1
|
Aundhia C, Parmar G, Talele C, Talele D, Seth AK. Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery. Pharm Nanotechnol 2025; 13:41-54. [PMID: 38279711 DOI: 10.2174/0122117385271651231228073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Dipali Talele
- Faculty of Pharmacy, Vishwakarma University, Survey No. 2,3,4 Laxmi Nagar, Kondhwa Budruk, Pune, India
| | - Avinsh Kumar Seth
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
2
|
Nautiyal G, Sharma SK, Kaushik D, Pandey P. Nano - Based Therapeutic Strategies in Management of Rheumatoid Arthritis. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:433-456. [PMID: 37904559 DOI: 10.2174/1872210517666230822100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents as one of the utmost promising scientific technologies of the 21st century. It exhibits remarkable potential in the field of medicine, including imaging techniques and diagnostic tools, drug delivery systems and providing advances in treatment of several diseases with nanosized structures (less than 100 nm). OBJECTIVE Conventional drugs as a cornerstone of RA management including disease-modifying antirheumatic drugs (DMARDS), Glucocorticosteroids, etc are under clinical practice. Nevertheless, their low solubility profile, poor pharmacokinetics behaviour, and non-targeted distribution not only hamper their effectiveness, but also give rise to severe adverse effects which leads to the need for the emergence of nanoscale drug delivery systems. METHODS Several types of nano-diagnostic agents and nanocarriers have been identified; including polymeric nanoparticles (NPs), liposomes, nanogels, metallic NPs, nanofibres, carbon nanotubes, nano fullerene etc. Various patents and clinical trial data have been reported in relevance to RA treatment. RESULTS Nanocarriers, unlike standard medications, encapsulate molecules with high drug loading efficacy and avoid drug leakage and burst release before reaching the inflamed sites. Because of its enhanced targeting specificity with the ability to solubilise hydrophobic drugs, it acts as an enhanced drug delivery system. CONCLUSION This study explores nanoparticles potential role in RA as a carrier for site-specific delivery and its promising strategies to overcome the drawbacks. Hence, it concludes that nanomedicine is advantageous compared with conventional therapy to enhanced futuristic approach.
Collapse
Affiliation(s)
- Gunjan Nautiyal
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Shiv Kant Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Dhirender Kaushik
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| |
Collapse
|
3
|
Bonaccorso A, Privitera A, Grasso M, Salamone S, Carbone C, Pignatello R, Musumeci T, Caraci F, Caruso G. The Therapeutic Potential of Novel Carnosine Formulations: Perspectives for Drug Development. Pharmaceuticals (Basel) 2023; 16:778. [PMID: 37375726 PMCID: PMC10300694 DOI: 10.3390/ph16060778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Carnosine (beta-alanyl-L-histidine) is an endogenous dipeptide synthesized via the activity of the ATP-dependent enzyme carnosine synthetase 1 and can be found at a very high concentration in tissues with a high metabolic rate, including muscles (up to 20 mM) and brain (up to 5 mM). Because of its well-demonstrated multimodal pharmacodynamic profile, which includes anti-aggregant, antioxidant, and anti-inflammatory activities, as well as its ability to modulate the energy metabolism status in immune cells, this dipeptide has been investigated in numerous experimental models of diseases, including Alzheimer's disease, and at a clinical level. The main limit for the therapeutic use of carnosine is related to its rapid hydrolysis exerted by carnosinases, especially at the plasma level, reason why the development of new strategies, including the chemical modification of carnosine or its vehiculation into innovative drug delivery systems (DDS), aiming at increasing its bioavailability and/or at facilitating the site-specific transport to different tissues, is of utmost importance. In the present review, after a description of carnosine structure, biological activities, administration routes, and metabolism, we focused on different DDS, including vesicular systems and metallic nanoparticles, as well as on possible chemical derivatization strategies related to carnosine. In particular, a basic description of the DDS employed or the derivatization/conjugation applied to obtain carnosine formulations, followed by the possible mechanism of action, is given. To the best of our knowledge, this is the first review that includes all the new formulations of carnosine (DDS and derivatives), allowing a decrease or complete prevention of the hydrolysis of this dipeptide exerted by carnosinases, the simultaneous blood-brain barrier crossing, the maintenance or enhancement of carnosine biological activity, and the site-specific transport to different tissues, which then offers perspectives for the development of new drugs.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Margherita Grasso
