Abbate
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Giuseppina Zirilli
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Tommaso Aversa
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Malgorzata Wasniewska
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| |
Collapse
|
10
|
d'Aniello F, Mariniello K, Al Sayed Y, Bhavsar K, Read JE, Guasti L, Howard SR. The Role of DLK1 Deficiency in Central Precocious Puberty and Association with Metabolic Dysregulation. Horm Res Paediatr 2024:1-11. [PMID: 39419009 DOI: 10.1159/000541554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Precocious puberty is defined as the appearance of secondary sexual characteristics before the age of 8 years in girls and 9 years in boys. Central precocious puberty (CPP) is a rare condition that is diagnosed when premature activation of the hypothalamic-pituitary-gonadal axis is detected, in association with precocious breast development or testicular growth. Idiopathic CPP is historically considered to be the most common form, but in recent years defects in a small but growing number of genes regulating the timing of puberty have been identified in an increasing proportion of cases of CPP. Delta-like non-canonical Notch ligand 1 (DLK1) is understood to be one of the key genes involved in the etiology of CPP, although its mechanistic role is not yet fully understood. CASE PRESENTATION We identified a novel de novo variant of DLK1 (c.835C>T; p.Gln279*) in an 8-year-old girl of Bangladeshi origin. She presented with an advanced Tanner staging of B4P4A2, significantly advanced bone age (BA, 13 years), a near-adult proportioned uterus, with a history of menarche at the age of 7.4 years. Diagnosis was confirmed by raised basal luteinizing hormone concentration. She was found to have truncal obesity associated with abnormal fasting insulin levels and mildly elevated cholesterol levels. These findings are consistent with previous literature describing an association between patients with DLK1 deficiency and an impaired metabolic profile. The patient was treated for 2 years with GnRH agonists with ongoing biochemical follow-up into adolescence. CONCLUSION This case illustrates the susceptibility to metabolic derangement for patients with mutations in DLK1 and the need for ongoing monitoring after puberty. Our summary of previously identified DLK1 variants and their metabolic consequences demonstrates the frequency of obesity, lipid abnormalities, and insulin dysregulation in this patient cohort in childhood and beyond. This knowledge can guide future clinical practice for patients with CPP patients due to DLK1 deficiency.
Collapse
Affiliation(s)
- Francesco d'Aniello
- School of Pediatrics, University of Rome Tor Vergata, Rome, Italy,
- Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy,
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK,
| | - Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yasmin Al Sayed
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Karishma Bhavsar
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jordan E Read
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
11
|
Singh J, Wilkins G, Goodman-Vincent E, Chishti S, Bonilla Guerrero R, Fiori F, Ameenpur S, McFadden L, Zahavi Z, Santosh P. Using Precision Medicine to Disentangle Genotype-Phenotype Relationships in Twins with Rett Syndrome: A Case Report. Curr Issues Mol Biol 2024; 46:8424-8440. [PMID: 39194714 DOI: 10.3390/cimb46080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Rett syndrome (RTT) is a paediatric neurodevelopmental disorder spanning four developmental stages. This multi-system disorder offers a unique window to explore genotype-phenotype relationships in a disease model. However, genetic prognosticators of RTT have limited clinical value due to the disorder's heterogeneity on multiple levels. This case report used a precision medicine approach to better understand the clinical phenotype of RTT twins with an identical pathogenic MECP2 mutation and discordant neurodevelopmental profiles. Targeted genotyping, objective physiological monitoring of heart rate variability (HRV) parameters, and clinical severity were assessed in a RTT twin pair (5 years 7 months old) with an identical pathogenic MECP2 mutation. Longitudinal assessment of autonomic HRV parameters was conducted using the Empatica E4 wristband device, and clinical severity was assessed using the RTT-anchored Clinical Global Impression Scale (RTT-CGI) and the Multi-System Profile of Symptoms Scale (MPSS). Genotype data revealed impaired BDNF function for twin A when compared to twin B. Twin A also had poorer autonomic health than twin B, as indicated by lower autonomic metrics (autonomic inflexibility). Hospitalisation, RTT-CGI-S, and MPSS subscale scores were used as measures of clinical severity, and these were worse in twin A. Treatment using buspirone shifted twin A from an inflexible to a flexible autonomic profile. This was mirrored in the MPSS scores, which showed a reduction in autonomic and cardiac symptoms following buspirone treatment. Our findings showed that a combination of a co-occurring rs6265 BDNF polymorphism, and worse autonomic and clinical profiles led to a poorer prognosis for twin A compared to twin B. Buspirone was able to shift a rigid autonomic profile to a more flexible one for twin A and thereby prevent cardiac and autonomic symptoms from worsening. The clinical profile for twin A represents a departure from the disorder trajectory typically observed in RTT and underscores the importance of wider genotype profiling and longitudinal objective physiological monitoring alongside measures of clinical symptoms and severity when assessing genotype-phenotype relationships in RTT patients with identical pathogenic mutations. A precision medicine approach that assesses genetic and physiological risk factors can be extended to other neurodevelopmental disorders to monitor risk when genotype-phenotype relationships are not so obvious.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Georgina Wilkins
