1
|
Jafari A, Esmaeilzadeh Z, Khezri MR, Ghasemnejad-Berenji H, Pashapour S, Sadeghpour S, Ghasemnejad-Berenji M. An overview of possible pivotal mechanisms of Genistein as a potential phytochemical against SARS-CoV-2 infection: A hypothesis. J Food Biochem 2022; 46:e14345. [PMID: 35866873 PMCID: PMC9350103 DOI: 10.1111/jfbc.14345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID‐19) pandemic has been caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). It is a global problem that humanity has not yet found a definitive solution for it. In this regard, a global effort has been done to find effective or potential adjuvant therapies in order to fight this infection. Genistein is a small, biologically active phytoestrogen flavonoid that is found in high amounts in soy and plants of the Fabaceae family. This important compound is known due to its anti‐cancer, anti‐inflammatory, and antioxidant effects. Additionally, protective effects of genistein have been reported in different pathological conditions through modulating intracellular pathways such as PI3K, Akt, mTOR, NF‐κB, PPARγ, AMPK, and Nrf2. Scientific evidence suggests that genistein could have a potential role to treat COVID‐19 through its anti‐inflammatory and anti‐oxidant effects. Furthermore, it appears to interfere with intracellular pathways involved in viral entry into the cell. This review provides a basis for further research and development of clinical applications of genistein as a potential alternative therapy to decrease inflammation and oxidative stress in COVID‐19 patients.
Collapse
Affiliation(s)
- Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Esmaeilzadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Sarvin Pashapour
- Department of Pediatrics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Goh YX, Jalil J, Lam KW, Husain K, Premakumar CM. Genistein: A Review on its Anti-Inflammatory Properties. Front Pharmacol 2022; 13:820969. [PMID: 35140617 PMCID: PMC8818956 DOI: 10.3389/fphar.2022.820969] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
Nowadays, non-resolving inflammation is becoming a major trigger in various diseases as it plays a significant role in the pathogenesis of atherosclerosis, asthma, cancer, obesity, inflammatory bowel disease, chronic obstructive pulmonary disease, neurodegenerative disease, multiple sclerosis, and rheumatoid arthritis. However, prolonged use of anti-inflammatory drugs is usually accompanied with undesirable effects and hence more patients tend to seek for natural compounds as alternative medicine. Considering the fact above, there is an urgency to discover and develop potential novel, safe and efficacious natural compounds as drug candidates for future anti-inflammatory therapy. Genistein belongs to the flavonoid family, in the subgroup of isoflavones. It is a phytoestrogen that is mainly derived from legumes. It is a naturally occurring chemical constituent with a similar chemical structure to mammalian estrogens. It is claimed to exert many beneficial effects on health, such as protection against osteoporosis, reduction in the risk of cardiovascular disease, alleviation of postmenopausal symptoms and anticancer properties. In the past, numerous in vitro and in vivo studies have been conducted to investigate the anti-inflammatory potential of genistein. Henceforth, this review aims to summarize the anti-inflammatory properties of genistein linking with the signaling pathways and mediators that are involved in the inflammatory response as well as its toxicity profile. The current outcomes are analysed to highlight the prospect as a lead compound for drug discovery. Data was collected using PubMed, ScienceDirect, SpringerLink and Scopus databases. Results showed that genistein possessed strong anti-inflammatory activities through inhibition of various signaling pathways such as nuclear factor kappa-B (NF-κB), prostaglandins (PGs), inducible nitric oxide synthase (iNOS), proinflammatory cytokines and reactive oxygen species (ROS). A comprehensive assessment of the mechanism of action in anti-inflammatory effects of genistein is included. However, evidence for the pharmacological effects is still lacking. Further studies using various animal models to assess pharmacological effects such as toxicity, pharmacokinetics, pharmacodynamics, and bioavailability studies are required before clinical studies can be conducted. This review will highlight the potential use of genistein as a lead compound for future drug development as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Yu Xian Goh
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chandini Menon Premakumar
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Yu L, Rios E, Castro L, Liu J, Yan Y, Dixon D. Genistein: Dual Role in Women's Health. Nutrients 2021; 13:3048. [PMID: 34578926 PMCID: PMC8472782 DOI: 10.3390/nu13093048] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Advanced research in recent years has revealed the important role of nutrients in the protection of women's health and in the prevention of women's diseases. Genistein is a phytoestrogen that belongs to a class of compounds known as isoflavones, which structurally resemble endogenous estrogen. Genistein is most often consumed by humans via soybeans or soya products and is, as an auxiliary medicinal, used to treat women's diseases. In this review, we focused on analyzing the geographic distribution of soybean and soya product consumption, global serum concentrations of genistein, and its metabolism and bioactivity. We also explored genistein's dual effects in women's health through gathering, evaluating, and summarizing evidence from current in vivo and in vitro studies, clinical observations, and epidemiological surveys. The dose-dependent effects of genistein, especially when considering its metabolites and factors that vary by individuals, indicate that consumption of genistein may contribute to beneficial effects in women's health and disease prevention and treatment. However, consumption and exposure levels are nuanced because adverse effects have been observed at lower concentrations in in vitro models. Therefore, this points to the duplicity of genistein as a possible therapeutic agent in some instances and as an endocrine disruptor in others.