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Sonya Salamone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
4
|
Gardea-Gutiérrez D, Núñez-García E, Oseguera-Guerra BE, Román-Aguirre M, Montes-Fonseca SL. Asymmetric Lipid Vesicles: Techniques, Applications, and Future Perspectives as an Innovative Drug Delivery System. Pharmaceuticals (Basel) 2023; 16:777. [PMID: 37375725 DOI: 10.3390/ph16060777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Novel lipid-based nanosystems have been of interest in improving conventional drug release methods. Liposomes are the most studied nanostructures, consisting of lipid bilayers ideal for drug delivery, thanks to their resemblance to the cell plasma membrane. Asymmetric liposomes are vesicles with different lipids in their inner and outer layers; because of this, they can be configured to be compatible with the therapeutic drug while achieving biocompatibility and stability. Throughout this review, topics such as the applications, advantages, and synthesis techniques of asymmetric liposomes will be discussed. Further, an in silico analysis by computational tools will be examined as a helpful tool for designing and understanding asymmetric liposome mechanisms in pharmaceutical applications. The dual-engineered design of asymmetric liposomes makes them an ideal alternative for transdermal drug delivery because of the improved protection of pharmaceuticals without lowering adsorption rates and system biocompatibility.
Collapse
Affiliation(s)
- Denisse Gardea-Gutiérrez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Eduardo Núñez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Berenice E Oseguera-Guerra
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Manuel Román-Aguirre
- Centro de Investigación en Materiales Avanzados CIMAV, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih, Mexico
| | - Silvia L Montes-Fonseca
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| |
Collapse
|
5
|
Witika BA, Bassey KE, Demana PH, Siwe-Noundou X, Poka MS. Current Advances in Specialised Niosomal Drug Delivery: Manufacture, Characterization and Drug Delivery Applications. Int J Mol Sci 2022; 23:9668. [PMID: 36077066 PMCID: PMC9455955 DOI: 10.3390/ijms23179668] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Development of nanomaterials for drug delivery has received considerable attention due to their potential for achieving on-target delivery to the diseased area while the surrounding healthy tissue is spared. Safe and efficiently delivered payloads have always been a challenge in pharmaceutics. Niosomes are self-assembled vesicular nanocarriers formed by hydration of a non-ionic surfactant, cholesterol or other molecules that combine to form a versatile drug delivery system with a variety of applications ranging from topical delivery to targeted delivery. Niosomes have advantages similar to those of liposomes with regards to their ability to incorporate both hydrophilic and hydrophobic payloads. Moreover, niosomes have simple manufacturing methods, low production cost and exhibit extended stability, consequently overcoming the major drawbacks associated with liposomes. This review provides a comprehensive summary of niosomal research to date, including the types of niosomes and critical material attributes (CMA) and critical process parameters (CPP) of niosomes and their effects on the critical quality attributes (CQA) of the technology. Furthermore, physical characterisation techniques of niosomes are provided. The review then highlights recent applications of specialised niosomes in drug delivery. Finally, limitations and prospects for this technology are discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | | | | | | | | |
Collapse
|
6
|
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022; 8:e09394. [PMID: 35600452 PMCID: PMC9118483 DOI: 10.1016/j.heliyon.2022.e09394] [Citation(s) in RCA: 414] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes are now considered the most commonly used nanocarriers for various potentially active hydrophobic and hydrophilic molecules due to their high biocompatibility, biodegradability, and low immunogenicity. Liposomes also proved to enhance drug solubility and controlled distribution, as well as their capacity for surface modifications for targeted, prolonged, and sustained release. Based on the composition, liposomes can be considered to have evolved from conventional, long-circulating, targeted, and immune-liposomes to stimuli-responsive and actively targeted liposomes. Many liposomal-based drug delivery systems are currently clinically approved to treat several diseases, such as cancer, fungal and viral infections; more liposomes have reached advanced phases in clinical trials. This review describes liposomes structure, composition, preparation methods, and clinical applications.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman, Jordan