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Ella Goodman-Vincent
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Samiya Chishti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Federico Fiori
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Shashidhar Ameenpur
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Leighton McFadden
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Zvi Zahavi
- Myogenes Limited, Borehamwood WD6 4PJ, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| |
Collapse
|
12
|
Canton APM, Seraphim CE, Montenegro LR, Krepischi ACV, Mendonca BB, Latronico AC, Brito VN. The genetic etiology is a relevant cause of central precocious puberty. Eur J Endocrinol 2024; 190:479-488. [PMID: 38857188 DOI: 10.1093/ejendo/lvae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/14/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVES The etiology of central precocious puberty (CPP) has expanded with identification of new genetic causes, including the monogenic deficiency of Makorin-Ring-Finger-Protein-3 (MKRN3). We aimed to assess the prevalence of CPP causes and the predictors of genetic involvement in this phenotype. DESIGN A retrospective cohort study for an etiological survey of patients with CPP from a single academic center. METHODS All patients with CPP had detailed medical history, phenotyping, and brain magnetic resonance imaging (MRI); those with negative brain MRI (apparently idiopathic) were submitted to genetic studies, mainly DNA sequencing studies, genomic microarray, and methylation analysis. RESULTS We assessed 270 patients with CPP: 50 (18.5%) had CPP-related brain lesions (34 [68%] congenital lesions), whereas 220 had negative brain MRI. Of the latter, 174 (165 girls) were included for genetic studies. Genetic etiologies were identified in 22 patients (20 girls), indicating an overall frequency of genetic CPP of 12.6% (22.2% in boys and 12.1% in girls). The most common genetic defects were MKRN3, Delta-Like-Non-Canonical-Notch-Ligand-1 (DLK1), and Methyl-CpG-Binding-Protein-2 (MECP2) loss-of-function mutations, followed by 14q32.2 defects (Temple syndrome). Univariate logistic regression identified family history (odds ratio [OR] 3.3; 95% CI 1.3-8.3; P = .01) and neurodevelopmental disorders (OR 4.1; 95% CI 1.3-13.5; P = .02) as potential clinical predictors of genetic CPP. CONCLUSIONS Distinct genetic causes were identified in 12.6% patients with apparently idiopathic CPP, revealing the genetic etiology as a relevant cause of CPP in both sexes. Family history and neurodevelopmental disorders were suggested as predictors of genetic CPP. We originally proposed an algorithm to investigate the etiology of CPP including genetic studies.
Collapse
Affiliation(s)
- Ana Pinheiro Machado Canton
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Carlos Eduardo Seraphim
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Luciana Ribeiro Montenegro
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | | | - Berenice Bilharinho Mendonca
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, 01246-903 Sao Paulo, Brazil
| | - Ana Claudia Latronico
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Vinicius Nahime Brito
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
| |
Collapse
|
13
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|
14
|
Correa Brito L, Keselman A, Villegas F, Scaglia P, Esnaola Azcoiti M, Castro S, Sanguineti N, Izquierdo A, Maier M, Bergadá I, Arberas C, Rey RA, Ropelato MG. Case report: Novel SIN3A loss-of-function variant as causative for hypogonadotropic hypogonadism in Witteveen-Kolk syndrome. Front Genet 2024; 15:1354715. [PMID: 38528912 PMCID: PMC10961356 DOI: 10.3389/fgene.2024.1354715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Pubertal delay can be due to hypogonadotropic hypogonadism (HH), which may occur in association with anosmia or hyposmia and is known as Kallmann syndrome (OMIM #308700). Recently, hypogonadotropic hypogonadism has been suggested to overlap with Witteveen-Kolk syndrome (WITKOS, OMIM #613406) associated with 15q24 microdeletions encompassing SIN3A. Whether hypogonadotropic hypogonadism is due to haploinsufficiency of SIN3A or any of the other eight genes present in 15q24 is not known. We report the case of a female patient with delayed puberty associated with intellectual disability, behavior problems, dysmorphic facial features, and short stature, at the age of 14 years. Clinical, laboratory, and imaging assessments confirmed the diagnosis of Kallmann syndrome. Whole-exome sequencing identified a novel heterozygous frameshift variant, NM_001145358.2:c.3045_3046dup, NP_001138830.1:p.(Ile1016Argfs*6) in SIN3A, classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG/AMP) criteria. Reverse phenotyping led to the clinical diagnosis of WITKOS. No other variant was found in the 96 genes potentially related to hypogonadotropic hypogonadism. The analysis of the other contiguous seven genes to SIN3A in 15q24 did not reveal any clinically relevant variant. In conclusion, these findings point to SIN3A as the gene in 15q24 related to the reproductive phenotype in patients with overlapping WITKOS and Kallmann syndrome.