Collapse
Affiliation(s)
| | | | | | | | | | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch (MTB), Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, Durham, NC 27709, USA; (L.Y.); (E.R.); (L.C.); (J.L.); (Y.Y.)
| |
Collapse
|
4
|
Karamian A, Paktinat S, Esfandyari S, Nazarian H, Ziai SA, Zarnani AH, Salehpour S, Hosseinirad H, Karamian A, Novin MG. Pyrvinium pamoate induces in-vitro suppression of IL-6 and IL-8 produced by human endometriotic stromal cells. Hum Exp Toxicol 2020; 40:649-660. [PMID: 33021119 DOI: 10.1177/0960327120964543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endometriosis, a chronic inflammatory disease, is identified by the presence of endometrial tissue outside the uterus. The prevalence of this disease among reproductive-age women is almost 10-15%. High levels of IL-6 and IL-8 have been found in the peritoneal fluid (PF) of women with endometriosis and are involved in its pathogenesis. Isolated stromal cells from 12 ectopic and eutopic endometrial biopsies of women with ovarian endometrioma and also 12 endometrial biopsies of nonendometriotic controls were treated with 1.1 µM pyrvinium pamoate, a Wnt/β-catenin signaling pathway inhibitor, for 72 hrs. Before treatment, mRNA gene expression and secretion of IL-6 and IL-8 were significantly higher in ectopic (EESCs) than eutopic (EuESCs) and control (CESCs) endometrial stromal cells. After treatment, mRNA gene expression and also secretion of IL-6 and IL-8 were significantly reduced. Our Findings showed that pyrvinium pamoate suppresses the mRNA gene expression and secretion of IL-6 and IL-8 in human endometriotic stromal cells. Additional investigations on this compound are required before clinical application.
Collapse
Affiliation(s)
- Amin Karamian
- Department of Biology and Anatomical Sciences, 274946School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Paktinat
- Department of Biology and Anatomical Sciences, 274946School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Esfandyari
- Department of Anatomy, 48504School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, 274946School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, 274946School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saghar Salehpour
- Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinirad
- Department of Biology and Anatomical Sciences, 274946School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Karamian
- Department of Anatomical Sciences, School of Medicine, 48468Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, 274946School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sutrisno S, Sulistyorini C, Manungkalit EM, Winarsih L, Noorhamdani N, Winarsih S. The effect of genistein on TGF-β signal, dysregulation of apoptosis, cyclooxygenase-2 pathway, and NF-kB pathway in mice peritoneum of endometriosis model. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Sutrisno S, Aprina H, Simanungkalit HM, Andriyani A, Barlianto W, Sujuti H, Santoso S, Dwijayasa PM, Wahyuni ES, Mustofa E. Genistein modulates the estrogen receptor and suppresses angiogenesis and inflammation in the murine model of peritoneal endometriosis. J Tradit Complement Med 2017; 8:278-281. [PMID: 29736382 PMCID: PMC5934702 DOI: 10.1016/j.jtcme.2017.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 03/13/2017] [Accepted: 03/28/2017] [Indexed: 01/30/2023] Open
Abstract
The purpose of this study was to investigate the effect of genistein administration on the modulation of the estrogen receptor, inhibition of inflammation and angiogenesis in the murine model of peritoneal endometriosis. A total of thirty-six mice (Mus musculus) were divided into six groups (n = 6), including the control group, endometriosis group, endometriosis group treated with various doses of genistein (0.78; 1.04; 1.3 mg/day), and endometriosis group treated with leuprolide acetate (0.00975 mg/day every 5 days for 15 days). Analysis of estrogen receptor-α, estrogen receptor-β, TNF-α, IL-6, VEGF, and HIF-1α were performed immunohistochemically. Expression of estrogen receptor-α, estrogen receptor-β, TNF-α, IL-6, VEGF and HIF-1α increased significantly compared with the control group (p < 0.05). All doses of genistein decreased the expression of estrogen receptor-α, increased estrogen receptor-β, lowered VEGF and HIF-1α significantly compared with endometriosis group (p > 0.05). Genistein also decreased the expression of TNF-α and IL-6 (1.04 and 1.3 mg/day) compared with the endometriosis group, reaching level comparable to that of the control group (p > 0.05). It was concluded that genistein is able to modulate estrogen receptor-α and estrogen receptor-β and inhibit the development of inflammation and angiogenesis in the murine model of peritoneal endometriosis. Thus, genistein can be a candidate in the treatment of endometriosis.
Collapse
Affiliation(s)
- Sutrisno Sutrisno
- Division of Fertility, Endocrinology and Reproduction, Department of Obstetric and Ginecology, Saiful Anwar General Hospital, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Hardianti Aprina
- Midwifery Master Study Program, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia.,Muhammadiyah Midwifery Academy, East Kotawaringin, Central of Kalimantan, Indonesia
| | - Happy Marthalena Simanungkalit
- Midwifery Master Study Program, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia.,Ministry of Health Polytechnic, Palangka Raya, Central Kalimantan, Indonesia
| | - Asti Andriyani
- Midwifery Master Study Program, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia.,Ministry of Health Polytechnic, Gorontalo, Gorontalo, Indonesia
| | - Wisnu Barlianto
- Department of Pediatric, Saiful Anwar General Hospital, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Hidayat Sujuti
- Biochemistry Laboratory, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Sanarto Santoso
- Microbiology Laboratory, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Pande Made Dwijayasa
- Department of Obstetric and Ginaecology, Saiful Anwar General Hospital, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Endang Sri Wahyuni
- Physiology Molecular Laboratory, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Edy Mustofa
- Department of Obstetric and Ginaecology, Saiful Anwar General Hospital, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| |
Collapse
|
7
|
Amellia SWN, Yueniwati Y, Sutrisno S. The expression of vascular endothelial growth factor is affected by hypoxia inducible factor-1α in peritoneum of endometriosis mice treated with genistein. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2016. [DOI: 10.1016/j.mefs.2015.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|