| | - Usama Sayed
- Department of Biology, The University of Jordan, Amman, 11942, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.,Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
7
|
Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: a distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res 2022; 33:1-33. [PMID: 35543241 DOI: 10.1080/08982104.2022.2069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phospholipids have a high degree of biocompatibility and are deemed ideal pharmaceutical excipients in the development of lipid-based drug delivery systems, because of their unique features (permeation, solubility enhancer, emulsion stabilizer, micelle forming agent, and the key excipients in solid dispersions) they can be used in a variety of pharmaceutical drug delivery systems, such as liposomes, phytosomes, solid lipid nanoparticles, etc. The primary usage of phospholipids in a colloidal pharmaceutical formulation is to enhance the drug's bioavailability with low aqueous solubility [i.e. Biopharmaceutical Classification System (BCS) Class II drugs], Membrane penetration (i.e. BCS Class III drugs), drug uptake and release enhancement or modification, protection of sensitive active pharmaceutical ingredients (APIs) from gastrointestinal degradation, a decrease of gastrointestinal adverse effects, and even masking of the bitter taste of orally delivered drugs are other uses. Phospholipid-based colloidal drug products can be tailored to address a wide variety of product requirements, including administration methods, cost, product stability, toxicity, and efficacy. Such formulations that are also a cost-effective method for developing medications for topical, oral, pulmonary, or parenteral administration. The originality of this review work is that we comprehensively evaluated the unique properties and special aspects of phospholipids and summarized how the individual phospholipids can be utilized in various types of lipid-based drug delivery systems, as well as listing newly marketed lipid-based products, patents, and continuing clinical trials of phospholipid-based therapeutic products. This review would be helpful for researchers responsible for formulation development and research into novel colloidal phospholipid-based drug delivery systems.
Collapse
Affiliation(s)
- Koilpillai Jebastin
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
8
|
Witika BA, Poka MS, Demana PH, Matafwali SK, Melamane S, Malungelo Khamanga SM, Makoni PA. Lipid-Based Nanocarriers for Neurological Disorders: A Review of the State-of-the-Art and Therapeutic Success to Date. Pharmaceutics 2022; 14:836. [PMID: 35456669 PMCID: PMC9031624 DOI: 10.3390/pharmaceutics14040836] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative disorders including Alzheimer's, Parkinson's, and dementia are chronic and advanced diseases that are associated with loss of neurons and other related pathologies. Furthermore, these disorders involve structural and functional defections of the blood-brain barrier (BBB). Consequently, advances in medicines and therapeutics have led to a better appreciation of various pathways associated with the development of neurodegenerative disorders, thus focusing on drug discovery and research for targeted drug therapy to the central nervous system (CNS). Although the BBB functions as a shield to prevent toxins in the blood from reaching the brain, drug delivery to the CNS is hindered by its presence. Owing to this, various formulation approaches, including the use of lipid-based nanocarriers, have been proposed to address shortcomings related to BBB permeation in CNS-targeted therapy, thus showing the potential of these carriers for translation into clinical use. Nevertheless, to date, none of these nanocarriers has been granted market authorization following the successful completion of all stages of clinical trials. While the aforementioned benefits of using lipid-based carriers underscores the need to fast-track their translational development into clinical practice, technological advances need to be initiated to achieve appropriate capacity for scale-up and the production of affordable dosage forms.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Patrick Hulisani Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| | - Siyabonga Melamane
- Stutterheim Hospital, No.1 Hospital Street, Stutterheim 4930, South Africa;
| | | | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
9
|
Tripathi N, Verma S, Vyas M, Yadav NS, Gain S, Khatik GL. Nanoformulations of quercetin: a potential phytochemical for the treatment of uv radiation induced skin damages. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000118744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Surajpal Verma
- Lovely Professional University, India; Delhi Pharmaceutical Sciences & Research University, India
| | | | | | | | | |
Collapse
|
10
|