Collapse
Affiliation(s)
- Lourdes Correa Brito
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Florencia Villegas
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Esnaola Azcoiti
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sebastián Castro
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Nora Sanguineti
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Agustín Izquierdo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Marianela Maier
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Claudia Arberas
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Gabriela Ropelato
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
15
|
Hoskyns RB, Howard SR. Effects of the COVID-19 pandemic on the incidence of central precocious puberty; a narrative review. J Pediatr Endocrinol Metab 2024; 37:102-109. [PMID: 38097507 DOI: 10.1515/jpem-2023-0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 02/09/2024]
Abstract
Central precocious puberty (CPP) is the premature activation of the hypothalamus-pituitary-gonadal axis, resulting in the early development of secondary sexual characteristics. CPP classically occurs before the age of 8 years in girls and 9 years in boys. The aetiology of this precocious onset of puberty is governed by complex mechanistic interactions between genetic and environmental factors. The rates of CPP have been documented to have been rising before the COVID-19 pandemic; despite this, the incidence of CPP has increased exponentially since the start of the pandemic. There are multiple theories potentially explaining this change in incidence of CPP over COVID-19. These include the direct effect of SARS-coV-2 infection, increasing body mass index of adolescents over sequential lockdowns, changes in sleep patterns, increased use of electronic devices and levels of stress, and additionally potential earlier detection of signs of CPP by parents and carers. Whilst there is evidence from observational cohorts, case studies and animal models for each of these factors, it is difficult to definitively prove which has had the greatest impact due to the mainly retrospective nature of the human research that has been conducted. Moreover, studies set in diverse settings with varying population make comparison complex. Additionally, each country responded differently to the COVID-19 pandemic and the lockdowns varied between locations, hence the effect of lockdown was not equal or universal. Despite this, similar trends have been identified, with various lifestyle changes that occurred over the pandemic being potentially influential factors on the development of CPP.
Collapse
Affiliation(s)
- Rebecca B Hoskyns
- Barts and the London School of Medicine and Dentistry, QMUL, London, UK
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
16
|
Pepe G, Coco R, Corica D, Di Rosa G, Bossowski F, Skorupska M, Aversa T, Stagi S, Wasniewska M. Prevalence of Endocrinopathies in a Cohort of Patients with Rett Syndrome: A Two-Center Observational Study. Genes (Basel) 2024; 15:287. [PMID: 38540345 PMCID: PMC10970698 DOI: 10.3390/genes15030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Systematic data on endocrinopathies in Rett syndrome (RTT) patients remain limited and inconclusive. The aim of this retrospective observational two-center study was to assess the prevalence of endocrinopathies in a pediatric population of RTT patients. A total of 51 Caucasian patients (47 girls, 4 boys) with a genetically confirmed diagnosis of RTT were enrolled (mean age 9.65 ± 5.9 years). The patients were referred from the Rett Center of two Italian Hospitals for endocrinological evaluation. All the study population underwent clinical and auxological assessments and hormonal workups. MeCP2 mutations were detected in 38 cases (74.5%), CDKL5 deletions in 11 (21.6%), and FOXG1 mutations in 2 (3.9%). Overall, 40 patients were treated with anti-seizure medications. The most frequent endocrinological finding was short stature (47%), followed by menstrual cycle abnormalities (46.2%), weight disorders (45.1%), low bone mineral density (19.6%), hyperprolactinemia (13.7%) and thyroid disorders (9.8%). In the entire study population, endocrinopathies were significantly more frequent in patients with MeCP2 mutations (p = 0.0005), and epilepsy was more frequent in CDKL5 deletions (p = 0.02). In conclusion, our data highlighted that endocrinopathies are not rare in RTT, especially in patients with MeCP2 deletions. Therefore, in the context of a multidisciplinary approach, endocrinological evaluation should be recommended for RTT patients.
Collapse
Affiliation(s)
- Giorgia Pepe
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Roberto Coco
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Domenico Corica
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Gabriella Di Rosa
- Child Neuropsychiatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, 98128 Messina, Italy;
| | - Filip Bossowski
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Magdalena Skorupska
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Tommaso Aversa
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
- Meyer Children Hospital IRCCS, 50139 Florence, Italy
| | - Malgorzata Wasniewska
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| |
Collapse
|
17
|
Balasubramanian R. Behind the scenes: epigenetic mechanisms rule the roost in pubertal timing. Lancet Diabetes Endocrinol 2023; 11:526-527. [PMID: 37385289 DOI: 10.1016/s2213-8587(23)00167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Ravikumar Balasubramanian
- The Harvard Massachusetts General Hospital Center for Reproductive Medicine and Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|