Chacko IA, Ghate VM, Dsouza L, Lewis SA. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B Biointerfaces 2020; 195:111262. [PMID: 32736123 DOI: 10.1016/j.colsurfb.2020.111262] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/19/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Topical and transdermal application of active pharmaceutical ingredients to the skin is an attractive strategy being explored by formulation scientists to treat disease conditions rather than the oral drug delivery. Several approaches have been attempted, and many of them have emerged with significant clinical potential. However, the delivery of drugs across the skin is an arduous task due to permeation limiting barriers. It, therefore, requires the aid of external agents or carrier systems for efficient permeation. Lipid-based vesicular systems are carriers for the transport of drugs through the stratum corneum (dermal drug delivery) and into the bloodstream for systemic action (transdermal drug delivery) overcoming the barrier properties. This review article describes the various vesicular systems reported for skin delivery of actives with relevant case studies. The vesicular systems presented here are in the order of their advent from conventional systems to the advanced lipid vesicles. The design and development of drugs in vesicular systems have brought a new dimension to the treatment of disease conditions overcoming the permeation limiting barriers, thus improving its efficacy.
Collapse
Affiliation(s)
- Indhu A Chacko
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vivek M Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Leonna Dsouza
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
11
|
Dimeric artesunate phospholipid-conjugated liposomes as promising anti-inflammatory therapy for rheumatoid arthritis. Int J Pharm 2020; 579:119178. [DOI: 10.1016/j.ijpharm.2020.119178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
|
12
|
Kuche K, Bhargavi N, Dora CP, Jain S. Drug-Phospholipid Complex-a Go Through Strategy for Enhanced Oral Bioavailability. AAPS PharmSciTech 2019; 20:43. [PMID: 30610392 DOI: 10.1208/s12249-018-1252-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Among many, the oral route of delivery is considered to be the most favorable route with the highest patient compliance. The main issue with oral delivery is the environmental vulnerability of gastro intestinal tract (G.I.T). The bioavailability could further decrease when drug has poor aqueous solubility and permeability through biological membrane. This drawback could be resolved by employing drug-phospholipid complex strategy, as they utilize mechanism which is similar to the absorption mechanism of nutritional constituents form G.I.T. The drug-phospholipid complexes are considered ideal for oral delivery as they are biodegradable and non-toxic, which enable them to be employed as solubilizer, emulsifier, and as a matrix forming excipient for dugs with poor solubility and/or permeability. The present review compiles the basic know how about the phospholipids and the mechanism through which it improves the bioavailability of drugs. Further, it also compiles the crucial formulation aspects and methods of preparations of drug-phospholipid complex along with its physical and in silico characterization techniques. The increase in number of recent reports involving the utilization of drug-phospholipid complex to improve oral bioavailability of drugs thus explains how vital the strategy is for a successful oral delivery.
Collapse
|
13
|
Kapoor B, Gupta R, Singh SK, Gulati M, Singh S. Prodrugs, phospholipids and vesicular delivery - An effective triumvirate of pharmacosomes. Adv Colloid Interface Sci 2018; 253:35-65. [PMID: 29454464 DOI: 10.1016/j.cis.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
Abstract
With the advent from the laboratory bench to patient bedside in last five decades, vesicular systems have now come to be widely accepted as pragmatic means for controlled delivery of drugs. Their success stories include those of liposomes, niosomes and even the lately developed ethosomes and transferosomes. Pharmacosomes, which, as delivery systems offer numerous advantages and have been widely researched, however, remain largely unacknowledged as a successful delivery system. Though a large number of drugs have been derivatized and formulated into self-assembled vesicular systems, the term pharmacosomes has not been widely used while reporting them. Therefore, their relative obscurity may be attributed to the non-usage of the nomenclature of pharmacosomes by the researchers working in the area. We present a review on the scenario that lead to origin of these bio-inspired vesicles composed of self-assembling amphiphilic molecules. Various drugs that have been formulated into pharmacosomes, their characterization techniques, their properties relative to those of other vesicular delivery systems, and the success achieved so far are also discussed.
Collapse
|
14
|
Chen R, Li R, Liu Q, Bai C, Qin B, Ma Y, Han J. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery. AAPS PharmSciTech 2017; 18:1823-1832. [PMID: 27834056 DOI: 10.1208/s12249-016-0661-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/31/2016] [Indexed: 11/30/2022] Open
Abstract
The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.
Collapse
|
15
|
Rodrigues LR. Microbial surfactants: Fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci 2015; 449:304-16. [DOI: 10.1016/j.jcis.2015.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
|
16
|
Saboktakin MR, Tabatabaee RM. The novel polymeric systems for photodynamic therapy technique. Int J Biol Macromol 2014; 65:398-414. [DOI: 10.1016/j.ijbiomac.2014.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 11/26/2022]
|
17
|
Application of liposomes in treatment of rheumatoid arthritis: quo vadis. ScientificWorldJournal 2014; 2014:978351. [PMID: 24688450 PMCID: PMC3932268 DOI: 10.1155/2014/978351] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/12/2013] [Indexed: 11/26/2022] Open
Abstract
The most common treatments for rheumatoid arthritis include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, disease modifying antirheumatic drugs (DMARDs), and some biological agents. However, none of the treatments available is able to achieve the ultimate goal of treatment, that is, drug-free remission. This limitation has shifted the focus of treatment to delivery strategies with an ability to deliver the drugs into the synovial cavity in the proper dosage while mitigating side effects to other tissues. A number of approaches like microemulsions, microspheres, liposomes, microballoons, cocrystals, nanoemulsions, dendrimers, microsponges, and so forth, have been used for intrasynovial delivery of these drugs. Amongst these, liposomes have proven to be very effective for retaining the drug in the synovial cavity by virtue of their size and chemical composition. The fast clearance of intra-synovially administered drugs can be overcome by use of liposomes leading to increased uptake of drugs by the target synovial cells, which in turn reduces the exposure of nontarget sites and eliminates most of the undesirable effects associated with therapy. This review focuses on the use of liposomes in treatment of rheumatoid arthritis and summarizes data relating to the liposome formulations of various drugs. It also discusses emerging trends of this promising technology.
Collapse
|
18
|
Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 2013; 34:667-75. [PMID: 24182625 DOI: 10.1016/j.tips.2013.10.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Abstract
Biosurfactants have recently emerged as promising molecules for their structural novelty, versatility, and diverse properties that are potentially useful for many therapeutic applications. Mainly due to their surface activity, these molecules interact with cell membranes of several organisms and/or with the surrounding environments, and thus can be viewed as potential cancer therapeutics or as constituents of drug delivery systems. Some types of microbial surfactants, such as lipopeptides and glycolipids, have been shown to selectively inhibit the proliferation of cancer cells and to disrupt cell membranes causing their lysis through apoptosis pathways. Moreover, biosurfactants as drug delivery vehicles offer commercially attractive and scientifically novel applications. This review covers the current state-of-the-art in biosurfactant research for therapeutic purposes, providing new directions towards the discovery and development of molecules with novel structures and diverse functions for advanced applications.
Collapse
|
19
|
Liu D, Hu H, Lin Z, Chen D, Zhu Y, Hou S, Shi X. Quercetin deformable liposome: Preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:8-17. [DOI: 10.1016/j.jphotobiol.2013.07.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|